Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Cookies
2.2.2. Sample Preparation
2.2.3. Preparation of Press Cake and Cookies Extracts
2.2.4. Antioxidant Activity Assessment—DPPH Test
2.2.5. Determination of Phenols
2.2.6. HPLC Analysis of Phenolic Compounds
2.2.7. Colour Measurement
2.2.8. Determination of Water Activity
2.2.9. Determination of pH
2.2.10. Consumer Hedonic Test of Cookies
2.2.11. Sensory Panel Evaluation
2.2.12. Statistical Analysis
3. Results and Discussion
3.1. Polyphenol Composition, Radical Scavenging Capacity, and Water Activity of Press Cakes
3.2. Properties of Cookies
3.2.1. Total Phenolic Content (TPC), Antioxidant Activity, pH and Water Activity of Cookies
3.2.2. HPLC Analysis of Phenolic Compounds in Press Cakes and Cookies
3.2.3. Effect of Sunflower and Sesame Press Cakes on the Colour of Cookies
3.2.4. Impact of Sesame Press Cakes and Sunflower Press Cakes on Sensory Quality and Consumer Liking of Cookies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SES | Sesame press cake |
SUN | Sunflower press cake |
C | Control cookies |
SES30 | Cookies with 30% sesame press cake addition |
SES50 | Cookies with 50% sesame press cake addition |
SUN30 | Cookies with 30% sunflower press cake addition |
SUN50 | Cookies with 50% sunflower press cake addition |
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Next Steps for a Sustainable European Future. European Action for Sustainability; European Commission: Strasbourg, France, 2016. [Google Scholar]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. IPCC, 2019: Summary for policymakers. In Climate Change and Land: An Ipcc Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Volume 9781107025. [Google Scholar]
- Moshtaghian, H.; Bolton, K.; Rousta, K. Challenges for Upcycled Foods: Definition, Inclusion in the Food Waste Management Hierarchy and Public Acceptability. Foods 2021, 10, 2874. [Google Scholar] [CrossRef]
- Thorsen, M.; Mirosa, M.; Skeaff, S.; Goodman-Smith, F.; Bremer, P. Upcycled Food: How Does It Support the Three Pillars of Sustainability? Trends Food Sci. Technol. 2024, 143, 104269. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White Grape Pomace as a Source of Dietary Fibre and Polyphenols and Its Effect on Physical and Nutraceutical Characteristics of Wheat Biscuits. J. Sci. Food Agric. 2012, 93, 389–395. [Google Scholar] [CrossRef]
- Pawłowska, K.; Kuligowski, M.; Jasińska-Kuligowska, I.; Kidoń, M.; Siger, A.; Rudzińska, M.; Nowak, J. Effect of Replacing Cocoa Powder by Carob Powder in the Muffins on Sensory and Physicochemical Properties. Plant Foods Hum. Nutr. 2018, 73, 196–202. [Google Scholar] [CrossRef]
- Bakuradze, T.; Boehm, N.; Janzowski, C.; Lang, R.; Hofmann, T.; Stockis, J.-P.; Albert, F.W.; Stiebitz, H.; Bytof, G.; Lantz, I.; et al. Antioxidant-Rich Coffee Reduces DNA Damage, Elevates Glutathione Status and Contributes to Weight Control: Results from an Intervention Study. Mol. Nutr. Food Res. 2011, 55, 793–797. [Google Scholar] [CrossRef]
- Menotti, A.; Kromhout, D.; Blackburn, H.; Fidanza, F.; Buzina, R.; Nissinen, A. Food Intake Patterns and 25-Year Mortality from Coronary Heart Disease: Cross-Cultural Correlations in the Seven Countries Study. Eur. J. Epidemiol. 1999, 15, 507–515. [Google Scholar] [CrossRef]
- Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a Plant Flavonoid, Protects Cells against Oxidative Stress-Induced Cell Death through Radical Scavenging Mechanism. Food Chem. 2016, 194, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is There Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation Functional Foods. In Functional Foods; Publications Office: Brussels, Belgium, 2010. [Google Scholar]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil Cakes and Their Biotechnological Applications—A Review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Na Jom, K. A Review of Phytochemistry, Metabolite Changes, and Medicinal Uses of the Common Sunflower Seed and Sprouts (Helianthus Annuus L.). Chem. Cent. J. 2017, 11, 2–10. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; McClements, D.J. Sunflower Meal/Cake as a Sustainable Protein Source for Global Food Demand: Towards a Zero-Hunger World. Food Hydrocoll. 2024, 147, 109329. [Google Scholar] [CrossRef]
- Karamać, M.; Kosińska, A.; Estrella, I.; Hernández, T.; Dueñas, M. Antioxidant Activity of Phenolic Compounds Identified in Sunflower Seeds. Eur. Food Res. Technol. 2012, 235, 221–230. [Google Scholar] [CrossRef]
- Şahin, S.; Elhussein, E.A.A. Assessment of Sesame (Sesamum Indicum L.) Cake as a Source of High-Added Value Substances: From Waste to Health. Phytochem. Rev. 2018, 17, 691–700. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Del Mar Contreras, M. Phenolic Compounds from Sesame Cake and Antioxidant Activity: A New Insight for Agri-Food Residues’ Significance for Sustainable Development. Foods 2019, 8, 432. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Petrakis, E.A.; Argyropoulou, A.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L.A. Quantification of Bioactive Lignans in Sesame Seeds Using HPTLC Densitometry: Comparative Evaluation by HPLC-PDA. Food Chem. 2019, 288, 1–7. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 June 2025).
- Popova, N.N.; Pisklyukova, Y.N.; Asmolova, E.V.; Orlova, V.A.; Babaeva, A.V.; Egorova, G.N. Development of a Recipe for Sugar Cookies with a Reduced Glycemic Index. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Voronezh, Russian, 26–29 February 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 640. [Google Scholar]
- Suo, X.; Tagliasco, M.; Bonfini, M.; Bonfili, L.; Moreno Araiza, O.; Baggio, A.; Eleuteri, A.M.; Pellegrini, N.; Vittadini, E. Development of Sugar- and Fat-Reduced Pulse Cookies with Improved Predicted Glycemic Behavior. Appl. Food Res. 2025, 5, 100761. [Google Scholar] [CrossRef]
- Grasso, S.; Omoarukhe, E.; Wen, X.; Papoutsis, K.; Methven, L. The Use of Upcycled Defatted Sunflower Seed Flour as a Functional Ingredient in Biscuits. Foods 2019, 8, 305. [Google Scholar] [CrossRef]
- Prakash, K.; Naik, S.N.; Vadivel, D.; Hariprasad, P.; Gandhi, D.; Saravanadevi, S. Utilization of Defatted Sesame Cake in Enhancing the Nutritional and Functional Characteristics of Biscuits. J. Food Process. Preserv. 2018, 42, e13751. [Google Scholar] [CrossRef]
- Al-Khamaiseh, A.; Saleh, M.I. Impact of Sesame (Sesamum Indicum L.) Oil Cake on Pasta Physicochemical Properties. Polish J. Food Nutr. Sci. 2024, 74, 210–220. [Google Scholar] [CrossRef]
- Zouari, R.; Besbes, S.; Ellouze-Chaabouni, S.; Ghribi-Aydi, D. Cookies from Composite Wheat-Sesame Peels Flours: Dough Quality and Effect of Bacillus Subtilis SPB1 Biosurfactant Addition. Food Chem. 2016, 194, 758–769. [Google Scholar] [CrossRef]
- Nouska, C.; Irakli, M.; Palakas, P.; Lytou, A.E.; Bouloumpasi, E.; Biliaderis, C.G.; Lazaridou, A. Influence of Sesame Cake on Physicochemical, Antioxidant and Sensorial Characteristics of Fortified Wheat Breads. Food Res. Int. 2024, 178, 113980. [Google Scholar] [CrossRef]
- Blicharz-Kania, A.; Pecyna, A.; Zdybel, B.; Andrejko, D.; Marczuk, A. Sunflower Seed Cake as a Source of Nutrients in Gluten-Free Bread. Sci. Rep. 2023, 13, 10864. [Google Scholar] [CrossRef] [PubMed]
- Grasso, S.; Pintado, T.; Pérez-Jiménez, J.; Ruiz-Capillas, C.; Herrero, A.M. Characterisation of Muffins with Upcycled Sunflower Flour. Foods 2021, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 665:2004; Oilseeds—Determination of Moisture and Volatile Matter Content. Polish Committee for Standardization: Warsaw, Poland, 2004.
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Redwood, CA, USA, 2024. [Google Scholar]
- Gawęcki, J.; Baryłko-Pikielna, N. Zmysły a Jakość Żywności i Żywienia; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2015. [Google Scholar]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Attia, H. Quality Characteristics of Sesame Seeds and By-Products. Food Chem. 2007, 103, 641–650. [Google Scholar] [CrossRef]
- Sady, S.; Sielicka-Rózyńska, M. Quality Assessment of Experimental Cookies Enriched with Freeze-Dried Black Chokeberry. Acta Sci. Pol. Technol. Aliment. 2019, 18, 463–471. [Google Scholar] [CrossRef]
- Jan, A.U.; Hadi, F.; Zeb, A.; Islam, Z. Identification and Quantification of Phenolic Compounds through Reversed Phase HPLC-DAD Method in Sunflower Seeds under Various Treatments of Potassium Nitrate, Zinc Sulphate and Gibberellic Acid. J. Food Meas. Charact. 2018, 12, 269–277. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Muzquiz, M.; García-Vallejo, C.; Burbano, C.; Cuadrado, C.; Ayet, G.; Robredo, L.M. Determination of Caffeic and Chlorogenic Acids and Their Derivatives in Different Sunflower Seeds. J. Sci. Food Agric. 2000, 80, 459–464. [Google Scholar] [CrossRef]
- Morsy, M.K.; Sami, R.; Algarni, E.; Al-Mushhin, A.A.M.; Benajiba, N.; Almasoudi, A.; Almasoudi, A.G.; Mekawi, E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum Indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants 2022, 11, 338. [Google Scholar] [CrossRef]
- Srisayam, M.; Weerapreeyakul, N.; Kanokmedhakul, K. Inhibition of Two Stages of Melanin Synthesis by Sesamol, Sesamin and Sesamolin. Asian Pac. J. Trop. Biomed. 2017, 7, 886–895. [Google Scholar] [CrossRef]
- De Taeye, C.; Cibaka, M.L.K.; Collin, S. Occurrence and Antioxidant Activity of C1 Degradation Products in Cocoa. Foods 2017, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, M.; Radziejewska-Kubzdela, E.; Górna, O.; Jasińska-Kuligowska, I.; Kidoń, M. Sustainable Use of By-Products (Okara and Linseed Cake) in Tempeh Fermentation: Effects on Isoflavones and Lignans. Sustainability 2024, 16, 9936. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Gulati, P.; Kotwaliwale, N.; Gupta, C. Evaluation of Nutritional, Textural and Particle Size Characteristics of Dough and Biscuits Made from Composite Flours Containing Sprouted and Malted Ingredients. J. Food Sci. Technol. 2015, 52, 5129–5137. [Google Scholar] [CrossRef]
- Marikkar, J.M.N.; Nagaraja, R.; Somawathie, K.M.S.; Hewapathirana, H.P.T.D.; Yalegama, C.; Littardi, P.; Chiavaro, E. Effect of Coconut Testa Flour on Cookie Characteristics. Ital. J. Food Sci. 2020, 32, 209–221. [Google Scholar]
Sample | TPC mg GAE/g dm | DPPH % Inhibited | apw |
---|---|---|---|
SES | 1.17 ± 0.09 a | 16.6 ± 1.9 a | 0.257 ± 0.003 a |
SUN | 24.59 ± 0.41 b | 87.4 ± 1.0 b | 0.447 ± 0.009 a |
Sample | TP mg GAE/g dm | DPP % Inhibited | pH | apw |
---|---|---|---|---|
C | 0.69 ± 0.01 e | 1.92 ± 0.74 d | 7.81 ± 0.03 a | 0.267 ± 0.006 a |
SES30 | 0.80 ± 0.06 d | 6.82 ± 2.05 c | 7.59 ± 0.09 b | 0.240 ± 0.004 b |
SES50 | 0.91 ± 0.06 c | 8.85 ± 1.36 c | 7.87 ± 0.05 a | 0.173 ± 0.003 d |
SUN30 | 5.60 ± 0.21 b | 66.75 ± 3.51 b | 7.49 ± 0.11 c | 0.173 ± 0.001 d |
SUN50 | 8.60 ± 0.18 a | 75.91 ± 1.71 a | 7.30 ± 0.10 d | 0.184 ± 0.002 c |
Compound | SUN30 | SUN50 | SUN | SES30 | SES50 | SES | Control Cookies |
---|---|---|---|---|---|---|---|
Gallic acid | 3.24 ± 0.05 c | 4.85 ± 0.00 b | 6.87 ± 0.62 a | 1.60 ± 0.65 d | 1.61 ± 0.03 d | 2.93 ± 0.11 cd | 0.85 ± 0.02 e |
Gallic acid derivative 1 | 9.78 ± 0.31 b | 4.61 ± 0.00 c | 19.1 ± 0.2 a | nd | nd | nd | nd |
Chlorogenic acid | 121.0 ± 4.5 c | 236.7 ± 10.3 b | 392.1 ± 8.7 a | 3.37 ± 0.09 d | 0.33 ± 0.00 d | 7.72 ± 4.43 d | 1.15 ± 0.01 d |
Chlorogenic acid derivative 1 | 135.9 ± 0.3 c | 265.3 ± 19.4 b | 1848.4 ± 36.6 a | nd | nd | nd | nd |
Chlorogenic acid derivative 2 | 32.6 ± 1.3 c | 57.9 ± 4.0 b | 126.3 ± 0.3 a | nd | nd | nd | nd |
Caffeoylquinic acid derivative 1 | 11.5 ± 0.1 c | 23.6 ± 1.8 b | 141.7 ± 3.6 a | nd | nd | nd | nd |
Caffeoylquinic acid derivative 2 | 22.7 ± 0.2 c | 46.8 ± 3.1 b | 206.1 ± 4.3 a | nd | nd | nd | nd |
Caffeoylquinic acid derivative 3 | 18.9 ± 2.0 b | 36.5 ± 1.1 a | 35.1 ± 1.2 a | nd | nd | nd | nd |
Catechin derivative 1 | 1.86 ± 0.06 c | 3.86 ± 0.07 a | nd | 2.13 ± 0.05 b | 2.13 ± 0.05 b | nd | 1.34 ± 0.03 d |
Catechin derivative 2 | 6.31 ± 0.38 b | 12.7 ± 1.6 a | nd | 13.4 ± 0.2 a | 11.5 ± 0.1 a | nd | 12.6 ± 0.2 a |
Caffeic acid | nd | nd | nd | 2.85 ± 0.09 c | 4.18 ± 0.04 b | 6.63 ± 0.10 a | nd |
Sesamol | nd | nd | nd | 6.64 ± 0.07 c | 10.3 ± 0.1 b | 28.1 ± 0.1 a | nd |
Sesamin | nd | nd | nd | 9.17 ± 0.05 c | 14.3 ± 0.1 b | 40.5 ± 0.1 a | nd |
Sesamolin | nd | nd | nd | 0.70 ± 0.00 c | 0.95 ± 0.01 b | 3.58 ± 0.01 a | nd |
Unknown | 25.6 ± 1.1 cd | 49.4 ± 4.2 b | 234.9 ± 7.0 a | 12.5 ± 0.8 de | 9.73 ± 0.31 e | 34.8 ± 6.5 bc | 1.84 ± 0.25 e |
Total phenolics | 389.5 ± 2.1 c | 755.8 ± 46.7 b | 3010.7 ± 57.9 a | 49.5 ± 1.0 d | 57.7 ± 1.0 d | 125.0 ± 10.8 d | 17.8 ± 0.5 d |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
C | 75.5 ± 1.2 a | 1.53 ± 0.45 c | 26.4 ± 1.2 a | --- |
SES30 | 74.4 ± 2.2 a | 3.28 ± 1.03 b | 25.0 ± 1.9 b | 2.5 |
SES50 | 71.8 ± 4.8 b | 4.06 ± 0.87 a | 26.3 ± 2.0 a | 4.4 |
SUN30 | 63.1 ± 1.1 c | 2.99 ± 0.82 b | 26.2 ± 1.4 ab | 12.4 |
SUN50 | 58.4 ± 2.6 d | 3.46 ± 0.75 b | 21.5 ± 2.0 c | 17.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasińska-Kuligowska, I.; Kuligowski, M.; Wyszyński, M.; Kidoń, M. Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies. Sustainability 2025, 17, 7056. https://doi.org/10.3390/su17157056
Jasińska-Kuligowska I, Kuligowski M, Wyszyński M, Kidoń M. Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies. Sustainability. 2025; 17(15):7056. https://doi.org/10.3390/su17157056
Chicago/Turabian StyleJasińska-Kuligowska, Iwona, Maciej Kuligowski, Mateusz Wyszyński, and Marcin Kidoń. 2025. "Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies" Sustainability 17, no. 15: 7056. https://doi.org/10.3390/su17157056
APA StyleJasińska-Kuligowska, I., Kuligowski, M., Wyszyński, M., & Kidoń, M. (2025). Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies. Sustainability, 17(15), 7056. https://doi.org/10.3390/su17157056