Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,197)

Search Parameters:
Keywords = oil/gas extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 (registering DOI) - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 3226 KiB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Viewed by 243
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 231
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 555
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

18 pages, 1597 KiB  
Article
Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water
by Qiaoli Shan, Guocheng Zhu, Pengjun Fan, Mengyu Liang, Xin Zhang, Jie Liu and Guizhi Wu
Water 2025, 17(15), 2258; https://doi.org/10.3390/w17152258 - 29 Jul 2025
Viewed by 124
Abstract
Oil and gas field water not only contains low concentrations of lithium but also a lot of suspended matter, inorganic salt, and organic matter. Both inorganic ions and organic substances influence the extraction of lithium. To improve the extraction efficiency of low-concentration lithium [...] Read more.
Oil and gas field water not only contains low concentrations of lithium but also a lot of suspended matter, inorganic salt, and organic matter. Both inorganic ions and organic substances influence the extraction of lithium. To improve the extraction efficiency of low-concentration lithium in oil and gas field water, the effects of Na+, K+, Ca2+, Mg2+, Cl, Br, SO42−, NO3, and organic substances on the extraction efficiency of lithium were studied. The results showed that Na+ can promote the extraction of lithium to a certain extent, and lithium ions competed with K+ for extraction; however, the separation coefficient remained more than 13. Ca2+ and Mg2+ have a significant influence on the extraction of lithium and should be removed prior to extraction. Cl, SO42−, and NO3 have little influence on the extraction solution of lithium. Among the organic components, a high concentration of long-chain alkane has a certain effect on the extraction efficiency of lithium, while other substances have little effect. On this basis, the first step for precipitating impurity ions and the second step for solvent extraction of lithium were established. After removing the impurity ions, the extraction efficiency of lithium can reach over 90%. Taking 15L of oil and gas field water as the research object, after extraction, back extraction, concentration, depth impurities removal by extraction, and precipitation drying, the purity of the lithium carbonate product can be achieved at 99.28%. This study can provide technical support for the efficient extraction of low-concentration lithium from oil and gas field water. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification, 2nd Edition)
12 pages, 287 KiB  
Article
Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus
by Jorge Ramírez, Karla Balcázar, Jéssica López, Leydy Nathaly Castillo, Ruth Ortega, Haydee Vidal López, Ernesto Delgado-Fernández, Wilmer Vacacela, James Calva and Chabaco Armijos
Plants 2025, 14(15), 2336; https://doi.org/10.3390/plants14152336 - 29 Jul 2025
Viewed by 592
Abstract
For the first time, essential oils (EOs) from the leaves and flowers of Lantana camara L., grown in Loja, Ecuador, have been isolated by steam distillation and analyzed. The oil yields from the extractions were 0.021 and 0.005% for the leaves and flowers, [...] Read more.
For the first time, essential oils (EOs) from the leaves and flowers of Lantana camara L., grown in Loja, Ecuador, have been isolated by steam distillation and analyzed. The oil yields from the extractions were 0.021 and 0.005% for the leaves and flowers, respectively. A compositional analysis using gas chromatography revealed the presence of EOs, comprising approximately 97.98% of the extract from the leaves and 74.58% of the extract from the flowers. The chemical characterization of these EOs indicated sesquiterpenic profiles. The most representative constituents of the essential oils from the flowers were γ-Curcumene (21.79%), (E, E)-α-Farnesene (20.07%), and α-Zingiberene (13.38%), while the EOs from the leaves were characterized by the abundant presence of γ-Curcumene (21.87%), (E)-Nerolidol (15.09%), and cis-Muurola-4(14),5-diene (12.65%). Furthermore, the acaricidal efficacy of the EOs from the leaves of L. camara was tested by a dip test with adult ticks, resulting in acaricidal efficacy at concentrations of 10%, demonstrating the useful properties of these EOs. Full article
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)
Show Figures

Figure 1

16 pages, 2045 KiB  
Article
The Antimicrobial Activity of Silver Nanoparticles Biosynthesized Using Cymbopogon citratus Against Multidrug-Resistant Bacteria Isolated from an Intensive Care Unit
by Bianca Picinin Gusso, Aline Rosa Almeida, Michael Ramos Nunes, Daniela Becker, Dachamir Hotza, Cleonice Gonçalves da Rosa, Vanessa Valgas dos Santos and Bruna Fernanda da Silva
Pharmaceuticals 2025, 18(8), 1120; https://doi.org/10.3390/ph18081120 - 27 Jul 2025
Viewed by 369
Abstract
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and [...] Read more.
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and characterized by gas chromatography–mass spectrometry (GC-MS). Antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and total phenolic content. AgNPs (3 mM and 6 mM silver nitrate) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Bacterial isolates were obtained from ICU surfaces and personal protective equipment (PPE). Results: The essential oil presented citral A, citral B, and β-myrcene as major components (97.5% of identified compounds). AgNPs at 3 mM showed smaller size (87 nm), lower Polydispersity Index (0.14), and higher colloidal stability (−23 mV). The 6 mM formulation (147 nm; PDI 0.91; −10 mV) was more effective against a strain of Enterococcus spp. resistant to all antibiotics tested. FTIR analysis indicated the presence of O–H, C=O, and C–O groups involved in nanoparticle stabilization. Discussion: The higher antimicrobial efficacy of the 6 mM formulation was attributed to the greater availability of active AgNPs. Conclusions: The green synthesis of AgNPs using C. citratus essential oil proved effective against MDR bacteria and represents a sustainable and promising alternative for microbiological control in healthcare environments. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Graphical abstract

19 pages, 1879 KiB  
Article
A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils
by Elżbieta Paduch-Cichal, Wojciech Wakuliński, Anna Wilkos, Katarzyna Bączek, Olga Kosakowska, Zenon Węglarz and Ewa Mirzwa-Mróz
Molecules 2025, 30(15), 3122; https://doi.org/10.3390/molecules30153122 - 25 Jul 2025
Viewed by 239
Abstract
In Poland, the main causal agent of sooty blotch and flyspeck disease is the fungus Microcyclosporella mali J.Frank, Schroers et Crous, which is most commonly isolated from the spots found on apples. The aim of the paper was to study the effects of [...] Read more.
In Poland, the main causal agent of sooty blotch and flyspeck disease is the fungus Microcyclosporella mali J.Frank, Schroers et Crous, which is most commonly isolated from the spots found on apples. The aim of the paper was to study the effects of essential oils extracted from Greek oregano, thyme and costmary on M. mali. Analysis of the essential oils was conducted using gas chromatography–mass spectrometry (GC–MS) with a flame ionization detector (FID). The Greek oregano essential oil was classified to the carvacrol chemotype, while the thyme and costmary were classified to the thymol and the β-thujone chemotypes, respectively. The influence of these essential oils on the viability of the M. mali conidia was analysed cytometrically. The Greek oregano oil was characterised by the significantly highest activity against the M. mali spores. The regression analysis performed showed the occurrence of a significant linear relationship between the viability of the conidia and the concentration of the essential oils, which was then the basis for the determination of MICs and MFCs. The values of these parameters in the case of the Greek oregano oil were 0.9 and 0.4%, respectively, and for the thyme oil they were 1.2 and 2.4%. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 339
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 259
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 2330 KiB  
Article
Adaptive Differential Evolution Algorithm for Induced Polarization Parameters in Frequency-Domain Controlled-Source Electromagnetic Data
by Lei Zhou, Tianjun Cheng, Min Yao, Jianzhong Cheng, Xingbing Xie, Yurong Mao and Liangjun Yan
Minerals 2025, 15(7), 754; https://doi.org/10.3390/min15070754 - 18 Jul 2025
Viewed by 253
Abstract
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting [...] Read more.
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting resistivity and polarization information from CSEM signals may significantly improve the exploration interpretations. In this study, we replaced real resistivity with the Cole–Cole complex resistivity model in a forward simulation of the CSEM to obtain electric field responses that included both induced polarization and electromagnetic effects. Based on this, we used the adaptive differential evolution algorithm to perform a 1-d inversion of these data to extract both the resistivity and IP parameters. Inversion of the electric field responses from representative three-layer geoelectric models, as well as from a more realistic seven-layer model, showed that the inversions were able to effectively recover resistivity and polarization information from the modeled responses, validating our methodology. The electric field response of the real geoelectric model, with 20% random noise added, was then used to simulate actual measured CSEM signals, as well as subjected to multiple inversion tests. The results of these tests continued to accurately reflect the resistivity and polarization information of the model, confirming the applicability and reliability of the algorithm. These results have significant implications for the processing and interpretation of CSEM data when induced polarization effects merit consideration and are expected to promote the use of the CSEM in more fields. Full article
(This article belongs to the Special Issue Electromagnetic Inversion for Deep Ore Explorations)
Show Figures

Figure 1

34 pages, 14529 KiB  
Review
Research and Applications of Additive Manufacturing in Oil and Gas Extraction and Gathering Engineering
by Xiang Jin, Jubao Liu, Wei Fan, Mingyuan Sun, Zhongmin Xiao, Zongheng Fan, Ming Yang and Liming Yao
Materials 2025, 18(14), 3353; https://doi.org/10.3390/ma18143353 - 17 Jul 2025
Viewed by 606
Abstract
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its [...] Read more.
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its high design freedom, precision, and rapid prototyping, provides new approaches to address these issues. However, systematic reviews of related efforts are scarce. This paper reviews the applications and progress of metal and non-metal AM technologies in oil and gas extraction and gathering engineering, focusing on the just-in-time (JIT) manufacturing of failed components, the manufacturing and repair of specialized equipment and tools for oil and gas extraction and gathering, and artificial core and reservoir geological modeling fabrication. AM applications in this field remain exploratory and face challenges with regard to their standards, supply chains, materials, and processes. Future research should emphasize developing materials and processes for extreme conditions, optimizing process parameters, establishing standards and traceability systems, and integrating AM with digital design and reverse engineering to support efficient, safe, and sustainable industry development. This work aims to provide a reference for advancing AM research and engineering applications in the oil and gas sector. Full article
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Seven Thousand Felt Earthquakes in Oklahoma and Kansas Can Be Confidently Traced Back to Oil and Gas Activities
by Iason Grigoratos, Alexandros Savvaidis and Stefan Wiemer
GeoHazards 2025, 6(3), 36; https://doi.org/10.3390/geohazards6030036 - 15 Jul 2025
Viewed by 265
Abstract
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number [...] Read more.
The seismicity levels in Oklahoma and southern Kansas have increased dramatically over the last 15 years. Past studies have identified the massive disposal of wastewater co-produced during oil and gas extraction as the driving force behind some earthquake clusters, with a small number of events directly linked to hydraulic fracturing (HF) stimulations. The present investigation is the first one to examine the role both of these activities played throughout the two states, under the same framework. Our findings confirm that wastewater disposal is the main causal factor, while also identifying several previously undocumented clusters of seismicity that were triggered by HF. We were able to identify areas where both causal factors spatially coincide, even though they act at distinct depth intervals. Overall, oil and gas operations are probabilistically linked at high confidence levels with more than 7000 felt earthquakes (M ≥ 2.5), including 46 events with M ≥ 4.0 and 4 events with M ≥ 5. Our analysis utilized newly compiled regional earthquake catalogs and established physics-based principles. It first hindcasts the seismicity rates after 2012 on a spatial grid using either real or randomized HF and wastewater data as the input, and then compares them against the null hypothesis of purely tectonic loading. In the end, each block is assigned a p-value, reflecting the statistical confidence in its causal association with either HF stimulations or wastewater disposal. Full article
(This article belongs to the Special Issue Seismological Research and Seismic Hazard & Risk Assessments)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 831
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

18 pages, 2013 KiB  
Article
In Vivo Evaluation of the Analgesic and Anti-Inflammatory Activity of Thymus numidicus Essential Oil
by Ouardia Chaouchi, Velislava Todorova, Stanislava Ivanova, Elizabet Dzhambazova, Farida Fernane, Nacira Daoudi Zerrouki, Lyudmil Peychev, Kremena Saracheva, Michaela Shishmanova-Doseva and Zhivko Peychev
Pharmaceuticals 2025, 18(7), 1031; https://doi.org/10.3390/ph18071031 - 11 Jul 2025
Viewed by 346
Abstract
Background: Thymus numidicus Poiret. (Lamiaceae) is an endemic plant with well-known antibacterial properties. It has been largely used in traditional Algerian medicine. This study aimed to compare the chemical composition of essential oils (EOs) extracted from leaves and flowers using the gas [...] Read more.
Background: Thymus numidicus Poiret. (Lamiaceae) is an endemic plant with well-known antibacterial properties. It has been largely used in traditional Algerian medicine. This study aimed to compare the chemical composition of essential oils (EOs) extracted from leaves and flowers using the gas chromatography–mass spectrometry method, as well as to investigate its analgesic and anti-inflammatory activities. Results: The EOs were rich in monoterpenes and classified as a thymol chemotype. In vivo experiments revealed that acute treatment with T. numidicus EO (20 and 80 mg/kg) significantly increased the thermal threshold on the hot-plate at all tested hours compared to the control animals (p < 0.001, respectively), while only the higher dose had a similar effect to the metamizole group at 2 and 3 h. In the mechanical stimulus test, both doses of the EO led to a late analgesic effect presented with increased paw withdrawal threshold only during the third hour compared to the control group (p < 0.05, respectively). In the plethysmometer test both doses of the EO dose-dependently reduced paw volume with nearly 10% and 15% compared to the control animals at all tested hours (p < 0.001, respectively), with a more pronounced volume reduction in the higher dose. In a neuropathic pain model, the EO (20 mg/kg and 80 mg/kg) dose-dependently increased the withdrawal latency time towards thermal stimuli and enhanced the paw withdrawal threshold in response to mechanical pressure at all tested hours compared to the CCI-group (p < 0.001, respectively). These findings demonstrate the potent analgesic and anti-inflammatory effects of T. numidicus EO in models of acute and neuropathic pain. Full article
Show Figures

Graphical abstract

Back to TopTop