Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus
Abstract
1. Introduction
2. Results
2.1. Essential Oil Isolation
2.2. Chemical Analysis of Essential Oils
2.3. Acaricidal Effect of L. camara Essential Oil
2.4. ANOVA Analysis
3. Discussion
4. Materials and Methods
4.1. Materials and Chemical Reagents
4.2. Plant Material
4.3. Distillation of the Volatile Fraction
4.4. Qualitative and Quantitative Analysis of the Essential Oils
4.5. Evaluation of the Acaricidal Effect of the Essential Oil
4.5.1. Dip Test of Adult Ticks
4.5.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, C.; Torres, C.; Nuñez, M. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Rahmatullah, M.; Jahan, R.; Safiul Azam, F.M.; Hossan, S.; Mollik, M.A.H.; Rahman, T. Folk medicinal uses of verbenaceae family plants in Bangladesh. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J. Verbenaceae. In Flora. Ornamental Española: Las Plantas Cultivadas en la España Peninsular Insular; Mundi-Prensa Libros, S.A.: Madrid, Spain, 2020; Volume 7, pp. 1–65. [Google Scholar]
- González, A.; Villalobos, V.; Pereyra, G.; Rengifo, E.; Marín, O.; Tezara, W. Comparación ecofisiológica de tres especies del género Lantana camara (Verbenaceae). Acta Bot. Venez. 2009, 32, 417–432. [Google Scholar]
- Rzedowski, J.; Calderón, G. Familia Verbenaceae. In Flora. del Bajío y de Regiones Adyacentes; Instituto de Ecología A.C.: Michoacán, México, 2002; pp. 1–154. [Google Scholar]
- Ayalew, A.A. Chromatographic and spectroscopic determination of solvent-extracted Lantana camara leaf oil. J. Int. Med. Res. 2020, 48, 0300060520962344. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an Invasive Plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, M.; Devi, G.; Chaturvedi, R. Herbal Medicine and Biotechnology for the Benefit of Human Health. In Animal Biotechnology: Models in Discovery and Translation, 1st ed.; Verma, A., Singh, A., Eds.; Elsevier: New Delhi, India, 2014; pp. 563–575. [Google Scholar]
- Inga, L. Identificación de los Componentes del Aceite Esencial de Lantana cámara L. Formulación y Elaboración de Una Forma Farmacéutica Repelente de Insectos. Ph.D. Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2016. [Google Scholar]
- Barros, L.; Duarte, A.; Morais, M.; Waczuk, E.; Vega, C.; Leite, N.; de Menezes, I.; Coutinho, H.; Rocha, J.; Kamdem, J. Chemical Characterization and Trypanocidal, Leishmanicidal and Cytotoxicity Potential of Lantana camara L. (Verbenaceae) Essential Oil. Molecules 2016, 21, 209. [Google Scholar] [CrossRef]
- Zandi, N.; Hojjati, M.; Carbonell, Á. Bioactivity of Lantana camara L. essential oil against Callosobruchus maculatus (Fabricius). Chil. J. Agric. Res. 2012, 72, 502–506. [Google Scholar] [CrossRef]
- López, M.; Aguilar, A.; Aguilar, S.; Xolapa, S. Las Verbenaceae empleadas como recurso herbolario en México: Una revisión etnobotánica-médica. Polibotánica 2017, 44, 195–216. [Google Scholar]
- Mena, C.; Silva, B.; Medina, A. Composición química y actividad biológica de los aceites esenciales de Lamiaceas, Asteraceas, Vervenaceas. Infoanalítica 2020, 8, 48–69. [Google Scholar] [CrossRef]
- Bermúdez, A.; Cárdenas, Á.; Neira, J. Uso tradicional de las plantas medicinales por la población del Cantón Salcedo, Cotopaxi, Ecuador. Arch. Venez. Farmacol. Y Terapéutica. 2022, 41, 208–215. [Google Scholar]
- Martínez, A. Aceites Esenciales. In Química de Productos Naturales, 1st ed.; Universidad de Antioquia, Departamento de Bibliotecas Repositorio Institucional: Medellín, Colombia, 2020; pp. 274–307. [Google Scholar]
- Montoya, G. Aceites Esenciales: Una Alternativa de Diversificación Para el eje Cafetero, 1st ed.; Universidad Nacional de Colombia Sede Manizales: Manizales, Colombia, 2010; pp. 11–176. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Khan, M.; Mahmood, A.; Alkhathlan, H. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arab. J. Chem. 2016, 9, 764–774. [Google Scholar] [CrossRef]
- Nea, F.; Kambiré, D.; Genva, M.; Tanoh, E.; Wognin, E.; Martin, H.; Brostaux, Y.; Tomi, F.; Lognay, G.; Tonzibo, Z.; et al. Composition, Seasonal Variation, and Biological Activities of Lantana camara Essential Oils from Côte d’Ivoire. Molecules 2020, 25, 2400. [Google Scholar] [CrossRef] [PubMed]
- Kasali, A.; Ekundayo, O.; Paul, C.; Koenig, W.; Eshilokun, A.; Yadua, P. Essential oil of Lantana camara L. var. aculeata from Nigeria. J. Essent. Oil Res. 2004, 16, 582–584. [Google Scholar] [CrossRef]
- Misra, L.; Saikia, A. Chemotypic variation in indian Lantana camara essential oil. J. Essent. Oil Res. 2011, 23, 1–5. [Google Scholar] [CrossRef]
- Romeu, C.; Pino, J.; Marti, M. Algunas consideraciones acerca de la composición química del aceite esencial de Lantana camara L. presente en Cuba. Fitosanidad 2004, 8, 59–63. [Google Scholar]
- Zoubiri, S.; Baaliouamer, A. GC and GC/MS analyses of the Algerian Lantana camara leaf essential oil: Effect against Sitophilus granarius adults. J. Saudi Chem. Soc. 2012, 16, 291–297. [Google Scholar] [CrossRef]
- Guerrero, P.; Pozo, K. Evaluación de la Actividad Antioxidante Bioautográfica de Cinco Variedades de Aceites Esenciales Andinos (Aristeguietia glutinosa; Myrcianthes rhopaloides; Ambrosia arborescens; Lantana camara; Minthostachys mollis). Bachelor’s Thesis, Universidad Politécnica Salesiana, Quito, Ecuador, 2016. [Google Scholar]
- Sousa, E.O.; Lima, A.S.; Lopes, S.G.; Costa-Junior, L.M.; Costa, J.G.M. Chemical composition and acaricidal activity of Lantana cámara L. and Lantana montevidensis Briq. essential oils on the tick Rhipicephalus microplus. J. Essent. Oil Res. 2020, 32, 316–322. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.; Dube, S.; Maphosa, V. An in-vivo study of the efficacy and safety of ethno—Veterinary remedies used to control cattle ticks by rural farmers in the Eastern Cape Province of South Africa. Trop. Anim. Health Prod. 2009, 41, 1569–1576. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Showler, A.T. Botanically based repellent and insecticidal effects against horn flies and stable flies (Diptera: Muscidae). J. Integr. Pest Manag. 2017, 8, 15. [Google Scholar] [CrossRef]
- Guzmán, L.; Malla, J.L.; Ramírez, J.; Gilardoni, G.; Calva, J.; Hidalgo, D.; Valarezo, E.; Rey-Valeirón, C. Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus. Vet. Sci. 2022, 9, 23. [Google Scholar] [CrossRef]
- Salman, M.; Abbas, R.Z.; Israr, M.; Abbas, A.; Mehmood, K.; Khan, M.K.; Sindhu, Z.D.; Hussain, R.; Saleemi, M.K.; Shah, S. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle. Vet. Parasitol. 2020, 283, 109178. [Google Scholar] [CrossRef]
- Abbas, A.; Abbas, R.Z.; Masood, S.; Iqbal, Z.; Khan, M.K.; Saleemi, M.K.; Raza, M.A.; Mahmood, M.S.; Khan, J.A.; Shindhu, Z.D. Acaricidal and insecticidal effects of essential oils against ectoparasites of veterinary importance. Bol. Latinoam. Caribe Plantas Med. Aromát. 2018, 17, 5. [Google Scholar]
- da Camara, C.A.; da S Lima, G.; de Moraes, M.M.; da Silva, M.; de Melo, J.P.; dos Santos, M.L.; Fagg, C.W. Chemical composition and acaricidal activity of essential oils and selected terpenes from two species of Psidium in the Cerrado biome of Brazil against Tetranychus urticae. Bol. Latinoam. Caribe Plantas Med. Aromát. 2020, 19, 1. [Google Scholar]
- Fernandez, C.M.M.; Lorenzetti, F.B.; Kleinubing, S.A.; de Andrade, J.P.P.; Bortolucci, W.d.C.; Gonçalves, J.E.; Piau Júnior, R.; Cortez, D.A.G.; Gazim, Z.C.; Filho, B.P.D. Composición química y actividad insecticida del aceite esencial de Garcinia gardneriana (Planchon & Triana) Zappi (Clusiaceae). Bol. Latinoam. Caribe Plantas Med. Aromát. 2021, 20, 503–514. [Google Scholar] [CrossRef]
- Alibeigi, Z.; Rakhshandehroo, E.; Saharkhiz, M.J.; Alavi, M.A. The acaricidal and repellent activity of the essential and nano essential oil of Thymus vulgaris against the larval and engorged adult stages of the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). BMC Vet. Res. 2025, 21, 135. [Google Scholar] [CrossRef] [PubMed]
- Dehghani-Samani, A.; Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali-Kheirabadi, K. Acaricidal and repellent activities of essential oil of Eucalyptus globulus against Dermanyssus gallinae (Acari: Mesostigmata). J. HerbMed Pharmacol. 2015, 4, 81–84. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperatura programmed gas-Liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.E.A.; Ernst, S.E.; Trevino, J.L.; Gladney, W.J.; Graham, O.H. Boophilus annulatus and B. microplus: Laboratory tests of insecticides. J. Econ. Entomol. 1973, 66, 130–133. [Google Scholar] [CrossRef] [PubMed]
- FAO. Manual on Practical Methods for Monitoring the Susceptibility of Disease Vectors to Insecticides; FAO Plant Production and Protection Paper No. 148; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Céspedes, N.S.; Vargas, M.S.; Sánchez, H.F.; Vázquez, Z.G. Primer caso de resistencia al amitraz en la garrapata del ganado Boophilus microplus en México. Técnica Pecu. México 2002, 40, 81–92. [Google Scholar]
- Ramírez, J.; Armijos, C.; Espinosa-Ortega, N.; Castillo, L.N.; Vidari, G. Ethnobotany, Phytochemistry, and Biological Activity of Extracts and Non-Volatile Compounds from Lantana camara L. and Semisynthetic Derivatives—An Updated Review. Molecules 2025, 30, 851. [Google Scholar] [CrossRef]
No. | Compound | LRI a | LRI b | Leaves | Flowers |
---|---|---|---|---|---|
% ± SD | % ± SD | ||||
1 | Sabinene | 961 | 969 | 0.19 ± 0.00 | - |
2 | Camphene | 966 | 946 | 5.63 ± 0.12 | - |
3 | δ-2-Carene | 977 | 1001 | 0.16 ± 0.00 | - |
4 | Verbene | 980 | 961 | 0.03 ± 0.00 | - |
5 | α-Phellandrene | 993 | 1002 | 3.69 ± 0.07 | 0.12 ± 0.01 |
6 | p-Mentha-1(7),8-diene | 997 | 1003 | 4.91 ± 0.09 | 0.35 ± 0.03 |
7 | Pentyl propanoate | 1001 | 1005 | 1.28 ± 0.02 | - |
8 | Myrcene | 1005 | 988 | 2.93 ± 0.04 | - |
9 | 3-Octanol | 1015 | 988 | 0.11 ± 0.00 | - |
11 | α-Terpinene | 1028 | 1014 | 0.10 ± 0.00 | - |
12 | ο-Cymene | 1032 | 1022 | 0.05 ± 0.00 | - |
13 | Sylvestrene | 1038 | 1025 | 1.12 ± 0.02 | 0.21 ± 0.02 |
14 | 1,8-Cineole | 1042 | 1026 | 0.84 ± 0.01 | - |
15 | (Z)-β-Ocimene | 1045 | 1032 | 0.04 ± 0.00 | - |
16 | (E)-β-Ocimene | 1053 | 1044 | 0.51 ± 0.01 | - |
17 | γ-Terpinene | 1064 | 1054 | 0.33 ± 0.00 | 0.56 ± 0.02 |
18 | cis-Sabinene hydrate | 1078 | 1065 | 0.06 ± 0.05 | - |
19 | Terpinolene | 1089 | 1086 | 0.14 ± 0.11 | - |
20 | Linalool | 1106 | 1095 | 0.54 ± 0.01 | - |
21 | n-Nonanal | 1113 | 1100 | 0.07 ± 0.00 | - |
22 | α-Fenchocamphorone | 1116 | 1104 | 0.05 ± 0.00 | - |
23 | trans-Pinocarveol | 1146 | 1135 | 0.06 ± 0.00 | - |
24 | cis-Verbenol | 1148 | 1137 | 0.12 ± 0.00 | - |
25 | trans-Verbenol | 1153 | 1140 | 0.24 ± 0.00 | - |
26 | Borneol | 1179 | 1165 | 0.07 ± 0.01 | - |
27 | Terpinen-4-ol | 1186 | 1174 | 0.24 ± 0.01 | - |
28 | α-Terpineol | 1203 | 1186 | 0.30 ± 0.00 | - |
29 | (3Z)-Hexenyl 3-methyl butanoate | 1236 | 1232 | 0.08 ± 0.00 | - |
30 | (2Z)-Hexenyl isovalerate | 1242 | 1241 | 0.09 ± 0.00 | - |
31 | Methyl citronellate | 1249 | 1257 | 0.06 ± 0.00 | - |
32 | Geranial | 1279 | 1264 | 0.04 ± 0.00 | - |
33 | trans-Pinocarvyl acetate | 1300 | 1298 | 0.14 ± 0.00 | - |
34 | δ-Elemene | 1335 | 1335 | 0.23 ± 0.01 | 0.66 ± 0.23 |
35 | α-Terpinyl acetate | 1353 | 1346 | 0.08 ± 0.00 | - |
36 | Eugenol | 1364 | 1356 | 0.07 ± 0.00 | - |
37 | Cyclosativene | 1369 | 1369 | 0.03 ± 0.00 | - |
38 | α-Copaene | 1375 | 1374 | 0.28 ± 0.00 | 0.63 ± 0.28 |
39 | β-Bourbonene | 1383 | 1387 | 0.20 ± 0.01 | 0.33 ± 0.03 |
40 | β-Cubebene | 1388 | 1387 | 0.27 ± 0.00 | - |
41 | β-Elemene | 1390 | 1389 | 1.86 ± 0.12 | 2.99 ± 0.57 |
42 | α-Funebrene | 1402 | 1402 | 0.57 ± 0.00 | 0.97 ± 0.03 |
43 | Italicene | 1405 | 1405 | 0.01 ± 0.00 | 0.05 ± 0.02 |
44 | α-Cedrene | 1416 | 1410 | 0.28 ± 0.00 | 0.47 ± 0.01 |
45 | (E)-Caryophyllene | 1419 | 1427 | 4.29 ± 0.02 | - |
46 | β-Ylangene | 1424 | 1419 | 0.05 ± 0.00 | - |
47 | cis-Thujopsene | 1428 | 1429 | 0.39 ± 0.00 | 0.66 ± 0.02 |
48 | β-Copaene | 1431 | 1430 | 0.77 ± 0.03 | - |
49 | β-Gurjunene | 1431 | 1431 | - | 1.25 ± 0.18 |
50 | α-trans-Bergamotene | 1434 | 1432 | 0.03 ± 0.00 | - |
51 | Aromadendrene | 1439 | 1439 | 0.06 ± 0.00 | 0.55 ± 0.04 |
52 | 2-epi-β-Funebrene | 1443 | 1411 | 0.32 ± 0.01 | - |
53 | transMuurola-3,5-diene | 1448 | 1451 | 0.03 ± 0.00 | - |
54 | cis-Cadina-1(6),4-diene | 1450 | 1461 | 0.10 ± 0.01 | - |
55 | α-Humulene | 1457 | 1452 | 4.23 ± 0.02 | 5.26 ± 0.16 |
56 | Amorpha-4,11-diene | 1459 | 1449 | 0.30 ± 0.01 | - |
57 | 9-epi-(E)-Caryophyllene | 1461 | 1464 | 0.13 ± 0.01 | - |
58 | α-Acoradiene | 1468 | 1464 | 0.07 ± 0.00 | 0.01 ± 0.05 |
59 | α-Neocallitropsene | 1470 | 1474 | 0.20 ± 0.00 | - |
60 | Dauca-5,8-diene | 1474 | 1471 | - | 0.46 ± 0.05 |
61 | γ-Muurolene | 1475 | 1478 | 0.18 ± 0.00 | - |
62 | cis-Muurola-4(14),5-diene | 1484 | 1465 | 12.65 ± 0.20 | - |
63 | ar-Curcumene | 1485 | 1479 | 1.28 ± 0.02 | - |
64 | Viridiflorene | 1494 | 1496 | 0.10 ± 0.00 | - |
65 | α-Zingiberene | 1497 | 1493 | - | 13.38 ± 0.33 |
66 | γ-Curcumene | 1498 | 1481 | 21.87 ± 0.10 | 21.79 ± 0.68 |
67 | α-Muurolene | 1502 | 1500 | 0.06 ± 0.00 | trace |
68 | cis-β-Guaiene | 1506 | 1492 | 0.43 ± 0.06 | - |
69 | β-Macrocarpene | 1510 | 1499 | - | 0.47 ± 0.19 |
70 | β-Curcumene | 1513 | 1514 | 2.79 ± 0.02 | 5.34 ± 0.20 |
71 | δ-Amorphene | 1517 | 1511 | 0.41 ± 0.01 | - |
72 | Cubebol | 1521 | 1514 | 0.23 ± 0.00 | - |
73 | δ-Cadinene | 1522 | 1522 | 0.27 ± 0.00 | 0.63 ± 0.02 |
74 | β-Sesquiphellandrene | 1428 | 1421 | 0.04 ± 0.00 | 0.50 ± 0.02 |
75 | trans-Calamenene | 1536 | 1521 | 0.05 ± 0.00 | - |
76 | Italicene ether | 1540 | 1536 | 0.01 ± 0.00 | - |
77 | Silphiperfol-5-en-3-ol A | 1550 | 1557 | 0.02 ± 0.00 | - |
78 | γ-Cuprenene | 1559 | 1532 | - | 0.12 ± 0.01 |
79 | trans-Dauca-4(11),7-diene | 1558 | 1556 | - | 0.16 ± 0.01 |
80 | trans-Sesquisabinene hydrate | 1561 | 1577 | 0.09 ± 0.00 | - |
81 | Germacrene B | 1563 | 1559 | 1.01 ± 0.02 | 1.56 ± 0.07 |
82 | (E,E)-α-Farnesene | 1567 | 1505 | - | 20.07 ± 1.36 |
83 | (E)-Nerolidol | 1568 | 1561 | 15.09 ± 0.07 | - |
84 | Spathulenol | 1585 | 1577 | 0.70 ± 0.01 | - |
85 | Caryophyllene oxide | 1589 | 1582 | 0.14 ± 0.00 | - |
86 | n-Hexyl benzoate | 1589 | 1579 | 0.24 ± 0.03 | - |
87 | Guaiol | 1596 | 1600 | 0.09 ± 0.00 | - |
88 | Viridiflorol | 1601 | 1592 | 0.20 ± 0.01 | - |
89 | Junenol | 1613 | 1618 | 0.05 ± 0.00 | - |
90 | Rosifoliol | 1616 | 1600 | 0.14 ± 0.04 | - |
91 | epi-Cedrol | 1619 | 1618 | - | 0.29 ± 0.02 |
92 | cis-Cadin-4-en-7-ol | 1623 | 1635 | - | 1.62 ± 0.09 |
93 | α-Corocalene | 1628 | 1622 | 0.04 ± 0.00 | - |
94 | Eremoligenol | 1631 | 1629 | 0.07 ± 0.00 | - |
95 | epi-α-Cadinol | 1635 | 1638 | 0.24 ± 0.01 | 0.11 ± 0.01 |
96 | β-Acorenol | 1642 | 1636 | 0.18 ± 0.13 | - |
97 | Himachalol | 1642 | 1652 | - | 0.83 ± 0.05 |
98 | 1-epi-Cubenol | 1644 | 1627 | 0.10 ± 0.14 | - |
99 | Valerianol | 1654 | 1656 | - | 0.19 ± 0.06 |
100 | Cubenol | 1654 | 1645 | 0.06 ± 0.00 | - |
101 | epi-α-Muurolol | 1656 | 1640 | 0.03 ± 0.00 | - |
102 | α-Muurolol (Torreyol) | 1659 | 1644 | 0.07 ± 0.01 | 0.45 ± 0.02 |
103 | 7-epi-α-Eudesmol | 1659 | 1662 | - | 0.15 ± 0.04 |
104 | α-Cadinol | 1668 | 1652 | 0.08 ± 0.01 | - |
105 | (Z)-α-Santalol | 1680 | 1674 | - | 0.31 ± 0.04 |
106 | β-Bisabolol | 1680 | 1674 | 0.06 ± 0.01 | - |
107 | 11-αH-Himachal-4-en-1-β-ol | 1695 | 1699 | 0.06 ± 0.01 | - |
108 | Sclarene | 1977 | 1974 | - | 3.65 ± 2.68 |
109 | (6E,10Z)-Pseudo phytol | 2034 | 2018 | - | 0.43 ± 0.14 |
Monoterpene hydrocarbons | 19.83 | 1.24 | |||
Oxygenated monoterpenoids | 2.58 | - | |||
Sesquiterpene hydrocarbons | 58.34 | 65.09 | |||
Oxygenated sesquiterpenoids | 15.27 | 3.94 | |||
Others | 1.96 | 4.31 | |||
TOTAL | 97.98 | 74.58 |
Engorged Ticks Group | Treatments | ||
---|---|---|---|
Olive Oil (1) | 10% of L. camara EO (2) | 15% of L. camara EO (3) | |
1 | 0 | 100 | 100 |
2 | 0 | 100 | 100 |
3 | 0 | 100 | 100 |
Repetition | Treatment | No. of Ticks Exposed | No. of Dead Ticks | Mortality (%) |
---|---|---|---|---|
1 | Olive oil (control) | 10 | 0 | 0 |
1 | 10% of L. camara EO | 10 | 10 | 100 |
1 | 15% of L. camara EO | 10 | 10 | 100 |
2 | Olive oil (control) | 10 | 0 | 0 |
2 | 10% of L. camara EO | 10 | 10 | 100 |
2 | 15% of L. camara EO | 10 | 10 | 100 |
3 | Olive oil (control) | 10 | 0 | 0 |
3 | 10% of L. camara EO | 10 | 10 | 100 |
3 | 15% of L. camara EO | 10 | 10 | 100 |
S.V | S.S | df | MS | F | p-Value |
---|---|---|---|---|---|
Model | 20,000.00 | 2 | 10,000.00 | 1.61 × 1016 | <0.001 |
TTO | 20,000.00 | 2 | 10,000.00 | sd | sd |
Error | 3.7 × 10−12 | 6 | 0.00 | ||
Total | 20,000.00 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, J.; Balcázar, K.; López, J.; Castillo, L.N.; Ortega, R.; López, H.V.; Delgado-Fernández, E.; Vacacela, W.; Calva, J.; Armijos, C. Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus. Plants 2025, 14, 2336. https://doi.org/10.3390/plants14152336
Ramírez J, Balcázar K, López J, Castillo LN, Ortega R, López HV, Delgado-Fernández E, Vacacela W, Calva J, Armijos C. Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus. Plants. 2025; 14(15):2336. https://doi.org/10.3390/plants14152336
Chicago/Turabian StyleRamírez, Jorge, Karla Balcázar, Jéssica López, Leydy Nathaly Castillo, Ruth Ortega, Haydee Vidal López, Ernesto Delgado-Fernández, Wilmer Vacacela, James Calva, and Chabaco Armijos. 2025. "Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus" Plants 14, no. 15: 2336. https://doi.org/10.3390/plants14152336
APA StyleRamírez, J., Balcázar, K., López, J., Castillo, L. N., Ortega, R., López, H. V., Delgado-Fernández, E., Vacacela, W., Calva, J., & Armijos, C. (2025). Chemical Composition and Acaricidal Activity of Lantana camara L. Essential Oils Against Rhipicephalus microplus. Plants, 14(15), 2336. https://doi.org/10.3390/plants14152336