Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods
2.2.1. Extraction
2.2.2. Preparation of Lithium Carbonate
2.3. Calculation Method
2.3.1. Extraction Efficiency
2.3.2. Back Extraction Efficiency
2.3.3. Transfer Efficiency
2.3.4. Distribution Ratio
2.3.5. Separation Coefficient
2.4. Analysis Method
3. Results and Discussion
3.1. Extraction Mechanism
3.2. Influence of Cation on Lithium Extraction
3.2.1. Influence of Na+ on Lithium Extraction
3.2.2. Influence of K+ on Lithium Extraction
3.2.3. Influence of Ca2+ on Lithium Extraction
3.2.4. Influence of Mg2+ on Lithium Extraction
3.3. Influence of Anion on Lithium Extraction
3.4. Influence of Organic Matter on Lithium Extraction
3.5. Two-Step Lithium Extraction
3.5.1. Impurity Removal of Precipitation
3.5.2. Solvent Extraction of Lithium
3.6. Lithium Carbonate Preparation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Wang, D.; Wang, W.; Feng, Y.; Yang, Y. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters. Acta Geol. Sin. 2019, 93, 1489–1500. [Google Scholar]
- Yue, J.C.; Cen, C.Y.; Bai, S.C.; Wang, X.Q.; Yang, R.; Wen, W.; Liu, D.; Xiao, G.Q. A novel HTO@PAN/CS membrane for efficient Li plus recovery from gas field water. Sep. Purif. Technol. 2025, 362. [Google Scholar] [CrossRef]
- Zhang, Q.; Hai, C.; Sun, Y.; Gao, Y.; Dong, S.; Ma, L.; He, X.; Xu, Q.; Zhou, Y. Formation and working mechanisms of layered TiO2·H2O adsorbents for effectively recovering Li+ from oil-gas field brines. Sep. Purif. Technol. 2025, 354, 128998. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, P.; Tu, W.; Sun, H.; Li, S.; Zhang, Y. Lithium recovery from oil and gas produced water: Opportunities, challenges, and future outlook. J. Water Process Eng. 2023, 55, 104148. [Google Scholar] [CrossRef]
- Zante, G.; Trebouet, D.; Boltoeva, M. Solvent extraction of lithium from simulated shale gas produced water with a bifunctional ionic liquid. Appl. Geochem. 2020, 123, 104783. [Google Scholar] [CrossRef]
- Wang, X.; Numedahl, N.; Jiang, C. Direct lithium extraction from Canadian oil and gas produced water using functional ionic liquids-A preliminary study. Appl. Geochem. 2024, 172, 106126. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Goto, A.; Zhao, Y.; Wang, R. Uranium and lithium extraction from seawater: Challenges and opportunities for a sustainable energy future. J. Mater. Chem. A 2023, 11, 22551–22589. [Google Scholar] [CrossRef]
- Li, H.; Chen, T.; Jiang, J.; Gao, G.; Wang, C.; Lu, Z. Prelithiation-derived hierarchical TiO2 sieve with metal-organic framework gate for selective lithium recovery. Chem. Eng. J. 2023, 451, 138662. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Gao, Y. Performance evaluation of lithium-based adsorbents in oil and gas fields brine. Chem. Eng. Oil Gas 2024, 53, 111–118. [Google Scholar]
- Gao, L.; Ling, N.; Jin, Y. Key technology and application of lithium extraction from produced water in high sulfur and high hardness gas fields. Inorg. Chem. Ind. 2023, 55, 74–80. [Google Scholar]
- Tang, G.J.; Zhang, H.J.; He, H. Research on technology for lithium extraction from oil and gas field produced water. Nat. Gas Oil 2023, 41, 67–72. [Google Scholar]
- Wang, H.; Yang, Y.; Yuan, X.Z.; Liang Teo, W.; Wu, Y.; Tang, L.; Zhao, Y. Structure–performance correlation guided applications of covalent organic frameworks. Mater. Today 2022, 53, 106–133. [Google Scholar] [CrossRef]
- Ochromowicz, K.; Zablocka-Malicka, M.; Chojnacka, I.; Worsa-Kozak, M. Assessing the viability of integrating evaporation and solvent extraction systems for lithium recovery from low-grade brines. Processes 2024, 12, 1453. [Google Scholar] [CrossRef]
- Li, H.F.; Li, J.L.; Dong, L.M. Extraction of lithium from salt lake brine with high Mg/Li mass ratio by n523-dibk extraction system. J. Sustain. Metall. 2023, 9, 1456–1465. [Google Scholar] [CrossRef]
- Shi, D.; Cui, B.; Li, L.J.; Peng, X.W.; Zhang, L.C.; Zhang, Y.Z. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP-kerosene-FeCl3 system. Sep. Purif. Technol. 2019, 211, 303–309. [Google Scholar] [CrossRef]
- Hu, Y.; Su, H.; Zhu, Z.; Zhou, M.; Qi, T. Mechanisms for the separation of Li+ and mg2+ from salt lake brines using TBP and TOP systems. Desalination 2024, 583, 117698. [Google Scholar] [CrossRef]
- Disu, B.; Rafati, R.; Haddad, A.S.; Roca, J.A.M.; Clar, M.I.I.; Bakhtiari, S.S.E. Review of recent advances in lithium extraction from subsurface brines. Geoenergy Sci. Eng. 2024, 241, 213189. [Google Scholar] [CrossRef]
- Rebekka, R.; Klemens, S.; Jochen, E.K. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines. Miner. Process. Extr. Metall. Rev. 2023, 44, 261–280. [Google Scholar]
- Dang, V.D.; Steinberg, M. Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant. Energy 1977, 3, 325–336. [Google Scholar] [CrossRef]
- Seo, J.; Vu, T.T.; Cho, S.; Cha, J.; Choi, Y.; Song, D. Qualitative Assessment of PC88A and HBTA Extractants in Lithium Recovery Processes Using Solvent Extraction. Korean J. Chem. Eng. 2025, 42, 323–328. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Rui, H.; Shi, D.; Song, X. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. J. Hazard. Mater. 2020, 398, 122840. [Google Scholar] [CrossRef]
- Knapik, E.; Rotko, G.; Marszalek, M. Recovery of lithium from oilfield brines-current achievements and future perspectives: A mini review. Energies 2023, 16, 6628. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Liu, R.; Zhou, Y.; Zhang, Y.; Ji, L.; Li, L. Recovery of lithium from salt lake brine with high Na/Li ratio using solvent extraction. J. Mol. Liq. 2022, 362, 119667. [Google Scholar] [CrossRef]
- Jang, E.; Jang, Y.; Chung, E. Lithium recovery from shale gas produced water using solvent extraction. Appl. Geochem. 2017, 78, 343–350. [Google Scholar] [CrossRef]
- Gan, G.F.; Liao, L.F. Separation of lithium from oilfield brine by coprecipitation method. J. Jianghan Pet. Inst. 1996, 18, 65–68. [Google Scholar]
- Lee, J.; Chung, E. Lithium recovery by solvent extraction from simulated shale gas produced water-Impact of organic compounds. Appl. Geochem. 2020, 116, 104571. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968, 45, 643. [Google Scholar] [CrossRef]
- Zhang, L.C. Study on the Mechanism and Technology of Extracting Lithium from Alkaline Solution by HBTA/TOPO Extraction System. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Liu, J.; Zhang, X.; Zhang, N.; Wang, Z.R.; Jia, M.H.; Huang, K.; Xia, W.X. Preventing emulsification during rare earths solvent extraction by the addition of Span 80 to enhance the interfacial stability of the P507 oil droplets. Sep. Purif. Technol. 2025, 354, 128755. [Google Scholar] [CrossRef]
- Peng, C.H.; Feng, J.Z.; Zhang, X.Y. Analytical Chemistry: A Concise Course in Quantitative Chemical Analysis; Peking University Press: Beijing, China, 2009. [Google Scholar]
- Sun, Y.Q.; Hu, Y.Z. Analytical Chemistry; Science Press: Beijing, China, 2006; pp. 238–243. [Google Scholar]
- Yan, H.; Zhu, X.; Liu, Z.; Jin, S.; Liu, J.; Han, Z.; Woo, J.; Meng, L.; Chi, X.; Han, C. Co-removal and recycling of Ba2+ and Ca2+ in hypersaline wastewater based on the microbially induced carbonate precipitation technique: Overlooked Ba2+ in extracellular and intracellular vaterite. J. Hazard. Mater. 2024, 475, 134923. [Google Scholar] [CrossRef]
Components | Li+ | K+ | Na+ | Ca2+ | Mg2+ | Ba2+ | Cl− | pH |
---|---|---|---|---|---|---|---|---|
Concentrations (mg/L) | 60 | 560 | 10,900 | 8600 | 820 | 560 | 47,220 | 6 |
Element | Li+ | Mg2+ | Ca2+ |
---|---|---|---|
Initial concentration (mg/L) | 60.938 | 61.287 | 59.910 |
Concentration of raffinate (mg/L) | 58.954 | 2.939 | 15.821 |
Extraction efficiency | 3.26% | 95.21% | 73.59% |
Mg(OH)2 | CaCO3 | BaCO3 | References | |
---|---|---|---|---|
Ksp | 4 × 10−11 | 3 × 10−8 | 3 × 10−8 | [31] |
1.9 × 10−13 | 8.7 × 10−9 | 8.1 × 10−9 | [32] | |
2.8 × 10−9 | 2.6 × 10−9 | [33] |
Extraction Stage | Primary | Secondary | Tertiary |
---|---|---|---|
Extraction efficiency | 54.95% | 85.60% | 97.17% |
Experiments | After Evaporation | After Adjusting pH to 4 | After Extraction for Impurity Removal | After Adjusting pH to 10 | After Precipitation |
---|---|---|---|---|---|
Li+ | 16,263.01 | 10,767.05 | 9718.34 | 9283.43 | 327.60 |
Ca2+ | 4738.75 | 3140 | 0 | 0 | 0 |
Mg2+ | 2725.06 | 1811.43 | 200.12 | 188.09 | 59.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Q.; Zhu, G.; Fan, P.; Liang, M.; Zhang, X.; Liu, J.; Wu, G. Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water. Water 2025, 17, 2258. https://doi.org/10.3390/w17152258
Shan Q, Zhu G, Fan P, Liang M, Zhang X, Liu J, Wu G. Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water. Water. 2025; 17(15):2258. https://doi.org/10.3390/w17152258
Chicago/Turabian StyleShan, Qiaoli, Guocheng Zhu, Pengjun Fan, Mengyu Liang, Xin Zhang, Jie Liu, and Guizhi Wu. 2025. "Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water" Water 17, no. 15: 2258. https://doi.org/10.3390/w17152258
APA StyleShan, Q., Zhu, G., Fan, P., Liang, M., Zhang, X., Liu, J., & Wu, G. (2025). Influence Mechanism of Coexisting Ions on the Extraction Efficiency of Lithium from Oil and Gas Field Water. Water, 17(15), 2258. https://doi.org/10.3390/w17152258