Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,141)

Search Parameters:
Keywords = novel coronavirus disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1353 KiB  
Article
Inhibition of Human Coronavirus 229E by Lactoferrin-Derived Peptidomimetics
by Maria Carmina Scala, Magda Marchetti, Martina Landi, Marialuigia Fantacuzzi, Fabiana Superti, Mariangela Agamennone, Pietro Campiglia and Marina Sala
Pharmaceutics 2025, 17(8), 1006; https://doi.org/10.3390/pharmaceutics17081006 - 1 Aug 2025
Viewed by 271
Abstract
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new [...] Read more.
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new antiviral agents is increasingly important due to the continual emergence of novel respiratory pathogens. Previously we identified bovine lactoferrin (bLf)-derived tetrapeptides and peptidomimetics that showed potent in vitro activity against the influenza A virus in the picomolar range. Methods: Inspired by these results, in this study, we evaluated the antiviral potential of these compounds against HCoV-229E, a human coronavirus that can cause severe disease in immunocompromised individuals, using a compound repositioning approach. Results: Functional studies revealed that SK(N-Me)HS (3) interferes with viral entry and replication, while compound SNKHS (5) primarily blocks infection in the early stages. Biophysical analyses confirmed the occurrence of high-affinity binding to the viral spike protein, and computational studies suggested that the compounds target a region involved in conformational changes necessary for membrane fusion. Conclusions: These findings highlight these compounds as promising candidates for coronavirus entry inhibition and underscore the value of compound repurposing in antiviral development. Full article
(This article belongs to the Special Issue Peptides-Based Antiviral Agents)
Show Figures

Figure 1

15 pages, 501 KiB  
Review
Pseudovirus as an Emerging Reference Material in Molecular Diagnostics: Advancement and Perspective
by Leiqi Zheng and Sihong Xu
Curr. Issues Mol. Biol. 2025, 47(8), 596; https://doi.org/10.3390/cimb47080596 - 29 Jul 2025
Viewed by 352
Abstract
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key [...] Read more.
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key technology in modern molecular diagnostics, NAT achieves precise pathogen identification through specific nucleic acid sequence recognition, establishing itself as an indispensable diagnostic tool across diverse scenarios, including public health surveillance, clinical decision-making, and food safety control. The reliability of NAT systems fundamentally depends on reference materials (RMs) that authentically mimic the biological characteristics of natural viruses. This critical requirement reveals significant limitations of current RMs in the NAT area: naked nucleic acids lack the structural authenticity of viral particles and exhibit restricted applicability due to stability deficiencies, while inactivated viruses have biosafety risks and inter-batch heterogeneity. Notably, pseudovirus has emerged as a novel RM that integrates non-replicative viral vectors with target nucleic acid sequences. Demonstrating superior performance in mimicking authentic viral structure, biosafety, and stability compared to conventional RMs, the pseudovirus has garnered substantial attention. In this comprehensive review, we critically summarize the engineering strategies of pseudovirus platforms and their emerging role in ensuring the reliability of NAT systems. We also discuss future prospects for standardized pseudovirus RMs, addressing key challenges in scalability, stability, and clinical validation, aiming to provide guidance for optimizing pseudovirus design and practical implementation, thereby facilitating the continuous improvement and innovation of NAT technologies. Full article
(This article belongs to the Special Issue Molecular Research on Virus-Related Infectious Disease)
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
The Renin–Angiotensin System Modulates SARS-CoV-2 Entry via ACE2 Receptor
by Sophia Gagliardi, Tristan Hotchkin, Hasset Tibebe, Grace Hillmer, Dacia Marquez, Coco Izumi, Jason Chang, Alexander Diggs, Jiro Ezaki, Yuichiro J. Suzuki and Taisuke Izumi
Viruses 2025, 17(7), 1014; https://doi.org/10.3390/v17071014 - 19 Jul 2025
Viewed by 560
Abstract
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus [...] Read more.
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin IV, but not angiotensin II, has recently been reported to enhance the binding between the viral spike protein and ACE2. To investigate the virological significance of this effect, we developed a single-round infection assay using SARS-CoV-2 viral-like particles expressing the spike protein. Our results demonstrate that while angiotensin II does not affect viral infectivity across concentrations ranging from 40 nM to 400 nM, angiotensin IV enhances viral entry at a low concentration but exhibits dose-dependent inhibition at higher concentrations. These findings highlight the unique dual role of angiotensin IV in modulating SARS-CoV-2 entry. In silico molecular docking simulations indicate that angiotensin IV was predicted to associate with the S1 domain near the receptor-binding domain in the open spike conformation. Given that reported plasma concentrations of angiotensin IV range widely from 17 pM to 81 nM, these levels may be sufficient to promote, rather than inhibit, SARS-CoV-2 infection. This study identifies a novel link between RAS-derived peptides and SARS-CoV-2 infectivity, offering new insights into COVID-19 pathophysiology and informing potential therapeutic strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 1783 KiB  
Article
Detection of Feline Coronavirus Membrane Gene Based on Conventional Revere Transcription-Polymerase Chain Reaction, Nested Reverse Transcription-Polymerase Chain Reaction, and Reverse Transcription-Quantitative Polymerase Chain Reaction: A Comparative Study
by Chiraphat Kopduang, Witsanu Rapichai, Chalandhorn Leangcharoenpong, Piyamat Khamsingnok, Thanapol Puangmalee, Siriluk Ratanabunyong, Amonpun Rattanasrisomporn, Thanawat Khaoiam, Hieu Van Dong, Kiattawee Choowongkomol and Jatuporn Rattanasrisomporn
Int. J. Mol. Sci. 2025, 26(14), 6861; https://doi.org/10.3390/ijms26146861 - 17 Jul 2025
Viewed by 363
Abstract
Feline coronavirus (FCoV) is a major pathogen causing feline infectious peritonitis (FIP), a lethal disease in cats, necessitating accurate diagnostic methods. This study developed and compared novel primers targeting the FCoV membrane (M) gene for enhanced detection. Specific primers were designed [...] Read more.
Feline coronavirus (FCoV) is a major pathogen causing feline infectious peritonitis (FIP), a lethal disease in cats, necessitating accurate diagnostic methods. This study developed and compared novel primers targeting the FCoV membrane (M) gene for enhanced detection. Specific primers were designed for the M gene and their performance evaluated using reverse transcription-PCR (RT-PCR), nested RT-PCR, and reverse transcription-quantitative PCR (RT-qPCR) on 80 clinical effusion samples from cats suspected of FIP. Specificity of assays was tested against other feline viruses, with sensitivity being assessed via serial dilutions of FCoV RNA. RT-qPCR had the highest sensitivity, detecting 9.14 × 101 copies/µL, identifying 93.75% of positive samples, followed by nested RT-PCR (87.50%, 9.14 × 104 copies/µL) and RT-PCR (61.25%, 9.14 × 106 copies/µL). All assays had 100% specificity, with no cross-reactivity to other viruses. The nested RT-PCR and RT-qPCR outperformed RT-PCR significantly, with comparable diagnostic accuracy. The novel primers targeting the FCoV M gene, coupled with RT-qPCR, delivered unparalleled sensitivity and robust reliability for detecting FCoV in clinical settings. Nested RT-PCR was equally precise and amplified diagnostic confidence with its high performance. These cutting-edge assays should revolutionize FCoV detection, offering trusted tools that seamlessly integrate into veterinary practice, empowering clinicians to manage feline infectious peritonitis with unprecedented accuracy and speed. Full article
(This article belongs to the Special Issue Molecular and Genomic Aspects of Viral Pathogens)
Show Figures

Figure 1

53 pages, 2310 KiB  
Review
Metabolic Reprogramming in Respiratory Viral Infections: A Focus on SARS-CoV-2, Influenza, and Respiratory Syncytial Virus
by Jordi Camps, Simona Iftimie, Andrea Jiménez-Franco, Antoni Castro and Jorge Joven
Biomolecules 2025, 15(7), 1027; https://doi.org/10.3390/biom15071027 - 16 Jul 2025
Viewed by 533
Abstract
Respiratory infections caused by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus pose significant global health challenges, leading to high morbidity and mortality, particularly in vulnerable populations. Despite their distinct virological characteristics, these viruses exploit host cellular metabolism to [...] Read more.
Respiratory infections caused by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus pose significant global health challenges, leading to high morbidity and mortality, particularly in vulnerable populations. Despite their distinct virological characteristics, these viruses exploit host cellular metabolism to support replication, modulate immune responses, and promote disease progression. Emerging evidence shows that they induce metabolic reprogramming, shifting cellular energy production toward glycolysis to meet the bioenergetic demands of viral replication. Additionally, alterations in lipid metabolism, including enhanced fatty acid synthesis and disrupted cholesterol homeostasis, facilitate viral entry, replication, and immune evasion. The dysregulation of mitochondrial function and oxidative stress pathways also contributes to disease severity and long-term complications, such as persistent inflammation and immune exhaustion. Understanding these metabolic shifts is crucial for identifying new therapeutic targets and novel biomarkers for early disease detection, prognosis, and patient stratification. This review provides an overview of the metabolic alterations induced by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus, highlighting shared and virus-specific mechanisms and potential therapeutic interventions. Full article
Show Figures

Figure 1

14 pages, 1892 KiB  
Article
Adrenomedullin Therapy for Moderate-to-Severe COVID-19 Pneumonia: Double-Blind Placebo-Controlled Phase 2a Trial
by Toshihiro Kita, Norio Ohmagari, Sho Saito, Hiroshi Mukae, Takahiro Takazono, Taka-Aki Nakada, Tadanaga Shimada, Yuji Hirai, Yuichiro Shindo, Kosaku Komiya, Atsushi Saito, Masaya Yamato, Koichiro Homma, Masaki Okamoto, Yoshihiro Yamamoto, Yoshikazu Mutoh, Chihiro Hasegawa, Nobuaki Mori, Fukumi Nakamura-Uchiyama, Mitsuru Honda, Keisuke Tomii, Hiroshi Ishii, Ichiro Takajo, Koji Watanabe and Kazuo Kitamuraadd Show full author list remove Hide full author list
Viruses 2025, 17(7), 982; https://doi.org/10.3390/v17070982 - 14 Jul 2025
Viewed by 377
Abstract
Adrenomedullin (AM) is a bioactive peptide that is strongly induced during severe inflammation, including pneumonia and sepsis, and serves as an organ-protective factor. The plasma concentration of AM is markedly increased in the novel coronavirus disease COVID-19 and is closely related to the [...] Read more.
Adrenomedullin (AM) is a bioactive peptide that is strongly induced during severe inflammation, including pneumonia and sepsis, and serves as an organ-protective factor. The plasma concentration of AM is markedly increased in the novel coronavirus disease COVID-19 and is closely related to the severity of the disease and prognosis of patients. We performed two investigator-initiated trials to evaluate the efficacy and safety of AM in patients with moderate-to-severe COVID-19. This multicenter, double-blind, placebo-controlled phase-2a trial evaluated COVID-19 patients with severe (n = 33) and moderate (n = 31) pneumonia in Japan. Patients were randomly assigned to receive either 15 ng/kg/min AM or placebo. The primary endpoint was the duration of mechanical ventilation (MV) for severe pneumonia and oxygen support for moderate pneumonia. The main secondary endpoint was clinical status up to 30 days after the intervention. No differences in primary or secondary endpoints were observed between the AM and placebo groups in patients with severe or moderate pneumonia. In the severe pneumonia group, three patients in the placebo group died due to respiratory failure, and one patient in the AM group died due to respiratory failure. The respiratory function test at 30 days in the moderate pneumonia group tended to be better than that in the AM group and approached significance (p = 0.073). Although mild adverse events caused by the vasodilatory effects of AM were noted, the safety of AM for treating pneumonia was confirmed. In these trials, we did not observe a definitive efficacy of AM in moderate to severe pneumonia. Alternative strategies for the treatment of AM in pneumonia require further research. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

19 pages, 3179 KiB  
Article
Development of a Multiplex Real-Time PCR Assay for the Detection of Eight Pathogens Associated with Bovine Respiratory Disease Complex from Clinical Samples
by Fuxing Hao, Chunhao Tao, Ruilong Xiao, Ying Huang, Weifeng Yuan, Zhen Wang and Hong Jia
Microorganisms 2025, 13(7), 1629; https://doi.org/10.3390/microorganisms13071629 - 10 Jul 2025
Viewed by 365
Abstract
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based [...] Read more.
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based quantitative polymerase chain reaction (qPCR) assay was developed for the simultaneous detection of eight major pathogens associated with BRDC. The targeted pathogens included the following: bovine viral diarrhea virus (BVDV), bovine parainfluenza virus type 3 (BPIV3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BcoV), Mycoplasma bovis (M.bovis), Pasteurella multocida (PM), Mannheimia haemolytica (MH), and infectious bovine rhinotracheitis virus (IBRV). The assay was rigorously optimized to ensure high specificity with no cross-reactivity among targets. The limit of detection (LOD) was determined to be as low as 5 copies per reaction for all target pathogens. The coefficient of variation (CVs) for both intra-assay and inter-assay measurements were consistently below 2%, demonstrating excellent reproducibility. To validate the clinical utility of the assay, a total of 1012 field samples were tested, including 504 nasal swabs from Farm A and 508 from Farm B in Jiangsu Province. BVDV, BcoV, PM, and MH were detected from Farm A, with a BVDV-positive rate of 21.63% (109/504), BcoV-positive rate of 26.79% (135/504), PM-positive rate of 28.77% (145/504), and MH-positive rate of 15.08% (76/504). Also, BcoV, PM, MH, and IBRV were detected from Farm B, with a BcoV-positive rate of 2.36% (12/508), PM-positive rate of 1.38% (7/508), MH-positive rate of 14.76% (75/508), and IBRV-positive rate of 5.51% (28/508). Notably, a significant proportion of samples showed evidence of mixed infections, underscoring the complexity of BRDC etiology and the importance of a multiplex diagnostic approach. In conclusion, the developed multiplex qPCR assay provides a reliable, rapid, and cost-effective tool for simultaneous detection of multiple BRDC-associated pathogens, which will hold great promise for enhancing disease surveillance, early diagnosis, and targeted intervention strategies, ultimately contributing to improved BRDC management and cattle health outcomes. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

14 pages, 1700 KiB  
Article
Delayed Viral Clearance Accompanied by Early Impaired Humoral and Virus-Specific T-Cell Response in Patients with Coronavirus Disease 2019 and Interstitial Lung Disease
by Jiaying Zhong, Juan Li, Rui Wei, Bingpeng Guo, Tingting Cui, Peiyu Huang, Zhongfang Wang, Qun Luo and Qian Han
Vaccines 2025, 13(6), 655; https://doi.org/10.3390/vaccines13060655 - 19 Jun 2025
Viewed by 496
Abstract
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence [...] Read more.
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence of immune disorders and immunosuppressive therapy. This results in poor control of viral infections following SARS-CoV-2 infection. We aimed to highlight the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Methods: We compared viral clearance, antibody levels, and T-cell immune response between healthy controls and patients with connective tissue disease-related ILD (CTD-ILD) or interstitial pneumonia with autoimmune features (IPAF). Results: Patients with ILD exhibited a higher viral load than the control group (1.58 × 106 vs. 2.37 × 103 copies/mL, p = 0.018), as well as a significantly lower level of neutralizing antibodies against the wild-type (WT) virus (7.01 vs. 625.6, p < 0.0001) and Omicron BA.5 (7.19 vs. 128.4, p < 0.001). Similarly, a lower virus-specific T-cell (VST) immune response was observed 14 days post-symptom onset in the ILD group (CD4+ VSTs: 0.018 vs. 0.082, p = 0.005; CD8+ VSTs: 0.0008 vs. 0.047, p = 0.004). The ILD group had no other heightened inflammatory biomarkers compared with the control group. Conclusions: Our study provides novel evidence of the underlying interaction between virus clearance and host immune status and sheds light on the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

29 pages, 109956 KiB  
Review
In Silico Development of SARS-CoV-2 Non-Covalent Mpro Inhibitors: A Review
by Islam Alagawani and Feng Wang
Appl. Sci. 2025, 15(12), 6544; https://doi.org/10.3390/app15126544 - 10 Jun 2025
Viewed by 592
Abstract
Coronaviruses (CoVs) have recently emerged as significant causes of respiratory disease outbreaks, with the novel coronavirus pneumonia of 2019, known as COVID-19, being highly infectious and triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding virus–host interactions and molecular targets in host [...] Read more.
Coronaviruses (CoVs) have recently emerged as significant causes of respiratory disease outbreaks, with the novel coronavirus pneumonia of 2019, known as COVID-19, being highly infectious and triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding virus–host interactions and molecular targets in host cell death signalling is crucial for inhibitor development. Among the promising targets for inhibitor development is the main protease (Mpro), which is essential for viral replication. While current research has focused mainly on covalent inhibitors, growing attention is being given to non-covalent inhibitors due to their potential for lower toxicity and improved resistance to viral mutations. This literature review provides an in-depth analysis of recent in silico approaches used to identify and optimise non-covalent inhibitors of SARS-CoV-2 Mpro. It focuses on molecular docking and robust molecular dynamics (MD) simulation technologies to discover novel scaffolds with better binding affinities. The article summarises recent studies that pre-screened several potential non-covalent inhibitors, including natural constituents like alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones, using in silico methods. The in silico approach, pivotal to developing small molecules of Mpro non-covalent inhibitors, provides an efficient avenue to guide future research efforts toward developing high-performance Mpro inhibitors for SARS-CoV-2 Mpro, representing the latest advancements in drug design. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

12 pages, 7533 KiB  
Article
Determining Accurate Pore Structures of Polypropylene Membrane for ECMO Using FE-SEM Under Optimized Conditions
by Makoto Fukuda, Yoshiaki Nishite, Eri Murata, Koki Namekawa, Tomohiro Mori, Tsutomu Tanaka and Kiyotaka Sakai
Membranes 2025, 15(6), 174; https://doi.org/10.3390/membranes15060174 - 9 Jun 2025
Viewed by 765
Abstract
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber [...] Read more.
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber membranes of ECMO, the PP membrane coated with a silicone layer on the outer surface has also been commercialized. In this study, we sought a method to accurately observe the detailed pore morphologies of the PP membrane by suppressing irreversible changes in the morphology in SEM observation, which is a general-purpose observation with higher resolution. As a result, the convex surface morphologies of the PP membrane, which was a non-conductive porous structure, were confirmed in detail by utilizing the lower secondary electron image (LEI) mode (FE-SEM, JSM-7610F, JEOL Ltd., Tokyo, Japan) at low acceleration voltage, low magnification, and long working distance, to minimize morphological alterations caused by osmium (Os) sputtering. On the other hand, although the sputter-coating on non-conductive samples is mandatory for imaging morphologies with SEM, the non-sputtering method is also worthwhile for porous and fragile structures such as this sample to minimize morphological alterations. Furthermore, we propose a method to confirm the morphology of the deep part of the sample by utilizing the secondary electron image (SEI) mode at an appropriate acceleration voltage and high magnification with higher resolution. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

15 pages, 1350 KiB  
Review
Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology
by Meng Hong, Guodi Wu, Yanli Ren, Shanshan Wu, Haihong Zhu and Zhi Chen
Pathogens 2025, 14(6), 554; https://doi.org/10.3390/pathogens14060554 - 2 Jun 2025
Viewed by 920
Abstract
In recent years, global public health security has encountered significant challenges, with infectious diseases accounting for approximately 25% of global mortality annually. The worldwide pandemic instigated by the novel coronavirus, alongside the persistent threats posed by Ebola, influenza, and multidrug-resistant bacteria, has severely [...] Read more.
In recent years, global public health security has encountered significant challenges, with infectious diseases accounting for approximately 25% of global mortality annually. The worldwide pandemic instigated by the novel coronavirus, alongside the persistent threats posed by Ebola, influenza, and multidrug-resistant bacteria, has severely compromised human health, economic development, and social stability. Within this context, the development of rapid and precise pathogen detection technologies has emerged as a critical frontline defense for epidemic prevention and control, serving as a pivotal component in the implementation of the “early detection, early isolation, and early treatment” strategy. The Argonaute (Ago) protein, recognized as a programmable and target-specific activated nuclease, has demonstrated substantial potential in the realm of nucleic acid detection due to its distinctive biological properties, garnering considerable attention. In this study, we delineate the structural characteristics of Ago proteins and elucidate the mechanism underlying their nuclease activity. Furthermore, we review the principles of nucleic acid detection based on Argonaute and provide a comprehensive analysis of recent advancements in related detection systems. Additionally, we compare the advantages of detection based on Argonaute with other detection methodologies. Through a comprehensive analysis, we aim to provide a robust theoretical foundation and an advanced technical reference for the development of new-generation nucleic acid detection platforms with high sensitivity and high specificity. Full article
Show Figures

Figure 1

13 pages, 281 KiB  
Review
The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes
by Dong-Hwi Kim, Jae-Hyeong Kim, Min-Tae Jeon, Kyu-Sung Kim, Do-Geun Kim and In-Soo Choi
Viruses 2025, 17(5), 724; https://doi.org/10.3390/v17050724 - 19 May 2025
Viewed by 1041
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has been linked to long-term neurological effects with multifaceted complications of neurodegenerative diseases. Several studies have found that pathological changes in transactive response DNA-binding protein of 43 kDa (TDP-43) are involved in these cases. This review explores the causal interactions between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and TDP-43 from multiple perspectives. Some viral proteins of SARS-CoV-2 have been shown to induce pathological changes in TDP-43 through its cleavage, aggregation, and mislocalization. SARS-CoV-2 infection can cause liquid−liquid phase separation and stress granule formation, which accelerate the condensation of TDP-43, resulting in host RNA metabolism disruption. TDP-43 has been proposed to interact with SARS-CoV-2 RNA, though its role in viral replication remains to be fully elucidated. This interaction potentially facilitates viral replication, while viral-induced oxidative stress and protease activity accelerate TDP-43 pathology. Evidence from both clinical and experimental studies indicates that SARS-CoV-2 infection may contribute to long-term neurological sequelae, including amyotrophic lateral sclerosis-like and frontotemporal dementia-like features, as well as increased phosphorylated TDP-43 deposition in the central nervous system. Biomarker studies further support the link between TDP-43 dysregulation and neurological complications of long-term effects of COVID-19 (long COVID). In this review, we presented a novel integrative framework of TDP-43 pathology, bridging a gap between SARS-CoV-2 infection and mechanisms of neurodegeneration. These findings underscore the need for further research to clarify the TDP-43-related neurodegeneration underlying SARS-CoV-2 infection and to develop therapeutic strategies aimed at mitigating long-term neurological effects in patients with long COVID. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

15 pages, 2367 KiB  
Article
An Engineered RNase P Ribozyme Effectively Reduces Human Coronavirus 229E Gene Expression and Growth in Human Cells
by Yujun Liu, Bin Yan, Hao Gong and Fenyong Liu
Zoonotic Dis. 2025, 5(2), 12; https://doi.org/10.3390/zoonoticdis5020012 - 12 May 2025
Viewed by 548
Abstract
The human coronavirus 229E (HCoV-229E) is a member of the human coronavirus family that includes SARS-CoV-2, the causative agent of COVID-19. Developing antiviral strategies and compounds is crucial to treat and prevent HCoV-229E infections and the associated diseases. Ribozymes derived from ribonuclease P [...] Read more.
The human coronavirus 229E (HCoV-229E) is a member of the human coronavirus family that includes SARS-CoV-2, the causative agent of COVID-19. Developing antiviral strategies and compounds is crucial to treat and prevent HCoV-229E infections and the associated diseases. Ribozymes derived from ribonuclease P (RNase P) catalytic RNA represent a novel class of promising gene-targeting agents by cleaving their target mRNA and knocking down the expression of the target mRNA. However, it has not been reported whether RNase P ribozymes block the infection and replication of HCoV-229E. We report here the engineering of an anti-HCoV-229E RNase P ribozyme to target an overlapping region of viral genomic RNA and the mRNA encoding the nucleocapsid (N) protein, which is vital for viral replication and growth. The engineered ribozyme actively hydrolyzed the viral RNA target in vitro. HCoV-229E-infected cells expressing the engineered, catalytically active ribozyme exhibited a reduction of about 85% in viral RNA levels and N protein expression, and a reduction of about 750-fold in infectious particle production, compared to cells expressing no ribozymes or a control, catalytically inactive ribozyme. Our study provides the first direct evidence of the therapeutic potential of RNase P ribozymes against human coronaviruses such as HCoV-229E. Full article
Show Figures

Figure 1

24 pages, 9271 KiB  
Article
Naive and Memory B Cell BCR Repertoires in Individuals Immunized with an Inactivated SARS-CoV-2 Vaccine
by Renato Kaylan Alves de Oliveira França, Pedro Henrique Aragão Barros, Jacyelle Medeiros Silva, Hitallo Guilherme Costa Fontinele, Andrea Queiroz Maranhão and Marcelo de Macedo Brigido
Vaccines 2025, 13(4), 393; https://doi.org/10.3390/vaccines13040393 - 8 Apr 2025
Viewed by 1126
Abstract
Background: The COVID-19 pandemic has spurred a global race for a preventive vaccine, with a few becoming available just one year after describing this novel coronavirus disease. Among these are inactivated virus vaccines like CoronaVac (Sinovac Biotech), which are used in several countries [...] Read more.
Background: The COVID-19 pandemic has spurred a global race for a preventive vaccine, with a few becoming available just one year after describing this novel coronavirus disease. Among these are inactivated virus vaccines like CoronaVac (Sinovac Biotech), which are used in several countries to reduce the pandemic’s effects. However, its use was associated with low protection, particularly against novel virus variants that quickly appeared in the following months. Vaccines play a crucial role in activating the immune system to combat infections, with Memory B-cells being a key part of this mechanism, eliciting protective neutralizing antibodies. This work focused on studying B-cell memory repertoire after two consecutive doses of CoronaVac. Methodology: Memory B-cells were isolated from five CoronaVac vaccinated and five pre-pandemic individuals and subsequently stimulated in vitro before high-throughput Illumina sequencing of the Heavy Chain Variable repertoire. Results: We observed a shift in the VH repertoire with increased HCDR3 length and enrichment of IGVH 3-23, 3-30, 3-7, 3-72, and 3-74 for IgA BCRs and IGHV 4-39 and 4-59 for IgG BCRs. A high expansion of IgA-specific clonal populations was observed in vaccinated individuals relative to pre-pandemic controls, accompanied by shared IgA variable heavy chain (VH) sequences among memory B cells across different vaccine recipients of IgA clones was also observed in vaccinated individuals compared to pre-pandemic controls, with several IgA VH sharing between memory B cells from different vaccines. Moreover, a high convergence was observed among vaccinees and SARS-CoV-2 neutralizing antibody sequences found in the CoV-abDab database. Conclusion: These data show the ability of CoronaVac to elicit antibodies with characteristics similar to those previously identified as neutralizing antibodies, supporting its protective efficacy. Furthermore, this analysis of the immunological repertoire in the context of viral infections reinforces the importance of immunization in generating convergent antibodies for the antiviral response. Full article
(This article belongs to the Special Issue Vaccination-Induced Antibody and B Cell Immune Response)
Show Figures

Figure 1

15 pages, 2292 KiB  
Article
Novel Usefulness of M2BPGi for Predicting Severity and Clinical Outcomes in Hospitalized COVID-19 Patients
by Mikyoung Park, Mina Hur, Hanah Kim, Chae Hoon Lee, Jong Ho Lee, Hyung Woo Kim, Minjeong Nam and Seungho Lee
Diagnostics 2025, 15(7), 937; https://doi.org/10.3390/diagnostics15070937 - 6 Apr 2025
Viewed by 690
Abstract
Background/Objectives: Mac-2 binding protein glycosylation isomer (M2BPGi) is a novel biomarker for liver fibrosis, and its prognostic role has never been explored in coronavirus disease 2019 (COVID-19). We compared the M2BPGi level simultaneously with age, severe/critical disease, the sequential organ failure assessment (SOFA) [...] Read more.
Background/Objectives: Mac-2 binding protein glycosylation isomer (M2BPGi) is a novel biomarker for liver fibrosis, and its prognostic role has never been explored in coronavirus disease 2019 (COVID-19). We compared the M2BPGi level simultaneously with age, severe/critical disease, the sequential organ failure assessment (SOFA) score, and the National Early Warning Score 2 (NEWS2) in a total of 53 hospitalized patients with COVID-19 (mild/moderate [n = 15] and severe/critical [n = 38]). Methods: M2BPGi levels were measured using the HISCL M2BPGi assay (Sysmex, Kobe, Japan) in an HISCL-5000 analyzer (Sysmex), and clinical outcomes were analyzed according to M2BPGi and the clinical variables, using the receiver operating characteristic (ROC) curve, Kaplan–Meier survival, and Cox proportional hazards regression analyses. Results: M2BPGi levels differed significantly according to disease severity, 30-day mortality, and 60-day mortality (p = 0.045, 0.011, and 0.002, respectively). In the ROC curve analysis, the M2BPGi, age, SOFA score, and NEWS2, except for severe/critical disease, significantly predicted clinical outcomes (all p < 0.01). In the survival analysis, the hazard ratios of M2BPGi added to each clinical variable were higher than that of each clinical variable alone, and M2BPGi was the only independent prognostic factor for the mortality. Conclusions: This study demonstrated that M2BPGi may be a useful biomarker for assessing disease severity and clinical outcomes in hospitalized COVID-19 patients. Combined with conventional clinical assessment, M2BPGi would provide objective and valuable information for prognosis prediction in these critically ill patients. Further studies are warranted to extend its utility in other clinical settings. Full article
(This article belongs to the Special Issue Biochemical Testing Applications in Clinical Diagnosis)
Show Figures

Figure 1

Back to TopTop