Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology
Abstract
:1. Introduction
2. Mechanism of Nucleic Acid Recognition Mediated by Argonaute Proteins
2.1. Argonaute
2.2. Fundamental Principles of Nucleic Acid Cleavage by Argonaute Proteins
2.3. Nucleic Acid Detection Technology Based on Ago Proteins
2.3.1. PfAgo-Mediated Nucleic Acid Detection (PAND)
2.3.2. Ago-Directed Specific Target Enrichment and Detection (A-Star)
2.3.3. Nucleic Acid Detection via Combination of Ultrashort PCR and Pyrococcus furiosus Argonaute (USPCRP)
2.3.4. TtAgo-Assisted Exponential Isothermal Amplification for Multiplex Detection (TEAM)
2.3.5. Artificial Nucleic Acid Circuit with Argonaute Protein (ANCA)
2.3.6. Multiplex Ago-Based Nucleic Acid Detection System (MULAN)
2.3.7. Programmable, Amplification-Free System (PASS)
2.4. Strengths and Weaknesses of Ago-Based Detection Technologies
3. Applications of Argonaute-Based Nucleic Acid Detection
3.1. Application in Bacterial Detection
3.2. Application in Virus Detection
3.3. Application in Fungal Detection
3.4. Application in Mycoplasma and Parasite Detection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M. Assessing the global threat from Zika virus. Science 2016, 353, aaf8160. [Google Scholar] [CrossRef] [PubMed]
- Malvy, D.; McElroy, A.K.; de Clerck, H.; Gunther, S.; van Griensven, J. Ebola virus disease. Lancet 2019, 393, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Vengesai, A.; Kasambala, M.; Mutandadzi, H.; Mduluza-Jokonya, T.L.; Mduluza, T.; Naicker, T. Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS ONE 2022, 17, e248666. [Google Scholar] [CrossRef]
- Fitzpatrick, A.H.; Rupnik, A.; O’Shea, H.; Crispie, F.; Keaveney, S.; Cotter, P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front. Microbiol. 2021, 12, 621719. [Google Scholar] [CrossRef]
- Tao, D.; Liu, J.; Nie, X.; Xu, B.; Tran-Thi, T.; Niu, L.; Liu, X.; Ruan, J.; Lan, X.; Peng, G. Application of CRISPR-Cas12a Enhanced Fluorescence Assay Coupled with Nucleic Acid Amplification for the Sensitive Detection of African Swine Fever Virus. ACS Synth. Biol. 2020, 9, 2339–2350. [Google Scholar] [CrossRef]
- Yin, L.; Man, S.; Ye, S.; Liu, G.; Ma, L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens. Bioelectron. 2021, 193, 113541. [Google Scholar] [CrossRef]
- Bohmert, K.; Camus, I.; Bellini, C.; Bouchez, D.; Caboche, M.; Benning, C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998, 17, 170–180. [Google Scholar] [CrossRef]
- Swarts, D.C.; Makarova, K.; Wang, Y.; Nakanishi, K.; Ketting, R.F.; Koonin, E.V.; Patel, D.J.; van der Oost, J. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 2014, 21, 743–753. [Google Scholar] [CrossRef]
- Yuan, Y.; Pei, Y.; Ma, J.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.; Dauter, Z.; Tuschl, T.; Patel, D.J. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 2005, 19, 405–419. [Google Scholar] [CrossRef]
- Ngondo, R.P.; Cirera-Salinas, D.; Yu, J.; Wischnewski, H.; Bodak, M.; Vandormael-Pournin, S.; Geiselmann, A.; Wettstein, R.; Luitz, J.; Cohen-Tannoudji, M. Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells. Stem. Cell Rep. 2018, 10, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.Y.; Choi, J.H.; Chung, J.W.; Jang, E.S.; Jeong, S.; Kim, J. MicroRNA-20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol. Med. Rep. 2019, 20, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.K.; Olovnikov, I.; Aravin, A.A. Prokaryotic Argonautes defend genomes against invasive DNA. Trends Biochem. Sci. 2014, 39, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Elkayam, E.; Kuhn, C.; Tocilj, A.; Haase, A.D.; Greene, E.M.; Hannon, G.J.; Joshua-Tor, L. The structure of human argonaute-2 in complex with miR-20a. Cell 2012, 150, 100–110. [Google Scholar] [CrossRef]
- Koonin, E.V. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: Common ancestry vs convergence. Biol. Direct. 2017, 12, 5. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; van der Oost, J.; Koonin, E.V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct. 2009, 4, 29. [Google Scholar] [CrossRef]
- Hegge, J.W.; Swarts, D.C.; van der Oost, J. Prokaryotic Argonaute proteins: Novel genome-editing tools? Nat. Rev. Microbiol. 2018, 16, 5–11. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Tang, X. Prokaryotic Argonaute⁃mediated interference and its application. Biot. Resour. 2024, 46, 413–421. [Google Scholar]
- Smyrlaki, I.; Ekman, M.; Lentini, A.; Rufino De Sousa, N.; Papanicolaou, N.; Vondracek, M.; Aarum, J.; Safari, H.; Muradrasoli, S.; Rothfuchs, A.G. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat. Commun. 2020, 11, 4812. [Google Scholar] [CrossRef]
- Olovnikov, I.; Chan, K.; Sachidanandam, R.; Newman, D.K.; Aravin, A.A. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 2013, 51, 594–605. [Google Scholar] [CrossRef]
- Enghiad, B.; Zhao, H. Programmable DNA-Guided Artificial Restriction Enzymes. ACS Synth. Biol. 2017, 6, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Swarts, D.C.; Jore, M.M.; Westra, E.R.; Zhu, Y.; Janssen, J.H.; Snijders, A.P.; Wang, Y.; Patel, D.J.; Berenguer, J.; Brouns, S.J.J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 2014, 507, 258–261. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, L.; Wang, F.; Li, W.; Liu, Y.; Li, A.; Wang, Y.; Mao, W.; Zhai, C.; Ma, L. Pyrococcus furiosus Argonaute-mediated nucleic acid detection. Chem. Commun. 2019, 55, 13219–13222. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Guo, X.; Xun, G.; Li, Z.; Chong, Y.; Yang, L.; Wang, H.; Zhang, F.; Luo, S.; Cui, L. Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Res. 2021, 49, e75. [Google Scholar] [CrossRef]
- He, R.; Wang, L.; Wang, F.; Yang, J.; Yu, X.; Wang, Y.; Liu, Z.; Li, C.; Ma, L. Combination of ultrashort PCR and Pyrococcus furiosus Argonaute for DNA detection. Analyst 2021, 147, 35–39. [Google Scholar] [CrossRef]
- Lin, Q.; Han, G.; Fang, X.; Chen, H.; Weng, W.; Kong, J. Programmable Analysis of MicroRNAs by Thermus thermophilus Argonaute-Assisted Exponential Isothermal Amplification for Multiplex Detection (TEAM). Anal. Chem. 2022, 94, 11290–11297. [Google Scholar] [CrossRef]
- Jang, H.; Song, J.; Kim, S.; Byun, J.; Lee, K.G.; Park, K.; Woo, E.; Lim, E.; Jung, J.; Kang, T. ANCA: Artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria. Nat. Commun. 2023, 14, 8033. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, H.; Guo, X.; Liu, D.; Li, Z.; Sun, J.; Huang, J.; Liu, T.; Zhao, P.; Xu, H. Argonaute-integrated isothermal amplification for rapid, portable, multiplex detection of SARS-CoV-2 and influenza viruses. Biosens. Bioelectron. 2022, 207, 114169. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, N.; Zhou, Y.; Cheng, X.; Zhou, C.; Ma, A.; Wang, Q.; Li, Y.; Chen, Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal. Chem. 2024, 96, 2068–2077. [Google Scholar] [CrossRef]
- Ryazansky, S.; Kulbachinskiy, A.; Aravin, A.A. The Expanded Universe of Prokaryotic Argonaute Proteins. MBio 2018, 9, e01935-18. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Ma, L.; Bai, Y.; Feng, F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit. Rev. Food Sci. Nutr. 2024, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Xun, G.; Lane, S.T.; Petrov, V.A.; Pepa, B.E.; Zhao, H. A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat. Commun. 2021, 12, 2905. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liao, D.; Kou, J.; Tong, Y.; Daniels, L.C.; Man, S.; Ma, L. Comparison of CRISPR/Cas and Argonaute for nucleic acid tests. Trends Biotechnol. 2023, 41, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, Q.; Liu, Y.; Weng, G.; Zhu, J.; Li, J. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim. Acta 2021, 188, 258. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Y.; Li, X.; Wang, L.; Xu, Y.; He, L.; Li, G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal. Chim. Acta 2021, 1157, 338279. [Google Scholar] [CrossRef]
- Zhao, J.; Han, M.; Ma, A.; Jiang, F.; Chen, R.; Dong, Y.; Wang, X.; Ruan, S.; Chen, Y. A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. J. Hazard. Mater. 2024, 466, 133648. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Wang, N.; Zhao, Z.; Man, S.; Zhu, L.; Ma, L. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus. Biosens. Bioelectron. 2024, 244, 115758. [Google Scholar] [CrossRef]
- Li, Y.; Kou, J.; Han, X.; Qiao, J.; Zhang, W.; Man, S.; Ma, L. Argonaute-triggered visual and rebuilding-free foodborne pathogenic bacteria detection. J. Hazard. Mater. 2023, 454, 131485. [Google Scholar] [CrossRef]
- Lu, L.; Su, S.; Yang, H.; Jiang, S. Antivirals with common targets against highly pathogenic viruses. Cell 2021, 184, 1604–1620. [Google Scholar] [CrossRef]
- Spinelli, A.; Pellino, G. COVID-19 pandemic: Perspectives on an unfolding crisis. Br. J. Surg. 2020, 107, 785–787. [Google Scholar] [CrossRef]
- Morales-Narvaez, E.; Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron. 2020, 163, 112274. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, R.; Lv, B.; Yu, X.; Liu, Y.; Yang, J.; Li, W.; Wang, Y.; Zhang, H.; Yan, G. Pyrococcus furiosus Argonaute coupled with modified ligase chain reaction for detection of SARS-CoV-2 and HPV. Talanta 2021, 227, 122154. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, S.; Guo, M.; Li, S.; Wang, Q.; Gou, J.; Wu, Y.; Chen, Y.; Yang, Y.; Dai, C. Ultra-Fast Single-Nucleotide-Variation Detection Enabled by Argonaute-Mediated Transistor Platform. Adv. Mater. 2024, 36, e2307366. [Google Scholar] [CrossRef]
- Lu, Y.; Wen, J.; Wang, C.; Wang, M.; Jiang, F.; Miao, L.; Xu, M.; Li, Y.; Chen, X.; Chen, Y. Mesophilic Argonaute-Based Single Polystyrene Sphere Aptamer Fluorescence Platform for the Multiplexed and Ultrasensitive Detection of Non-Nucleic Acid Targets. Small 2024, 20, e2308424. [Google Scholar] [CrossRef]
- Li, L.; Wang, M.; Dong, Y.; Yu, D.; Chen, Y. Micropore Resistance Counting Platform for Multiplexed and Ultrasensitive Detection of Mycotoxins and Biomarkers. ACS Nano 2025, 19, 920–932. [Google Scholar] [CrossRef]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6, 10.1128. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Wu, W.; Kang, T.; Sun, J.; Jiang, H. Rapid and sensitive detection of Mycoplasma synoviae using RPA combined with Pyrococcus furiosus Argonaute. Poult. Sci. 2024, 103, 103244. [Google Scholar] [CrossRef]
- Tang, K.F.J.; Han, J.E.; Aranguren, L.F.; White-Noble, B.; Schmidt, M.M.; Piamsomboon, P.; Risdiana, E.; Hanggono, B. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. J. Invertebr. Pathol. 2016, 140, 1–7. [Google Scholar] [CrossRef]
- Yang, L.; Guo, B.; Wang, Y.; Zhao, C.; Zhang, X.; Wang, Y.; Tang, Y.; Shen, H.; Wang, P.; Gao, S. Pyrococcus furiosus Argonaute Combined with Recombinase Polymerase Amplification for Rapid and Sensitive Detection of Enterocytozoon hepatopenaei. J. Agric. Food Chem. 2023, 71, 944–951. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Pan, S.; Zhang, Y.; Zhao, J.; Jiang, F.; Li, Y.; Chen, Y. DNA and ATP synergistically triggered Argonaute-mediated sensor for the ultrasensitive detection of viable Salmonella without DNA extraction and amplification. Sens. Actuators B Chem. 2024, 408, 135543. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal. Chem. 2023, 95, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Hegge, J.W.; Swarts, D.C.; Chandradoss, S.D.; Cui, T.J.; Kneppers, J.; Jinek, M.; Joo, C.; van der Oost, J. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res. 2019, 47, 5809–5821. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; He, R.; Wang, L.; Wang, Y.; Zeng, W.; Zhang, Z.; Wang, F.; Ma, L. A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis. Nucleic Acids Res. 2022, 50, 5226–5238. [Google Scholar] [CrossRef]
- Swarts, D.C. Prokaryotic Argonautes Function beyond Immunity by Unlinking Replicating Chromosomes. Cell 2020, 182, 1381–1383. [Google Scholar] [CrossRef]
- Li, H.; Xie, Y.; Chen, F.; Bai, H.; Xiu, L.; Zhou, X.; Guo, X.; Hu, Q.; Yin, K. Amplification-free CRISPR/Cas detection technology: Challenges, strategies, and perspectives. Chem. Soc. Rev. 2023, 52, 361–382. [Google Scholar] [CrossRef]
Detection Method | Argonaute | Guide Oligos | Amplification | Target | Sensitivity | Multiple Detection | Mutation Site | Time | Characteristics | Reference |
---|---|---|---|---|---|---|---|---|---|---|
PAND | pfAgo | gDNA | PCR amplification | DNA | 1.6 aM | yes | yes | 2 h | It can achieve multiple detections and mutation detections (background DNA with a concentration as low as 0.1%). | [23] |
A-Star | pfAgo | gDNA | PCR amplification | DNA | 34 ng | yes | yes | 30 min | The ultra-high efficiency enrichment of low-abundance mutant genes (quantifying rare mutations of 0.01%, with an enrichment efficiency as high as 5500 times) requires the detection of enriched sequences in combination with technologies such as gene sequencing. | [24] |
USPCRP | pfAgo | gDNA | ultrashort PCR | DNA | 10 aM | no | yes | 50 min | Nucleic acid detection with high sensitivity, high specificity, and single-base resolution. | [25] |
TEAM | TtAgo | gDNA | exponential isothermal amplification | miRNA | 1 aM | yes | yes | 30–35 min | Nucleic acid detection with high sensitivity and single-base resolution. | [26] |
ANCA | TtAgo | gDNA | no | DNA | 1.87 fm | no | no | 1 h | No sample processing or nucleic acid extraction is required. Blood samples and urine samples can be directly detected. The system composition is simple, and the operation is convenient. Only one step of the reaction is needed to complete the detection, reducing the risk of cross-contamination. | [27] |
MULAN | pfAgo | gDNA | RT-LAMP | RNA | 320 copies/mL | yes | yes | 45 min | Realizes the highly sensitive, highly specific, and rapid portable detection of virus samples. | [28] |
PASS | CbAgo | gDNA | no | DNA | <102 CFU/mL | yes | no | 54 min | This system realizes amplification-free multi-pathogen detection at ambient temperature. The method integrates the image-processing technology of deep learning, and the results show high accuracy and high sensitivity. | [29] |
Method | Advantages | Disadvantages |
---|---|---|
qPCR |
|
|
CRISP-Cas |
|
|
Argonaute |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Wu, G.; Ren, Y.; Wu, S.; Zhu, H.; Chen, Z. Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology. Pathogens 2025, 14, 554. https://doi.org/10.3390/pathogens14060554
Hong M, Wu G, Ren Y, Wu S, Zhu H, Chen Z. Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology. Pathogens. 2025; 14(6):554. https://doi.org/10.3390/pathogens14060554
Chicago/Turabian StyleHong, Meng, Guodi Wu, Yanli Ren, Shanshan Wu, Haihong Zhu, and Zhi Chen. 2025. "Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology" Pathogens 14, no. 6: 554. https://doi.org/10.3390/pathogens14060554
APA StyleHong, M., Wu, G., Ren, Y., Wu, S., Zhu, H., & Chen, Z. (2025). Advancements in Pathogen Detection: Argonaute-Based Nucleic Acid Detection Technology. Pathogens, 14(6), 554. https://doi.org/10.3390/pathogens14060554