The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes
Abstract
:1. Introduction
2. TDP-43 Cleavage by SARS-CoV-2 Protein
3. SARS-CoV-2 Interactions with RNA-Binding Proteins and Aggregation-Prone Proteins
4. Molecular Interactions of SARS-CoV-2 with TDP-43
5. Long-Term Neurological Sequelae Related to COVID-19 and TDP-43 Pathology
6. Association Between TDP-43-Related Neurodegenerative Disorder and SARS-CoV-2 Infection
7. TDP-43 Pathology in Clinical COVID-19 Patients with Neurodegenerative Disorder
8. Biomarker Studies of TDP-43 and Neurodegeneration in COVID-19 Patients
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALS | amyotrophic lateral sclerosis |
ATP | adenosine triphosphate |
BBB | amyotrophic lateral sclerosis |
CK1ε | casein kinase 1 epsilon |
COVID-19 | coronavirus disease 2019 |
CTD | C-terminal domain |
FUS | fused sarcoma protein |
FTD | frontotemporal dementia |
gRNA | genomic RNA |
LLPS | liquid-liquid phase separation |
Long COVID | long-term effects of COVID-19 |
Mpro | main protease |
MHV-1 | murine hepatitis virus-1 |
N | nucleocapsid |
NMR | nuclear magnetic resonance |
RBD | receptor-binding domain |
RBP | RNA-binding protein |
RNP | ribonucleoprotein |
SG | stress granule |
TDP-43 | transactive response DNA-binding protein of 43 kDa |
References
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The Evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 Pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Singh, S.; Meher, N.; Mohammed, A.; Razab, M.K.A.A.; Bhaskar, L.V.K.S.; Nawi, N.M. Neurological Infection and Complications of SARS-CoV-2: A Review. Medicine 2023, 102, E30284. [Google Scholar] [CrossRef] [PubMed]
- García Morato, J.; Gloeckner, C.J.; Kahle, P.J. Proteomics Elucidating Physiological and Pathological Functions of TDP-43. Proteomics 2023, 23, 2200410. [Google Scholar] [CrossRef] [PubMed]
- Han, S.P.; Tang, Y.H.; Smith, R. Functional Diversity of the HnRNPs: Past, Present and Perspectives. Biochem. J. 2010, 430, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Tollervey, J.R.; Curk, T.; Rogelj, B.; Briese, M.; Cereda, M.; Kayikci, M.; König, J.; Hortobágyi, T.; Nishimura, A.L.; Župunski, V.; et al. Characterizing the RNA Targets and Position-Dependent Splicing Regulation by TDP-43. Nat. Neurosci. 2011, 14, 452–458. [Google Scholar] [CrossRef]
- Kawahara, Y.; Mieda-Sato, A. TDP-43 Promotes MicroRNA Biogenesis as a Component of the Drosha and Dicer Complexes. Proc. Natl. Acad. Sci. USA 2012, 109, 3347–3352. [Google Scholar] [CrossRef]
- Freibaum, B.D.; Chitta, R.K.; High, A.A.; Taylor, J.P. Global Analysis of TDP-43 Interacting Proteins Reveals Strong Association with RNA Splicing and Translation Machinery. J. Proteome Res. 2010, 9, 1104–1120. [Google Scholar] [CrossRef]
- Sreedharan, J.; Blair, I.P.; Tripathi, V.B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J.C.; Williams, K.L.; Buratti, E.; et al. TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science 2008, 319, 1668–1672. [Google Scholar] [CrossRef]
- Rutherford, N.J.; Zhang, Y.J.; Baker, M.; Gass, J.M.; Finch, N.C.A.; Xu, Y.F.; Stewart, H.; Kelley, B.J.; Kuntz, K.; Crook, R.J.P.; et al. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genet. 2008, 4, e1000193. [Google Scholar] [CrossRef]
- Chen, H.J.; Mitchell, J.C.; Novoselov, S.; Miller, J.; Nishimura, A.L.; Scotter, E.L.; Vance, C.A.; Cheetham, M.E.; Shaw, C.E. The Heat Shock Response Plays an Important Role in TDP-43 Clearance: Evidence for Dysfunction in Amyotrophic Lateral Sclerosis. Brain 2016, 139, 1417–1432. [Google Scholar] [CrossRef] [PubMed]
- Yabata, H.; Riku, Y.; Miyahara, H.; Akagi, A.; Sone, J.; Urushitani, M.; Yoshida, M.; Iwasaki, Y. Nuclear Expression of TDP-43 Is Linked with Morphology and Ubiquitylation of Cytoplasmic Aggregates in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 12176. [Google Scholar] [CrossRef] [PubMed]
- Rahic, Z.; Buratti, E.; Cappelli, S. Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int. J. Mol. Sci. 2023, 24, 1581. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Siegel, A.; Lui, L.M.W.; Teopiz, K.M.; Ho, R.C.M.; Lee, Y.; Nasri, F.; Gill, H.; Lin, K.; Cao, B.; et al. Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry 2021, 11, 621773. [Google Scholar] [CrossRef]
- Soung, A.L.; Vanderheiden, A.; Nordvig, A.S.; Sissoko, C.A.; Canoll, P.; Mariani, M.B.; Jiang, X.; Bricker, T.; Rosoklija, G.B.; Arango, V.; et al. COVID-19 Induces CNS Cytokine Expression and Loss of Hippocampal Neurogenesis. Brain 2022, 145, 4193–4201. [Google Scholar] [CrossRef] [PubMed]
- Crunfli, F.; Carregari, V.C.; Veras, F.P.; Silva, L.S.; Nogueira, M.H.; Antunes, A.S.L.M.; Vendramini, P.H.; Valença, A.G.F.; Brandão-Teles, C.; da Silva Zuccoli, G.; et al. Morphological, Cellular, and Molecular Basis of Brain Infection in COVID-19 Patients. Proc. Natl. Acad. Sci. USA 2022, 119, e2200960119. [Google Scholar] [CrossRef]
- Klein, R.S.; Garber, C.; Funk, K.E.; Salimi, H.; Soung, A.; Kanmogne, M.; Manivasagam, S.; Agner, S.; Cain, M. Neuroinflammation During RNA Viral Infections. Annu. Rev. Immunol. 2019, 37, 73–95. [Google Scholar] [CrossRef]
- Ullrich, S.; Nitsche, C. The SARS-CoV-2 Main Protease as Drug Target. Bioorg Med. Chem. Lett. 2020, 30, 127377. [Google Scholar] [CrossRef]
- Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What Coronavirus 3C-like Protease Tells Us: From Structure, Substrate Selectivity, to Inhibitor Design. Med. Res. Rev. 2021, 41, 1965–1998. [Google Scholar] [CrossRef]
- Moustaqil, M.; Ollivier, E.; Chiu, H.P.; Van Tol, S.; Rudolffi-Soto, P.; Stevens, C.; Bhumkar, A.; Hunter, D.J.B.; Freiberg, A.N.; Jacques, D.; et al. SARS-CoV-2 Proteases PLpro and 3CLpro Cleave IRF3 and Critical Modulators of Inflammatory Pathways (NLRP12 and TAB1): Implications for Disease Presentation across Species. Emerg. Microbes Infect. 2021, 10, 178–195. [Google Scholar] [CrossRef]
- Melano, I.; Lo, Y.C.; Su, W.C. Characterization of Host Substrates of SARS-CoV-2 Main Protease. Front. Microbiol. 2023, 14, 1251705. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Wang, S.; Li, H.; Zhang, L.; Zhang, H.; Wang, P.H.; Zheng, X.; Yu, X.F.; Wei, W. The SARS-CoV-2 Main Protease Induces Neurotoxic TDP-43 Cleavage and Aggregates. Signal Transduct. Target. Ther. 2023, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Xu, Y.F.; Cook, C.; Gendron, T.F.; Roettges, P.; Link, C.D.; Lin, W.L.; Tong, J.; Castanedes-Casey, M.; Ash, P.; et al. Aberrant Cleavage of TDP-43 Enhances Aggregation and Cellular Toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 7607–7612. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate Dehydrogenase Levels Predict Coronavirus Disease 2019 (COVID-19) Severity and Mortality: A Pooled Analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Idrees, D.; Kumar, V. SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins: Potential Clues to Neurodegeneration. Biochem. Biophys. Res. Commun. 2021, 554, 94–98. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S.; Gu, J.; Xia, W.; Zhang, S.; Zhang, S.; Wang, Y.; Zhang, C.; Sun, Y.; Lei, J.; et al. SARS-CoV-2 Impairs the Disassembly of Stress Granules and Promotes ALS-Associated Amyloid Aggregation. Protein Cell 2022, 13, 602–614. [Google Scholar] [CrossRef]
- Zhang, K.; Donnelly, C.J.; Haeusler, A.R.; Grima, J.C.; Machamer, J.B.; Steinwald, P.; Daley, E.L.; Miller, S.J.; Cunningham, K.M.; Vidensky, S.; et al. The C9orf72 Repeat Expansion Disrupts Nucleocytoplasmic Transport. Nature 2015, 525, 56–61. [Google Scholar] [CrossRef]
- Vogler, T.O.; Wheeler, J.R.; Nguyen, E.D.; Hughes, M.P.; Britson, K.A.; Lester, E.; Rao, B.; Betta, N.D.; Whitney, O.N.; Ewachiw, T.E.; et al. TDP-43 and RNA Form Amyloid-like Myo-Granules in Regenerating Muscle. Nature 2018, 563, 508–513. [Google Scholar] [CrossRef]
- Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; et al. Both Boceprevir and GC376 Efficaciously Inhibit SARS-CoV-2 by Targeting Its Main Protease. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Ribeiro-Filho, H.V.; Jara, G.E.; Batista, F.A.H.; Schleder, G.R.; Tonoli, C.C.C.; Soprano, A.S.; Guimarães, S.L.; Borges, A.C.; Cassago, A.; Bajgelman, M.C.; et al. Structural Dynamics of SARS-CoV-2 Nucleocapsid Protein Induced by RNA Binding. PLoS Comput. Biol. 2022, 18, e1010121. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Chen, S.; Huang, C.; Li, B.; Li, J.; Jin, Z.; Zhang, Q.; Pan, P.; Du, W.; et al. Molecular Characterization of SARS-CoV-2 Nucleocapsid Protein. Front. Cell Infect. Microbiol. 2024, 14, 1415885. [Google Scholar] [CrossRef] [PubMed]
- Kleer, M.; Mulloy, R.P.; Robinson, C.A.; Evseev, D.; Marinos, M.P.B.; Castle, E.L.; Banerjee, A.; Mubareka, S.; Mossman, K.; Corcoran, J.A. Human Coronaviruses Disassemble Processing Bodies. PLoS Pathog. 2022, 18, e1010724. [Google Scholar] [CrossRef] [PubMed]
- Cascarina, S.M.; Ross, E.D. A Proposed Role for the SARS-CoV-2 Nucleocapsid Protein in the Formation and Regulation of Biomolecular Condensates. FASEB J. 2020, 34, 9832. [Google Scholar] [CrossRef]
- King, O.D.; Gitler, A.D.; Shorter, J. The Tip of the Iceberg: RNA-Binding Proteins with Prion-like Domains in Neurodegenerative Disease. Brain Res. 2012, 1462, 61–80. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef]
- Perdikari, T.M.; Murthy, A.C.; Ryan, V.H.; Watters, S.; Naik, M.T.; Fawzi, N.L. SARS-CoV-2 Nucleocapsid Protein Phase-separates with RNA and with Human HnRNPs. EMBO J. 2020, 39, e106478. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.J. SARS-CoV-2, Aging, and Post-COVID-19 Neurodegeneration. J. Neurochem. 2023, 165, 115–130. [Google Scholar] [CrossRef]
- Hammarström, P.; Nyström, S. Viruses and Amyloids—A Vicious Liaison. Prion 2023, 17, 82–104. [Google Scholar] [CrossRef]
- Iserman, C.; Roden, C.A.; Boerneke, M.A.; Sealfon, R.S.G.; McLaughlin, G.A.; Jungreis, I.; Fritch, E.J.; Hou, Y.J.; Ekena, J.; Weidmann, C.A.; et al. Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Mol. Cell 2020, 80, 1078–1091.e6. [Google Scholar] [CrossRef]
- Lu, S.; Ye, Q.; Singh, D.; Cao, Y.; Diedrich, J.K.; Yates, J.R.; Villa, E.; Cleveland, D.W.; Corbett, K.D. The SARS-CoV-2 Nucleocapsid Phosphoprotein Forms Mutually Exclusive Condensates with RNA and the Membrane-Associated M Protein. Nat. Commun. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Estelle, A.B.; Forsythe, H.M.; Yu, Z.; Hughes, K.; Lasher, B.; Allen, P.; Reardon, P.N.; Hendrix, D.A.; Barbar, E.J. RNA Structure and Multiple Weak Interactions Balance the Interplay between RNA Binding and Phase Separation of SARS-CoV-2 Nucleocapsid. Proc. Natl. Acad. Sci. USA Nexus 2023, 2, pgad333. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.J.; McLellan, C.; Kaplanis, B.; Droppelmann, C.A.; Junop, M. Phase Separation of SARS-CoV-2 Nucleocapsid Protein with TDP-43 Is Dependent on C-Terminus Domains. Int. J. Mol. Sci. 2024, 25, 8779. [Google Scholar] [CrossRef]
- Tsoi, P.S.; Quan, M.D.; Ferreon, J.C.; Ferreon, A.C.M. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int. J. Mol. Sci. 2023, 24, 3380. [Google Scholar] [CrossRef] [PubMed]
- Hurtle, B.T.; Xie, L.; Donnelly, C.J. Disrupting Pathologic Phase Transitions in Neurodegeneration. J. Clin. Investig. 2023, 133. [Google Scholar] [CrossRef] [PubMed]
- Aulas, A.; Velde, C. Vande Alterations in Stress Granule Dynamics Driven by TDP-43 and FUS: A Link to Pathological Inclusions in ALS? Front. Cell Neurosci. 2015, 9, 164273. [Google Scholar] [CrossRef]
- Mathis, S.; Goizet, C.; Soulages, A.; Vallat, J.M.; Masson, G. Le Genetics of Amyotrophic Lateral Sclerosis: A Review. J. Neurol. Sci. 2019, 399, 217–226. [Google Scholar] [CrossRef]
- Wang, S.; Dai, T.; Qin, Z.; Pan, T.; Chu, F.; Lou, L.; Zhang, L.; Yang, B.; Huang, H.; Lu, H.; et al. Targeting Liquid–Liquid Phase Separation of SARS-CoV-2 Nucleocapsid Protein Promotes Innate Antiviral Immunity by Elevating MAVS Activity. Nat. Cell Biol. 2021, 23, 718–732. [Google Scholar] [CrossRef]
- Lippi, A.; Domingues, R.; Setz, C.; Outeiro, T.F.; Krisko, A. SARS-CoV-2: At the Crossroad Between Aging and Neurodegeneration. Mov. Disord. 2020, 35, 716–720. [Google Scholar] [CrossRef]
- Tavassoly, O.; Safavi, F.; Tavassoly, I. Seeding Brain Protein Aggregation by SARS-CoV-2 as a Possible Long-Term Complication of COVID-19 Infection. ACS Chem. Neurosci. 2020, 11, 3704–3706. [Google Scholar] [CrossRef]
- Eberle, R.J.; Coronado, M.A.; Gering, I.; Sommerhage, S.; Korostov, K.; Stefanski, A.; Stühler, K.; Kraemer-Schulien, V.; Blömeke, L.; Bannach, O.; et al. Tau Protein Aggregation Associated with SARS-CoV-2 Main Protease. PLoS ONE 2023, 18, e0288138. [Google Scholar] [CrossRef]
- Savastano, A.; Ibáñez de Opakua, A.; Rankovic, M.; Zweckstetter, M. Nucleocapsid Protein of SARS-CoV-2 Phase Separates into RNA-Rich Polymerase-Containing Condensates. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Dang, M.; Li, Y.; Song, J. ATP Biphasically Modulates LLPS of SARS-CoV-2 Nucleocapsid Protein and Specifically Binds Its RNA-Binding Domain. Biochem. Biophys. Res. Commun. 2021, 541, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. A Brave New World of RNA-Binding Proteins. Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.C.; Polymenidou, M.; Cleveland, D.W. Converging Mechanisms in Als and FTD: Disrupted RNA and Protein Homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Nagy, P.D. Diverse Roles of Host RNA Binding Proteins in RNA Virus Replication. RNA Biol. 2011, 8, 305–315. [Google Scholar] [CrossRef]
- Molleston, J.M.; Cherry, S. Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses 2017, 9, 2. [Google Scholar] [CrossRef]
- Garcia-Moreno, M.; Järvelin, A.I.; Castello, A. Unconventional RNA-Binding Proteins Step into the Virus–Host Battlefront. Wiley Interdiscip. Rev. RNA 2018, 9, e1498. [Google Scholar] [CrossRef]
- Kuo, P.H.; Chiang, C.H.; Wang, Y.T.; Doudeva, L.G.; Yuan, H.S. The Crystal Structure of TDP-43 RRM1-DNA Complex Reveals the Specific Recognition for UG- and TG-Rich Nucleic Acids. Nucleic Acids Res. 2014, 42, 4712–4722. [Google Scholar] [CrossRef]
- Mukherjee, M.; Goswami, S. Global Cataloguing of Variations in Untranslated Regions of Viral Genome and Prediction of Key Host RNA Binding Protein-MicroRNA Interactions Modulating Genome Stability in SARS-CoV-2. PLoS ONE 2020, 15, e0237559. [Google Scholar] [CrossRef]
- Yin, C. Genotyping Coronavirus SARS-CoV-2: Methods and Implications. Genomics 2020, 112, 3588–3596. [Google Scholar] [CrossRef]
- Horlacher, M.; Oleshko, S.; Hu, Y.; Ghanbari, M.; Cantini, G.; Schinke, P.; Vergara, E.E.; Bittner, F.; Mueller, N.S.; Ohler, U.; et al. A Computational Map of the Human-SARS-CoV-2 Protein-RNA Interactome Predicted at Single-Nucleotide Resolution. NAR Genom. Bioinform. 2023, 5, lqad010. [Google Scholar] [CrossRef]
- Paidas, M.J.; Cosio, D.S.; Ali, S.; Kenyon, N.S.; Jayakumar, A.R. Long-Term Sequelae of COVID-19 in Experimental Mice. Mol. Neurobiol. 2022, 59, 5970–5986. [Google Scholar] [CrossRef] [PubMed]
- Paidas, M.J.; Mohamed, A.B.; Norenberg, M.D.; Saad, A.; Barry, A.F.; Colon, C.; Kenyon, N.S.; Jayakumar, A.R. Multi-Organ Histopathological Changes in a Mouse Hepatitis Virus Model of COVID-19. Viruses 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Alquezar, C.; Salado, I.G.; De La Encarnación, A.; Pérez, D.I.; Moreno, F.; Gil, C.; De Munain, A.L.; Martínez, A.; Martín-Requero, Á. Targeting TDP-43 Phosphorylation by Casein Kinase-1δ Inhibitors: A Novel Strategy for the Treatment of Frontotemporal Dementia. Mol. Neurodegener. 2016, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.R.; Norenberg, M.D. The Neuronal TDP-43 and Tau Proteinopathies in Chronic Liver Failure: Role of Astrocytes and Microglia. J. Clin. Exp. Hepatol. 2017, 7, S75–S76. [Google Scholar] [CrossRef]
- Jayakumar, A.R.; Tong, X.Y.; Shamaladevi, N.; Barcelona, S.; Gaidosh, G.; Agarwal, A.; Norenberg, M.D. Defective Synthesis and Release of Astrocytic Thrombospondin-1 Mediates the Neuronal TDP-43 Proteinopathy, Resulting in Defects in Neuronal Integrity Associated with Chronic Traumatic Encephalopathy: In Vitro Studies. J. Neurochem. 2017, 140, 645–661. [Google Scholar] [CrossRef]
- Hergesheimer, R.C.; Chami, A.A.; De Assis, D.R.; Vourc’h, P.; Andres, C.R.; Corcia, P.; Lanznaster, D.; Blasco, H. The Debated Toxic Role of Aggregated TDP-43 in Amyotrophic Lateral Sclerosis: A Resolution in Sight? Brain 2019, 142, 1176–1194. [Google Scholar] [CrossRef]
- Montalbano, M.; McAllen, S.; Cascio, F.L.; Sengupta, U.; Garcia, S.; Bhatt, N.; Ellsworth, A.; Heidelman, E.A.; Johnson, O.D.; Doskocil, S.; et al. TDP-43 and Tau Oligomers in Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Neurobiol. Dis. 2020, 146, 105130. [Google Scholar] [CrossRef]
- Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2019, 12, 436464. [Google Scholar] [CrossRef]
- Rahmani, B.; Ghashghayi, E.; Zendehdel, M.; Baghbanzadeh, A.; Khodadadi, M. Molecular Mechanisms Highlighting the Potential Role of COVID-19 in the Development of Neurodegenerative Diseases. Physiol. Int. 2022, 109, 135–162. [Google Scholar] [CrossRef]
- Franke, C.; Berlit, P.; Prüss, H. Neurological Manifestations of Post-COVID-19 Syndrome S1-Guideline of the German Society of Neurology. Neurol. Res. Pract. 2022, 4, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhang, L.Y.; Tan, Y.Y.; Chen, S. Di Links between COVID-19 and Parkinson’s Disease/Alzheimer’s Disease: Reciprocal Impacts, Medical Care Strategies and Underlying Mechanisms. Transl. Neurodegener. 2023, 12, 1–25. [Google Scholar]
- Meneses, A.; Koga, S.; O’Leary, J.; Dickson, D.W.; Bu, G.; Zhao, N. TDP-43 Pathology in Alzheimer’s Disease. Mol. Neurodegener. 2021, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- McAleese, K.E.; Walker, L.; Erskine, D.; Thomas, A.J.; McKeith, I.G.; Attems, J. TDP-43 Pathology in Alzheimer’s Disease, Dementia with Lewy Bodies and Ageing. Brain Pathol. 2017, 27, 472–479. [Google Scholar] [CrossRef]
- Maria, E.; De Boer, J.; Orie, V.K.; Williams, T.; Baker, M.R.; De Oliveira, H.M.; Polvikoski, T.; Silsby, M.; Menon, P.; Van Den Bos, M.; et al. TDP-43 Proteinopathies: A New Wave of Neurodegenerative Diseases. J. Neurol. Neurosurg. Psychiatry 2021, 92, 86–95. [Google Scholar]
- Scotter, E.L.; Chen, H.J.; Shaw, C.E. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015, 12, 352–363. [Google Scholar] [CrossRef]
- Liscic, R.M.; Grinberg, L.T.; Zidar, J.; Gitcho, M.A.; Cairns, N.J. ALS and FTLD: Two Faces of TDP-43 Proteinopathy. Eur. J. Neurol. 2008, 15, 772–780. [Google Scholar] [CrossRef]
- Suk, T.R.; Rousseaux, M.W.C. The Role of TDP-43 Mislocalization in Amyotrophic Lateral Sclerosis. Mol. Neurodegener. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Arseni, D.; Hasegawa, M.; Murzin, A.G.; Kametani, F.; Arai, M.; Yoshida, M.; Ryskeldi-Falcon, B. Structure of Pathological TDP-43 Filaments from ALS with FTLD. Nature 2021, 601, 139–143. [Google Scholar] [CrossRef]
- Mackenzie, I.R.A.; Rademakers, R. The Role of Transactive Response DNA-Binding Protein-43 in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Curr. Opin. Neurol. 2008, 21, 693–700. [Google Scholar] [CrossRef]
- Li, X.; Bedlack, R. COVID-19–Accelerated Disease Progression in Two Patients with Amyotrophic Lateral Sclerosis. Muscle Nerve 2021, 64, E13–E15. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, F.; Gallo, C.; Sarnelli, M.F.; De Marchi, I.; Saraceno, M.; Cantello, R.; Mazzini, L. Accelerated Early Progression of Amyotrophic Lateral Sclerosis over the COVID-19 Pandemic. Brain Sci. 2021, 11, 1291. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.D.; Galea, V.P.; Eberhart, A.C.; Patwa, H.S.; Howard, I.; Fournier, C.N.; Bedlack, R.S. Infection Rate, Mortality and Characteristics of Veterans with Amyotrophic Lateral Sclerosis with COVID-19. Muscle Nerve 2021, 64, E18–E20. [Google Scholar] [CrossRef]
- Snowden, J.S.; Hu, Q.; Rollinson, S.; Halliwell, N.; Robinson, A.; Davidson, Y.S.; Momeni, P.; Baborie, A.; Griffiths, T.D.; Jaros, E.; et al. The Most Common Type of FTLD-FUS (AFTLD-U) Is Associated with a Distinct Clinical Form of Frontotemporal Dementia but Is Not Related to Mutations in the FUS Gene. Acta Neuropathol. 2011, 122, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Olney, N.T.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Neurol. Clin. 2017, 35, 339–374. [Google Scholar] [CrossRef]
- Tavassoly, O.; Safavi, F.; Tavassoly, I. Heparin-Binding Peptides as Novel Therapies to Stop SARS-CoV-2 Cellular Entry and Infection. Mol. Pharmacol. 2020, 98, 612–619. [Google Scholar] [CrossRef]
- Ramani, A.; Müller, L.; Ostermann, P.N.; Gabriel, E.; Abida-Islam, P.; Müller-Schiffmann, A.; Mariappan, A.; Goureau, O.; Gruell, H.; Walker, A.; et al. SARS-CoV-2 Targets Neurons of 3D Human Brain Organoids. EMBO J. 2020, 39, e106230. [Google Scholar] [CrossRef]
- Kermanshahi, S.; Gholami, M.; Motaghinejad, M. Can Infection of COVID-19 Virus Exacerbate Alzheimer’s Symptoms? Hypothetic Possible Role of Angiotensin-Converting Enzyme-2/Mas/Brain-Derived Neurotrophic Factor Axis and Tau Hyper-Phosphorylation. Adv. Biomed. Res. 2020, 9, 36. [Google Scholar]
- Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau Protein Isoforms, Phosphorylation and Role in Neurodegenerative Disorders. Brain Res. Rev. 2000, 33, 95–130. [Google Scholar] [CrossRef]
- Mathew, S.; Gopal, P. Investigating the Role of TDP-43 Microvasculopathy on Neurovascular Unit Function in the Setting of COVID-19 and Alzheimer’s Disease and Related Dementias. Physiology 2024, 39, 1266. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Kang, H.Y.; Lim, H.R.; Kwon, Y.; Jo, M.; Jeon, Y.M.; Kim, S.R.; Kim, K.; Ha, C.M.; et al. The Overexpression of TDP-43 in Astrocytes Causes Neurodegeneration via a PTP1B-Mediated Inflammatory Response. J. Neuroinflammation 2020, 17, 299. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Pocevičiūtė, D.; Wennström, M. Perivascular Phosphorylated TDP-43 Inclusions Are Associated with Alzheimer’s Disease Pathology and Loss of CD146 and Aquaporin-4. Brain Pathol. 2025, 35, e13304. [Google Scholar] [CrossRef]
- Jia, W.; Lu, R.; Martin, T.A.; Jiang, W.G. The Role of Claudin-5 in Blood-Brain Barrier (BBB) and Brain Metastases (Review). Mol. Med. Rep. 2014, 9, 779–785. [Google Scholar] [CrossRef]
- Greene, C.; Hanley, N.; Campbell, M. Claudin-5: Gatekeeper of Neurological Function. Fluids Barriers CNS 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, D.Y.; Kim, K.S.; Han, S.H.; Go, H.J.; Kim, J.H.; Lim, K.B.; Lee, D.H.; Lee, J.B.; Park, S.Y.; et al. Neurologic Effects of SARS-CoV-2 Transmitted among Dogs. Emerg. Infect. Dis. 2023, 29, 2275. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Wierzba-Bobrowicz, T.; Krajewski, P.; Tarka, S.; Acewicz, A.; Felczak, P.; Stepien, T.; Golan, M.P.; Grzegorczyk, M. Neuropathological Analysis of the Brains of Fifty-Two Patients with COVID-19. Folia Neuropathol. 2021, 59, 219–231. [Google Scholar] [CrossRef]
- Agrawal, S.; Farfel, J.M.; Arfanakis, K.; Al-Harthi, L.; Shull, T.; Teppen, T.L.; Evia, A.M.; Patel, M.B.; Ely, E.W.; Leurgans, S.E.; et al. Brain Autopsies of Critically Ill COVID-19 Patients Demonstrate Heterogeneous Profile of Acute Vascular Injury, Inflammation and Age-Linked Chronic Brain Diseases. Acta Neuropathol. Commun. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Tang, N.; Kido, T.; Shi, J.; McCafferty, E.; Ford, J.M.; Dal Bon, K.; Pulliam, L. Blood Markers Show Neural Consequences of LongCOVID-19. Cells 2024, 13, 478. [Google Scholar] [CrossRef]
- Sun, B.; Tang, N.; Peluso, M.J.; Iyer, N.S.; Torres, L.; Donatelli, J.L.; Munter, S.E.; Nixon, C.C.; Rutishauser, R.L.; Rodriguez-Barraquer, I.; et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells 2021, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Louise, R.; Manon, L.; Vincent, E.; Cyntia, T.; Andréanne, L.; Philippe, B.; David, A.B.; Hébert, S.S.; Frédéric, C. Higher Angiotensin-Converting Enzyme 2 (ACE2) Levels in the Brain of Individuals with Alzheimer’s Disease. Acta Neuropathol. Commun. 2023, 11, 1–17. [Google Scholar]
- Laudanski, K.; Hajj, J.; Restrepo, M.; Siddiq, K.; Okeke, T.; Rader, D.J. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines 2021, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Self-Reported Coronavirus (COVID-19) Infections and Associated Symptoms, England and Scotland-Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/selfreportedcoronaviruscovid19infectionsandassociatedsymptomsenglandandscotland/november2023tomarch2024 (accessed on 3 February 2025).
Aspects | Description | Details | References |
---|---|---|---|
TDP-43 cleavage | SARS-CoV-2 Mpro protein induces TDP-43 cleavage | · SARS-CoV-2 Mpro cleaves TDP-43 at residue Q331, leading to insolubility and aggregation. · Mutations in TDP-43 at cleavage-prone sites can induce neurodegenerative features. | [22,23] |
LLPS formation | SARS-CoV-2 N and S proteins bind with TDP-43 promoting the formation of inclusions | · N-CTD and intrinsically disordered C-terminus of TDP-43 can aggregate forming abnormal inclusions associated with neurodegenerative diseases. · TDP-43 binds to RBD of S protein and promotes aggregation of amyloid proteins. · Mpro is not relevant to TDP-43 aggregation. · ATP modulates LLPS in a comparable manner for both SARS-CoV-2 N protein and TDP-43. | [31,37,42,46,47,49,67] |
Molecular interaction | TDP-43 interacts with 5′ UTR of SARS-CoV-2 | · TDP-43 binds to specific RNA sequences of SARS-CoV-2 5′ UTR that are rich in UG motifs as an RBP. · SARS-CoV-2 isolates from European countries exhibit single-nucleotide polymorphisms, predominantly a cytosine-to-uracil creating a bindable site for the TDP-43. | [59,60,61] |
Long-term neurological sequelae | TDP-43 proteinopathy shows in COVID-19 model mouse | · MHV-1 infection induces long COVID-19 symptoms. · Elevated CK1ε levels, reduced importin-β (factors associated with TDP-43 proteinopathy), and abnormal TDP-43 and tau formations were detected in this model. · Brain pathology including synaptophysin 1 reduction caused by hyperphosphorylated and aggregated TDP-43. | [62] |
TDP-43-related neurodegenerative disorder | SARS-CoV-2 infection affects ALS and FTD by forming inclusions of TDP-43 | SARS-CoV-2 infection aggravates the symptoms in ALS patients by aggregating TDP-43 through ACE2-mediated pathway in ALS-associated brain regions Interaction of SARS-CoV-2 S protein and TDP-43 promotes abnormal protein aggregation and FTD Neurodegenerative pathway of tau and TDP-43 is typically inhibited by ACE2-related pathways, but SARS-CoV-2 infection disrupts these pathways | [97,98] |
TDP-43 pathology in clinical cases | SARS-CoV-2 infection deteriorates neurodegenerative changes in AD patients | Abnormal phosphorylated TDP-43 accumulation in COVID-19 patients drives more aggressive disease progression in AD including microvasculopathy. | [90] |
TDP-43 as a biomarker in COVID-19 patients | Levels of TDP-43 and related proteins can be used as biomarkers to predict the severity of neurodegenerative diseases | Levels of TDP-43 in nEVs were elevated in long COVID patients with remaining neurological symptoms. ACE2 release from membranes linked to worsen TDP-43 proteinopathy and reduced blood-brain barrier markers During the period following hospitalization TDP-43 levels decreased for a while, but eventually recovered to baseline. Ferritin levels, the marker of inflammation, are highly correlated with TDP-43 in COVID-19 patients. | [99,100,101,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Kim, J.-H.; Jeon, M.-T.; Kim, K.-S.; Kim, D.-G.; Choi, I.-S. The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes. Viruses 2025, 17, 724. https://doi.org/10.3390/v17050724
Kim D-H, Kim J-H, Jeon M-T, Kim K-S, Kim D-G, Choi I-S. The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes. Viruses. 2025; 17(5):724. https://doi.org/10.3390/v17050724
Chicago/Turabian StyleKim, Dong-Hwi, Jae-Hyeong Kim, Min-Tae Jeon, Kyu-Sung Kim, Do-Geun Kim, and In-Soo Choi. 2025. "The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes" Viruses 17, no. 5: 724. https://doi.org/10.3390/v17050724
APA StyleKim, D.-H., Kim, J.-H., Jeon, M.-T., Kim, K.-S., Kim, D.-G., & Choi, I.-S. (2025). The Role of TDP-43 in SARS-CoV-2-Related Neurodegenerative Changes. Viruses, 17(5), 724. https://doi.org/10.3390/v17050724