Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = non-phenolic lignin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Cited by 1 | Viewed by 560
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

18 pages, 4005 KiB  
Article
Colletotrichum capsici-Induced Disease Development in Postharvest Pepper Associated with Cell Wall Metabolism and Phenylpropanoid Metabolism
by Yunfen Liu, Qian Song, Feilong Yin, Yuanli Liang, Mubo Song, Meiying He and Liang Shuai
Horticulturae 2025, 11(7), 794; https://doi.org/10.3390/horticulturae11070794 - 4 Jul 2025
Viewed by 222
Abstract
Colletotrichum capsici is an important pathogen causing anthracnose in postharvest peppers in parts of Asia, seriously compromising quality and storage life. Unveiling the pathogenic mechanism can better prevent postharvest disease in pepper. This study investigated the impacts of C. capsici infection on cell [...] Read more.
Colletotrichum capsici is an important pathogen causing anthracnose in postharvest peppers in parts of Asia, seriously compromising quality and storage life. Unveiling the pathogenic mechanism can better prevent postharvest disease in pepper. This study investigated the impacts of C. capsici infection on cell wall and phenylpropanoid metabolism in postharvest pepper. Compared to the non-inoculated peppers, C. capsici infection notably increased the disease index, damaged visual quality, and reduced the firmness. Morphological observations showed that C. capsici infection contributed to the collapse of epidermal cell structure. During the early stage, C. capsici triggered pepper’s defensive responses, including lignin deposition around the wounds, increased cellulose and hemicellulose content, and boosted disease-resistance enzymes, including phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), laccase (LAC), β-1,3-glucanase (β-1,3-Glu), and chitinase (CHI), alongside elevated total phenolics and flavonoids. However, as storage time progressed, the activities of carboxymethy cellulase (Cx), polygalacturonase (PG), pectin methylesterase (PME), and β-glucosidase (β-Glu) remained at a high level, leading to a reduction in cell wall components, a decline in the activities of disease-resistance enzymes, and a decrease in phenylpropanoid metabolite, resulting from disease progression in pepper. These insights highlight the need for early intervention strategies to mitigate postharvest losses by targeting pathogen-induced stress responses and cell wall integrity preservation. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

30 pages, 2752 KiB  
Review
Application of Hyperspectral Imaging for Early Detection of Pathogen-Induced Stress in Cabbage as Case Study
by Magdalena Szechyńska-Hebda, Ryszard Hołownicki, Grzegorz Doruchowski, Konrad Sas, Joanna Puławska, Anna Jarecka-Boncela, Magdalena Ptaszek and Agnieszka Włodarek
Agronomy 2025, 15(7), 1516; https://doi.org/10.3390/agronomy15071516 - 22 Jun 2025
Viewed by 748
Abstract
Cabbage (Brassica oleracea L.) is a globally significant vegetable crop that faces productivity challenges due to fungal and bacterial pathogens. This review highlights the potential of spectral imaging techniques, specifically multispectral and hyperspectral methods, in detecting biotic stress in cabbage, with a [...] Read more.
Cabbage (Brassica oleracea L.) is a globally significant vegetable crop that faces productivity challenges due to fungal and bacterial pathogens. This review highlights the potential of spectral imaging techniques, specifically multispectral and hyperspectral methods, in detecting biotic stress in cabbage, with a particular emphasis on pathogen-induced responses. These non-invasive approaches enable real-time assessment of plant physiological and biochemical changes, providing detailed spectral data to identify pathogens before visible symptoms appear. Hyperspectral imaging, with its high spectral resolution, allows for distinctions among different pathogens and the evaluation of stress responses, whereas multispectral imaging offers broad-scale monitoring suitable for field-level applications. The work synthesizes research in the existing literature while presenting novel experimental findings that validate and extend current knowledge. Significant spectral changes are reported in cabbage leaves infected by Alternaria brassicae and Botrytis cinerea. Early-stage detection was facilitated by alterations in flavonoids (400–450 nm), chlorophyll (430–450, 680–700 nm), carotenoids (470–520 nm), xanthophyll (520–600 nm), anthocyanin (550–560 nm, 700–710 nm, 780–790 nm), phenols/mycotoxins (700–750 nm, 718–722), water/pigments content (800–900 nm), and polyphenols/lignin (900–1000). The findings underscore the importance of targeting specific spectral ranges for early pathogen detection. By integrating these techniques with machine learning, this research demonstrates their applicability in advancing precision agriculture, improving disease management, and promoting sustainable production systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2790 KiB  
Article
Characterization of Water-Resistant Adhesive Prepared by Cross-Linking Reaction of Oxidized Starch with Lignin
by Chengyuan Liu, Huali Lin, Shichao Zhang, Hisham Essawy, Hongyan Wang, Longxu Wu, Xinyi Chen, Xiaojian Zhou, Antonios N. Papadopoulos, Antonio Pizzi and Ming Cao
Polymers 2025, 17(11), 1545; https://doi.org/10.3390/polym17111545 - 1 Jun 2025
Viewed by 811
Abstract
Wood adhesives play a critical role in the wood processing industry; however, traditional formaldehyde-based adhesives pose health risks and are reliant on non-renewable resources. This study aims to develop a bio-based wood adhesive with excellent water resistance, focusing on environmentally friendly solutions. The [...] Read more.
Wood adhesives play a critical role in the wood processing industry; however, traditional formaldehyde-based adhesives pose health risks and are reliant on non-renewable resources. This study aims to develop a bio-based wood adhesive with excellent water resistance, focusing on environmentally friendly solutions. The synthesis of an oxidized starch-lignin (OSTL) composite adhesive was accomplished by modifying starch via oxidation and subsequent cross-linking with lignin. Ammonium persulfate (APS) was employed for oxidation of starch, introducing aldehyde groups that upgrade its reactivity with lignin. Subsequently, the oxidized starch (OST) was cross-linked with the phenolic rings of lignin, resulting in a strong network structure. The oxidation of starch and its cross-linking mechanism with lignin were investigated using the Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), and X-ray photoelectron spectroscopy (XPS) techniques, proving the formation of aldehyde and carboxyl groups with subsequent reaction possibilities. The effects of oxidant dosage, oxidation time, and the ratio of starch to lignin on the adhesive properties were systematically studied. The results demonstrated that the OSTL adhesive, prepared under optimized conditions, exhibited outstanding adhesion strength (1.23 MPa in dry state) and water resistance (0.94 MPa after 24 h cold water immersion, 1.04 MPa after 3 h in hot water, and 0.69 MPa after 3 h in boiling water), significantly outperforming conventional wood adhesives in terms of cold water, hot water, and boiling water resistance. In addition, the thermal behavior of the OSTL adhesive was further validated using differential scanning calorimetry (DSC) as well as thermogravimetric analysis (TGA). This study presents new insights and technical support for the development of green, environmentally friendly, and highly water-resistant lignin-based bio-adhesives. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

39 pages, 3887 KiB  
Review
A Comprehensive Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenolics to Aromatics
by Sitong Dong and Gang Feng
Molecules 2025, 30(10), 2225; https://doi.org/10.3390/molecules30102225 - 20 May 2025
Viewed by 811
Abstract
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual [...] Read more.
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual challenges of resource depletion and environmental sustainability. The catalytic hydrodeoxygenation (HDO) of lignin-derived phenolic substrates emerges as a technologically viable pathway for sustainable aromatic hydrocarbon synthesis, offering critical opportunities for lignin valorization and biorefinery advancement. This article reviews the relevant research on the conversion of lignin-derived phenolic compounds’ HDO to benzene and aromatic hydrocarbons, systematically categorizing and summarizing the different types of catalysts and their reaction mechanisms. Furthermore, we propose a strategic framework addressing current technical bottlenecks, highlighting the necessity for the synergistic development of robust heterogeneous catalysts with tailored active sites and energy-efficient process engineering to achieve scalable biomass conversion systems. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

19 pages, 10793 KiB  
Article
Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization
by Carlos Manterola-Barroso, Karina Godoy Sanchez, Erick Scheuermann, Daniela Padilla-Contreras, Filis Morina and Cristian Meriño-Gergichevich
Resources 2025, 14(5), 82; https://doi.org/10.3390/resources14050082 - 20 May 2025
Viewed by 848
Abstract
Considerable amounts of agro-industrial by-products are discarded every year. Moreover, these represent an interesting source of phenolics, cellulose and lignin, in addition to useful compounds such as antioxidants. However, these compounds may be affected by external factors such as genotype, locality and productive [...] Read more.
Considerable amounts of agro-industrial by-products are discarded every year. Moreover, these represent an interesting source of phenolics, cellulose and lignin, in addition to useful compounds such as antioxidants. However, these compounds may be affected by external factors such as genotype, locality and productive season, increasing or decreasing the antioxidant potential of by-products. In this study, hazelnut (Corylus avellana L.) and walnut (Juglans regia L.) nutshells were investigated for their fiber content and antioxidant capacity as valorized by-products in this industry. The determination of oxygen radical absorbance capacity (ORAC), total phenolic content (TPC) and color difference was performed using hazelnut and walnut shells collected from orchards located in Southern Chile during three consecutive seasons (2020/21, 2021/22 and 2022/23). The ORAC in nutshells showed the highest values in both species for the season 2020/21 (3217 and 4663 µmol TE g DW−1 for hazelnut and walnut), whereas the variability in consecutive seasons was lower for hazelnut than for walnut. The TPC in hazelnut shells was positively correlated with L* (R: 0.883) and ΔE (r = 0.924) during the 2020/21 season and with L* for 2022/23 (r = 0.907). On the other hand, the ORAC was negatively correlated with L* (r = 0.922) in 2021/22. In addition, the morphological and structural features of both nutshells examined by scavenging electron microscopy (VP-SEM) and confocal scavenging laser microscopy (CSLM) revealed differential tissue distribution and accumulation patterns of both cellulose and lignin. In addition, photo-colorimetric values were determined for both shells and corresponding seasons, and non-significant differences were found for both shells and among seasons. Finally, our results provide new insights into the physicochemical characteristics of these two types of nutshells as valorized by-products, considering their antioxidant properties as residual materials derived from this agroindustry. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

15 pages, 2055 KiB  
Article
The Influence of the Non-Pathogenic Fusarium oxysporum Fo47 Strain on Flax Resistance to Pathogens
by Justyna Liszka, Lucyna Dymińska, Wojciech Łaba and Magdalena Wróbel-Kwiatkowska
Int. J. Mol. Sci. 2025, 26(9), 4396; https://doi.org/10.3390/ijms26094396 - 6 May 2025
Viewed by 525
Abstract
Flax (Linum usitatissimum L.) is a plant of high economic and practical importance valued for its fiber and oil, which have diverse applications in industries such as textiles, food, pharmaceuticals, and construction. Fungal pathogens of the genus Fusarium, however, pose one [...] Read more.
Flax (Linum usitatissimum L.) is a plant of high economic and practical importance valued for its fiber and oil, which have diverse applications in industries such as textiles, food, pharmaceuticals, and construction. Fungal pathogens of the genus Fusarium, however, pose one of the most serious threats to flax cultivation. They are responsible for a number of disease manifestations, notably Fusarium wilt and root rot. In the case of fusariosis, there is a lack of plant protection products, and often the only effective approach is to use resistant flax cultivars or to discontinue cultivation for several years. Currently, much attention is paid to biological methods of plant protection, which do not exert a negative influence on the environment or human health and are important for sustainable agriculture. The aim of the present study was to assess the potential of the non-pathogenic endophytic fungal strain Fusarium oxysporum Fo47 in protecting plants against pathogenic fungi. The results showed that pretreatment of flax plants with Fo47 increased resistance of plants to all tested fungi (F. oxysporum, Fusarium culmorum, Rhizoctonia solani). Fo47 was the most effective for protection against F. culmorum for the Jan flax cultivar and R. solani for the Bukoz cultivar. Pretreatment with Fo47 of flax plants inoculated with F. culmorum caused an increase in the level of secondary metabolites involved in plant resistance (phenolics) and photosynthetic pigments (chlorophyll a and b) compared to plants treated only with the pathogenic fungal strain. Fourier transform infrared spectroscopy revealed structural changes in the polymers of cell walls. The highest intensities of vibrations characteristic of lignin and pectin were observed for flax treated with Fo47 and infected with F. culmorum, suggesting the highest level of these polymers, higher than in plants treated only with pathogenic fungi. Thus, it can be concluded that application of the non-pathogenic strain strengthened the immune response of flax plants. These results highlight the strong potential of the non-pathogenic strain as a biological control agent, especially for Fusarium infection in flax. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2711 KiB  
Article
Biovalorization of Astragalus membranaceus var. mongholicus Stems by White Rot Fungi Under Solid-State Fermentation as Ruminant Feed
by Yu-Qiong Wang, Li-Long Luo, Li-Ming Chen and Chang-Long Gou
Agronomy 2025, 15(3), 650; https://doi.org/10.3390/agronomy15030650 - 5 Mar 2025
Cited by 1 | Viewed by 672
Abstract
The value-added effect of white rot fungi on the feed of Astragalus membranaceus var. mongholicus (AMM) stems was explored. All four types of white rot fungi (Lentinus sajor-caju, Pleurotus ostreatus, Lentinula edodes, and Phanerodontia chrysosporium) reduced the lignocellulose [...] Read more.
The value-added effect of white rot fungi on the feed of Astragalus membranaceus var. mongholicus (AMM) stems was explored. All four types of white rot fungi (Lentinus sajor-caju, Pleurotus ostreatus, Lentinula edodes, and Phanerodontia chrysosporium) reduced the lignocellulose content in AMM stems, improved in vitro dry matter digestibility (IVDMD), and influenced the activity of lignocellulose-degrading enzymes. Lentinus sajor-caju and Phanerodontia chrysosporium exhibited superior effects on lignin degradation and IVDMD and significantly altered non-volatile metabolites and antioxidant capacity. Lentinus sajor-caju fermentation resulted in the strongest antioxidant activity compared to that in the other fungal treatments. The fold change (FC) ratio (>100) of sakuranetin, 2′,6′-Di-O-acetylononin, isoformononetin, and artocarpin was compared between Lentinus sajor-caju and Phanerodontia chrysosporium. Among the phenolic compounds, flavonoids play a key role in antioxidant activity, with 5,6-Dihydroxy-7-methoxyflavone showing a strong correlation with antioxidant activity. This study provides valuable insights for utilizing AMM stem waste in the context of traditional Chinese medicine. Full article
Show Figures

Figure 1

17 pages, 2394 KiB  
Article
The Potential of Transgenic Hybrid Aspen Plants with a Recombinant Lac Gene from the Fungus Trametes hirsuta to Degrade Trichlorophenol
by Elena O. Vidyagina, Natalia M. Subbotina, Eugenia N. Belova, Yulia A. Kovalitskaya, Vyacheslav A. Evdokimov, Vladimir A. Belyi, Alexey P. Kochetov, Alexey K. Surin, Konstantin V. Krutovsky and Konstantin A. Shestibratov
Genes 2025, 16(3), 298; https://doi.org/10.3390/genes16030298 - 28 Feb 2025
Viewed by 686
Abstract
Objective: Laccases are known to be able to degrade phenolic compounds to simpler components. The main objective of our study was to analyze this property in transgenic aspen plants carrying the laccase gene Lac from Trametes hirsuta which can be potentially used in [...] Read more.
Objective: Laccases are known to be able to degrade phenolic compounds to simpler components. The main objective of our study was to analyze this property in transgenic aspen plants carrying the laccase gene Lac from Trametes hirsuta which can be potentially used in soil phytoremediation. Methods: We created transgenic aspen plants carrying the laccase gene Lac from Trametes hirsute using the agrobacterial transformation of stem explants with the pBI–Lac vector containing the Lac gene from the white rot fungus T. hirsuta 072 (NCBI GenBank accession number KP027478). Transgenic plants were micropropagated and cultivated in vitro in lines. The degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by plant roots was analyzed by mass-spectrometry with electron ionization using a gas chromatograph. Results: Although plants have their own laccases, those of fungal origin are more effective. All transgenic plants that expressed the recombinant gene degraded 2,4,6-TCP more effectively than non-transformed plants in the control (the degradation efficiency ranged 92 to 98% versus 82% in non-transformed control). Line 47Lac8 demonstrated a 16% higher efficiency than the non-transformed plants in the control. There was also an inverse relationship between the viability of a transgenic line and its level of expression of the recombinant gene. Thus, line 47Lac4 was not viable under native conditions, probably due to lignin synthesis disruptions during the initiation of secondary tissues. This is confirmed by changes in the expression of native genes of lignin biosynthesis. The rest of the transgenic lines did not differ significantly from control in wood growth and biochemistry. The transgenic plant roots were shown to preserve the ability to express the Lac gene ex vitro. Conclusions: Three transgenic lines (47Lac5, 47Lac8, and 47Lac23) with the Lac gene can be recommended for use in soil phytoremediation. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

45 pages, 1708 KiB  
Review
The Role of Ligninolytic Enzymes in Sustainable Agriculture: Applications and Challenges
by Agnieszka Gałązka, Urszula Jankiewicz and Sławomir Orzechowski
Agronomy 2025, 15(2), 451; https://doi.org/10.3390/agronomy15020451 - 12 Feb 2025
Cited by 7 | Viewed by 3317
Abstract
The most important ligninolytic enzymes in lignin degradation include laccases and peroxidases (lignin peroxidase, manganese peroxidase, versatile peroxidase). White-rot fungi (e.g., Cerrena sp., Phlebia sp. or Trametes sp.) are their main source in nature. The ability of ligninolytic enzymes to degrade both phenolic [...] Read more.
The most important ligninolytic enzymes in lignin degradation include laccases and peroxidases (lignin peroxidase, manganese peroxidase, versatile peroxidase). White-rot fungi (e.g., Cerrena sp., Phlebia sp. or Trametes sp.) are their main source in nature. The ability of ligninolytic enzymes to degrade both phenolic and non-phenolic compounds has found its application in sustainable agriculture. In recent years, ligninolytic enzymes’ important role has been demonstrated in the biodegradation of lignin, a poorly degradable component of plant biomass, and in removing hazardous environmental pollutants that threaten human health. These enzymes can be successfully used in waste management, composting, improving soil health and fertility, or bioremediation. The challenges of applying lignin-degrading enzymes such as laccases and peroxidases include their stability and resistance to harsh conditions. Still, the rapid development of biotechnological technologies offers the tools to overcome them. Applying biological solutions in agricultural systems involving microorganisms and their metabolic products will significantly reduce the environmental impact and develop a circular economy. Full article
Show Figures

Figure 1

23 pages, 4868 KiB  
Article
Phenolics Profile and Phenol-Related Enzyme Activities in Cucumber Plants Under Ni Stress
by Ewa Gajewska, Aleksandra Witusińska, Andrzej Kornaś and Marzena Wielanek
Int. J. Mol. Sci. 2025, 26(3), 1237; https://doi.org/10.3390/ijms26031237 - 31 Jan 2025
Cited by 2 | Viewed by 1281
Abstract
Ni phytotoxicity has been attributed to its multidirectional detrimental effects on plant cell structure and function. However, relatively little is known about Ni’s impact on phenolic metabolism in plants. The objective of our study was to obtain insight into the effect of Ni [...] Read more.
Ni phytotoxicity has been attributed to its multidirectional detrimental effects on plant cell structure and function. However, relatively little is known about Ni’s impact on phenolic metabolism in plants. The objective of our study was to obtain insight into the effect of Ni treatment on phenolic compound composition, phenol-related enzyme activities, and lignin accumulation in cucumber plants. Besides growth reduction, the chlorophyll a and carotenoid contents as well as the chlorophyll a fluorescence parameters, namely, the maximum photochemical efficiency of PS II and non-photochemical quenching, were significantly decreased in the Ni-treated cucumber plants. Application of Ni resulted in changes in the phenolic acid and flavonoid profiles; however, the total content of the detected phenolic compounds remained unchanged in the leaf and slightly decreased in the root. The Ni-induced release of free phenolic acids from their conjugates was found in the leaf. Ni treatment led to a marked increase in leaf peroxidase activities assayed with various phenolic substrates, while it did not influence phenyl ammonia lyase and polyphenol oxidase activities. Increased lignin deposition was observed in the leaf blade of Ni-exposed plants. Neither lignin accumulation nor induction of peroxidase activities were found in the root. Our results indicate that the Ni effect on phenolic compound composition and related enzyme activities is organ-specific. The observed changes in the content of individual compounds might result rather from the metal-triggered conversions of the compounds constitutively present in the cucumber tissues than from de novo synthesis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 4164 KiB  
Article
Hydrogenolysis of Benzyl Phenyl Ether Using Nickel–Molybdenum Clay Catalysts—A Model for Cleaving Ether Linkages in Lignin
by Indri B. Adilina, Muhammad A. Fitriady, Ferensa Oemry, Fauzan Aulia, Nino Rinaldi, Gagus K. Sunnardianto, Ian P. Silverwood and Stewart F. Parker
Catalysts 2024, 14(12), 953; https://doi.org/10.3390/catal14120953 - 23 Dec 2024
Viewed by 1628
Abstract
The solvent-free hydrogenolysis (HDL) of benzyl phenyl ether (BPE), a model for the C–O (α-O-4) linkage in lignin, was investigated using NiMo-pillared clay catalysts in their reduced (NiMoPR) and sulfided (NiMoPS) forms. NiMoPS show higher activity and selectivity to give an equimolar mixture [...] Read more.
The solvent-free hydrogenolysis (HDL) of benzyl phenyl ether (BPE), a model for the C–O (α-O-4) linkage in lignin, was investigated using NiMo-pillared clay catalysts in their reduced (NiMoPR) and sulfided (NiMoPS) forms. NiMoPS show higher activity and selectivity to give an equimolar mixture of toluene and phenol, demonstrating selective cleavage of the Caliphatic–O of BPE, while non-equimolar amounts were found for NiMoPR. Strong acid sites are dominant in NiMoPS, giving a higher total acidity compared to NiMoPR, which explains the higher selectivity of the sulfided catalyst towards the HDL products and monomeric aromatics. To understand the interaction of BPE on the catalyst surface, we carried out a comprehensive investigation of the 2D potential energy surface (PES) of BPE and the vibrational spectra using neutron scattering and computational studies. The results suggest that BPE is weakly adsorbed on NiMoPS and the pillared clay support (PILC) via a van der Waals or H-bonding interaction, but they are strongly chemisorbed on the NiMoPR due to covalent bonding. Weakly adsorbed BPE allows higher mobility during diffusion to the catalytic site, which promotes the higher activity of NiMoPS for the HDL. This work demonstrates the potential use of clay-supported NiMo catalysts for lignin valorization and the future circular economy. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

13 pages, 1800 KiB  
Article
Effects of Long-Term Soil Tillage Practices on Soil Organic C Accumulation Characteristics in Double-Cropped Rice Paddy
by Kaikai Cheng, Shuting Peng, Chao Li, Li Wen, Lingling Liu, Hanfang Luo, Jie Liu and Haiming Tang
Land 2024, 13(12), 2074; https://doi.org/10.3390/land13122074 - 2 Dec 2024
Cited by 1 | Viewed by 960
Abstract
Unreasonable soil tillage measures have caused a sharp decline in the soil carbon (C) pool capacity of rice (Oryza sativa L.) paddy fields, have reduced soil fertility, and have threatened the safe production of rice. Based on long-term position–location experiments started in [...] Read more.
Unreasonable soil tillage measures have caused a sharp decline in the soil carbon (C) pool capacity of rice (Oryza sativa L.) paddy fields, have reduced soil fertility, and have threatened the safe production of rice. Based on long-term position–location experiments started in 2005, this paper systematically studied the effects of different soil tillage treatments (CT: no return of plowing straw to the field as control; CTS: return of plowing straw to the field; NTS: return of no-tillage straw to the field; RTS: return of rotary plowing straw to the field) on soil physical and chemical properties and soil organic carbon (SOC) accumulation characteristics in rice paddy fields, in order to clarify the impact of different long-term soil tillage measures on soil carbon cycle microecology in double-cropped rice paddy fields and provide a theoretical basis for soil SOC sequestration and the sustainable utilization of rice paddy fields in double-cropped rice paddy fields in southern China. The results were as follows: A total of 30.7–40.7% of the SOC stored in rice paddy fields was residue C derived from microorganisms, and 45.7–54.2% of SOC accumulation came from plant residue-derived C. Straw return treatments (CTS, RTS, and NTS) significantly increased soil lignin phenol content and promoted the accumulation of plant-derived SOC. Soil lignin phenol content in the RTS treatment was significantly higher than that in the CTS treatment (p < 0.05). Amino sugar content in rhizosphere soil was higher than that in non-rhizosphere soil. The measure of returning straw to the field increased amino sugar content in the rhizosphere and non-rhizosphere. C derived from plants was greater than that from microbial residues in double-cropped rice paddy fields in southern China. Hence, no-till/rotary tillage and straw return can improve the sequestration of soil SOC, which is of great significance for achieving “C neutrality” and alleviating the pressure on food security. Full article
Show Figures

Figure 1

21 pages, 6067 KiB  
Article
Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications
by Miuța Filip, Mihaela Vlassa, Ioan Petean, Ionelia Țăranu, Daniela Marin, Ioana Perhaiță, Doina Prodan, Gheorghe Borodi and Cătălin Dragomir
Agriculture 2024, 14(11), 2038; https://doi.org/10.3390/agriculture14112038 - 12 Nov 2024
Cited by 5 | Viewed by 1452
Abstract
Agricultural waste from the fruit and vegetable industry is used as an alternative source of animal feed, but detailed investigations are required. The aim of this work was to conduct a physico-chemical characterization, through analytical techniques, of fruit and vegetable wastes such as [...] Read more.
Agricultural waste from the fruit and vegetable industry is used as an alternative source of animal feed, but detailed investigations are required. The aim of this work was to conduct a physico-chemical characterization, through analytical techniques, of fruit and vegetable wastes such as those of golden apples, red apples, carrots, celery, beetroots, and red potato peels. The bioactive compounds in the samples indicated a high carbohydrate content of 50.38 g/100 g in golden apples and 59.38 mg/100 g of organic acids in celery. In addition, the total phenolic content (TPC, mg gallic acid equivalent/g dry weight) varied between 3.72 in celery and 15.51 in beetroots. The antioxidant capacity values were significant. A thermal analysis showed thermal stability and weight loss, underscoring the composition of the solid samples. An infrared spectroscopy (FTIR) analysis showed C-H, O-H, C=O, and N-H functional groups in non-starchy carbohydrates, organic acids, and proteins. Microscopic techniques revealed the microstructure, particle size, and semicrystalline profile of the samples. The ultrastructure (determined via atomic force microscopy (AFM)) of celery consisted of a smooth and uniform surface with a lignin and cellulose texture. These results highlight the importance of fruit and vegetable waste as an alternative source of essential nutrients and bioactive compounds for animal feed. Full article
(This article belongs to the Special Issue Rational Use of Feed to Promote Animal Healthy Feeding)
Show Figures

Figure 1

27 pages, 10980 KiB  
Article
Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium
by Bianca Apolônio Fontes, Leandro Castro Silva, Bárbara Bezerra Menezes Picanço, Aline Vieira Barros, Isabela Maria Grossi Leal, Leonardo Packer Quadros and Fabrício Ávila Rodrigues
Plants 2024, 13(22), 3161; https://doi.org/10.3390/plants13223161 - 11 Nov 2024
Viewed by 1503
Abstract
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, [...] Read more.
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, this study investigated the potential of using a phosphite of nickel (Ni) and potassium (K) [referred to as induced resistance (IR) stimulus] to induce soybean resistance against infection by P. pachyrhizi. Plants were sprayed with water (control) or with IR stimulus and non-inoculated or inoculated with P. pachyrhizi. The germination of urediniospores was greatly reduced in vitro by 99% using IR stimulus rates ranging from 2 to 15 mL/L. Rust severity was significantly reduced from 68 to 78% from 7 to 15 days after inoculation (dai). The area under the disease progress curve significantly decreased by 74% for IR stimulus-sprayed plants compared to water-sprayed plants. For inoculated plants, foliar concentrations of K and Ni were significantly higher for IR stimulus treatment than for the control treatment. Infected and IR stimulus-sprayed plants had their photosynthetic apparatus (a great pool of photosynthetic pigments, and lower values for some chlorophyll a fluorescence parameters) preserved, associated with less cellular damage (lower concentrations of malondialdehyde, hydrogen peroxide, and anion superoxide) and a greater production of phenolics and lignin than plants from the control treatment. In response to infection by P. pachyrhizi, defense-related genes (PAL2.1, PAL3.1, CHIB1, LOX7, PR-1A, PR10, ICS1, ICS2, JAR, ETR1, ACS, ACO, and OPR3) were up-regulated from 7 to 15 dai for IR stimulus-sprayed plants in contrast to plants from the control treatment. Collectively, these findings provide a global picture of the enhanced capacity of IR stimulus-sprayed plants to efficiently cope with fungal infection at both biochemical and physiological levels. The direct effect of this IR stimulus against urediniospores’ germination over the leaf surface needs to be considered with the aim of reducing rust severity. Full article
(This article belongs to the Special Issue Plant Protection and Integrated Pest Management)
Show Figures

Figure 1

Back to TopTop