Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Extraction of Phenolic Compounds
2.3. Total Phenolic Content Determination
2.4. Oxygen Radical Absorbance Capacity (ORAC)
- R1 = Fluorescence reading at the initiation of the reaction.
- Rn = Last measurement.
2.5. Color Determination
- ΔL* = Difference between light and dark (+brighter − darker).
- Δa* = Difference between red and green (+red − green).
- Δb* = Difference between yellow and blue (+yellow − blue).
- ΔE = Total color difference between the L*, a* and b* parameters.
2.6. Nutshell Microstructural Analysis
2.6.1. Scanning Electron Microscopy (VP-SEM)
2.6.2. Confocal Laser Scanning Microscopy (CLSM)
2.7. Experimental Design and Statistical Analyses
3. Results
3.1. Total Phenolic Content
3.2. Oxygen Radical Absorbance Capacity
3.3. Nutshell Color
3.4. Pearson’s Correlation Between Antioxidants and Color Parameters
3.5. Microstructure
3.5.1. Scanning Electron Microscopy (VP-SEM) of Nutshell Profiles
3.5.2. Lignin and Cellulose Accumulation Patterns in Nutshell Profiles Obtained by Confocal Laser Scanning Microscopy (CLSM)
4. Discussion
4.1. Total Phenolic Content and Antioxidant Capacity
4.2. Relationship Between Antioxidants and Nutshell Color
4.3. Nutshell Microstructure (VP-SEM and CLSM)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frazzini, S.; Zuorro, A.; Panseri, S.; Pavlovic, R.; Sgoifo Rossi, C.A.; Rossi, L. Repurposing Hazelnut Waste Products for a Sustainable Economy: A Metabolomic Analysis of Cuticles and Shells to Highlight Their Antioxidant Potential and Inhibitory Activity against Verocytotoxic Escherichia coli. Sustainability 2023, 15, 3268. [Google Scholar] [CrossRef]
- Manterola-Barroso, C.; Padilla-Contreras, D.; Ondrasek, G.; Horvatinec, J.; Gavilán-Cuicui, G.; Meriño-Gergichevich, C. Hazelnut and Walnut Nutshell Features, as Emerging Added Value By-Products of the Nut Industry: A Review. Plants 2024, 13, 1034. [Google Scholar] [CrossRef] [PubMed]
- USDA. Tree Nuts: World Markets and Trade. 2022. Available online: https://usda.library.cornell.edu/concern/publications/tm70mv16z?locale=en (accessed on 3 November 2022).
- Nuts Dried Fruits Statistical Yearbook. International Nut and Dried Fruit Council. 2023. Available online: https://inc.nutfruit.org/technical-projects/ (accessed on 25 April 2023).
- Du, F.; Tan, T. Recent Studies in Mechanical Properties of Selected Hard Shelled Seeds: A Review. JOM 2021, 73, 1723–1735. [Google Scholar] [CrossRef]
- FAOSTAT. 2023. Agriculture Data. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 April 2025).
- Agrichile—Ferrero Hazelnut Company. Available online: https://www.ferrerohazelnutcompany.com/agrichile/es/avellano-europeo (accessed on 12 June 2024).
- ChileNut, Reportes de Embarques. 2023. Available online: https://www.chilenut.cl/our-harvest/ (accessed on 26 December 2023).
- Manterola-Barroso, C.; Godoy, K.; Alarcón, D.; Padilla, D.; Meriño-Gergichevich, C. Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile. Plants 2022, 11, 3536. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Luengo-Escobar, A.; Alarcón, D.; Reyes-Díaz, M.; Ondrasek, G.; Morina, F.; Ogass, K. Combined spraying of boron and zinc during fruit set and premature stage improves yield and fruit quality of European hazelnut cv. Tonda di Giffoni. Front. Plant Sci. 2021, 12, 984. [Google Scholar] [CrossRef]
- Demirkaya, E.; Dal, O.; Yüksel, A. Liquefaction of waste hazelnut shell by using sub-and supercritical solvents as a reaction medium. J. Supercrit. Fluids 2019, 150, 11–20. [Google Scholar] [CrossRef]
- Rivas, S.; Moure, A.; Parajó, J.C. Pre-treatment of hazelnut shells as a key strategy for the solubilization and valorization of hemicelluloses into bioactive compounds. Agronomy 2020, 10, 760. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Frangipane, M.T.; Merendino, N.; Massantini, R. Increasing espresso coffee brew antioxidant capacity using phenolic extract recovered from hazelnut skin waste. J. Funct. Foods 2012, 4, 137–146. [Google Scholar] [CrossRef]
- Queirós, C.S.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefin 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Crozier, A.; Yokota, T.; Jaganath, I.B.; Marks, S.; Saltmarsh, M.; Clifford, M.N. Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components. In Plant Secondary Metabolites; Blackwell Publishing: Oxford, UK, 2007; pp. 208–302. [Google Scholar]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef]
- Jensen, J.S.; Demiray, S.; Egebo, M.; Meyer, A.S. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). J. Agric. Food Chem. 2008, 56, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Kara, Ş.; Erçelebi, E.A. Thermal degradation kinetics of anthocyanins and visual color of Urmu mulberry (Morus nigra L.). J. Food Eng. 2013, 116, 541–547. [Google Scholar] [CrossRef]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-Wood Lignocellulosic Composites in Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 947–977. [Google Scholar]
- Argenziano, R.; Moccia, F.; Esposito, R.; D’Errico, G.; Panzella, L.; Napolitano, A. Recovery of lignin with potent antioxidant properties from shells of edible nuts by a green ball milling/deep eutectic solvent (des) based protocol. Antioxidants 2022, 11, 1860. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.P.; Esteves, B. Liquefaction and chemical composition of walnut shells. Open Agric. 2022, 7, 249–256. [Google Scholar] [CrossRef]
- Baran, Y.; Gökçe, H.S.; Durmaz, M. Physical and mechanical properties of cement containing regional hazelnut shell ash wastes. J. Clean. Prod. 2020, 259, 120965. [Google Scholar] [CrossRef]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lixia, H.; Bo, L.; Shaojin, W. Kinetics of color degradation of chestnut kernel during thermal treatment and storage. Int. J. Agric. Biol. Eng. 2013, 8, 106–115. [Google Scholar]
- Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R.P.; Mencherini, T. Hazelnut (Corylus avellana L.) shells extract: Phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines. Int. J. Mol. Sci. 2017, 18, 392. [Google Scholar] [CrossRef]
- Jalili, A.; Heydari, R.; Sadeghzade, A.; Alipour, S. Reducing power and radical scavenging activities of phenolic extracts from Juglans regia hulls and shells. Afr. J. Biotechnol. 2012, 11, 9040–9047. [Google Scholar]
- Prakash, A.; Vadivel, V.; Banu, S.F.; Nithyanand, P.; Lalitha, C.; Brindha, P. Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (cashew nut shell, coconut shell and groundnut hull). Agric. Nat. Resour. 2018, 52, 451–459. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Cardullo, N.; Leanza, M.; Muccilli, V.; Tringali, C. Valorization of agri-food waste from pistachio hard shells: Extraction of polyphenols as natural antioxidants. Resources 2021, 10, 45. [Google Scholar] [CrossRef]
- Griffin, L.E.; Dean, L.L. Nutrient composition of raw, dry-roasted, and skin-on cashew Nuts. J. Food Res. 2017, 6, 13–28. [Google Scholar] [CrossRef]
- Chirinos, R.; Necochea, O.; Pedreschi, R.; Campos, D. Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants. Int. J. Food Sci. Technol. 2016, 51, 986–993. [Google Scholar] [CrossRef]
- Suriano, S.; Balconi, C.; Valoti, P.; Redaelli, R. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT Food Sci. Technol. 2021, 144, 111257. [Google Scholar] [CrossRef]
- Nicolás-Bermúdez, J.; Arzate-Vázquez, I.; Chanona-Pérez, J.J.; Méndez-Méndez, J.V.; Rodríguez-Castro, G.A.; Martínez-Gutiérrez, H. Morphological and micromechanical characterization of calcium oxalate (CaOx) crystals embedded in the pecan nutshell (Carya illinoinensis). Plant. Physiol. Biochem. 2018, 132, 566–570. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Struct. 2017, 230, 686–695. [Google Scholar] [CrossRef]
- Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 2018, 171, 57–65. [Google Scholar] [CrossRef]
- Antreich, S.J.; Xiao, N.; Huss, J.C.; Horbelt, N.; Eder, M.; Weinkamer, R.; Gierlinger, N. The puzzle of the walnut shell: A novel cell type with interlocked packing. J. Adv. Sci. 2019, 6, 1900644. [Google Scholar] [CrossRef]
- Xiao, N.; Felhofer, M.; Antreich, S.J.; Huss, J.C.; Mayer, K.; Singh, A.; Bock, P.; Gierlinger, N. Twist and lock: Nutshell structures for high strength and energy absorption. R. Soc. Open Sci. 2021, 8, 210399. [Google Scholar] [CrossRef] [PubMed]
- Cortat, L.O.; Zanini, N.C.; Barbosa, R.F.; de Souza, A.G.; Rosa, D.S.; Mulinari, D.R. A sustainable perspective for macadamia nutshell residues revalorization by green composites development. J. Polym. Environ. 2021, 29, 3210–3226. [Google Scholar] [CrossRef]
- De Prá Andrade, M.; Piazza, D.; Poletto, M. Pecan nutshell: Morphological, chemical and thermal characterization. J. Mater. Res. Technol. 2021, 13, 2229–2238. [Google Scholar] [CrossRef]
- Sonego, M.; Fleck, C.; Pessan, L.A. Hierarchical levels of organization of the Brazil nut mesocarp. Sci. Rep. 2020, 10, 6786. [Google Scholar] [CrossRef]
- Sonego, M.; Madia, M.; Eder, M.; Fleck, C.; Pessan, L.A. Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp. J. Mech. Behav. Biomed. 2021, 116, 104306. [Google Scholar] [CrossRef]
- Balasundar, P.; Narayanasamy, P.; Senthil, S.; Al-Dhabi, N.A.; Prithivirajan, R.; Kumar, T.; Ramkumar Bhat, K.S. Physico-chemical study of pistachio (Pistacia vera) nutshell particles as a bio-filler for eco-friendly composites. Mater. Res. Express 2019, 6, 105339. [Google Scholar] [CrossRef]
Species | Season | L* | a* | b* | ΔE |
---|---|---|---|---|---|
Hazelnut | 2020/21 | 51.33 ± 0.35 a | 7.71 ± 0.03 b | 21.59 ± 0.12 b | 54.95 ± 0.26 b |
2021/22 | 52.03 ± 0.14 a | 7.82 ± 0.04 b | 21.85 ± 0.06 b | 55.68 ± 0.06 b | |
2022/23 | 52.31 ± 0.10 a | 8.32 ± 0.05 a | 22.37 ± 0.08 a | 56.84 ± 0.12 a | |
Walnut | 2020/21 | 46.83 ± 0.42 b | 4.58 ± 0.03 c | 23.13 ± 2.32 b | 55.65 ± 0.27 c |
2021/22 | 58.07 ± 0.47 a | 4.85 ± 0.04 b | 24.20 ± 0.18 b | 58.09 ± 0.35 b | |
2022/23 | 59.15 ± 0.50 a | 5.41 ± 0.06 a | 25.32 ± 0.06 a | 60.31 ± 0.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manterola-Barroso, C.; Godoy Sanchez, K.; Scheuermann, E.; Padilla-Contreras, D.; Morina, F.; Meriño-Gergichevich, C. Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization. Resources 2025, 14, 82. https://doi.org/10.3390/resources14050082
Manterola-Barroso C, Godoy Sanchez K, Scheuermann E, Padilla-Contreras D, Morina F, Meriño-Gergichevich C. Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization. Resources. 2025; 14(5):82. https://doi.org/10.3390/resources14050082
Chicago/Turabian StyleManterola-Barroso, Carlos, Karina Godoy Sanchez, Erick Scheuermann, Daniela Padilla-Contreras, Filis Morina, and Cristian Meriño-Gergichevich. 2025. "Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization" Resources 14, no. 5: 82. https://doi.org/10.3390/resources14050082
APA StyleManterola-Barroso, C., Godoy Sanchez, K., Scheuermann, E., Padilla-Contreras, D., Morina, F., & Meriño-Gergichevich, C. (2025). Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization. Resources, 14(5), 82. https://doi.org/10.3390/resources14050082