Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,331)

Search Parameters:
Keywords = non-covalent interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 159
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

19 pages, 3699 KiB  
Article
Development of Poly(diallyldimethylammonium) Chloride-Modified Activated Carbon for Efficient Adsorption of Methyl Red in Aqueous Systems
by Simeng Li and Madjid Mohseni
Clean Technol. 2025, 7(3), 61; https://doi.org/10.3390/cleantechnol7030061 - 15 Jul 2025
Viewed by 71
Abstract
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC [...] Read more.
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC yielding the best adsorption performance. The kinetics data were well described by the pseudo-first-order equation and homogeneous surface diffusion model. The Freundlich isotherm fit the equilibrium data well, indicating multilayer adsorption and diverse interaction types. The removal efficiency remained similar across a pH range of 5–9 and in the presence of background inorganic (NaCl)/organic compounds (sodium acetate) at different concentrations. Rapid small-scale column tests were performed to simulate continuous flow conditions, and the PDADMAC-modified AC effectively delayed the breakthrough of the contaminant compared to raw AC. Regeneration experiments showed that 0.1 M NaOH with 70% methanol effectively restored the adsorption capacity, retaining 80% of the initial efficiency after five cycles. Quantum chemical analysis revealed that non-covalent interactions, including electrostatic and Van der Waals forces, governed the adsorption mechanism. Overall, the results of this study prove that PDADMAC-AC shows great potential for enhanced organic contaminant removal in water treatment systems. Full article
Show Figures

Graphical abstract

4 pages, 164 KiB  
Editorial
Editorial to the Special Issue “Gulliver in the Country of Lilliput: An Interplay of Noncovalent Interactions (Volume II)”
by Ilya G. Shenderovich
Molecules 2025, 30(14), 2972; https://doi.org/10.3390/molecules30142972 - 15 Jul 2025
Viewed by 72
Abstract
Noncovalent interactions are the bridge between the ideal gas abstraction and the real world [...] Full article
7 pages, 806 KiB  
Communication
Two Cocrystals of Phenazine with Different Phenylboronic Acids
by Stijn Germonpré, Subhrajyoti Bhandary and Kristof Van Hecke
Molbank 2025, 2025(3), M2036; https://doi.org/10.3390/M2036 (registering DOI) - 14 Jul 2025
Viewed by 123
Abstract
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and [...] Read more.
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and drug delivery applications. Furthermore, the phenazine molecule is known for its diverse pharmacological properties, including antibiotic activity. In the case of molecular crystalline solids, it is well established that understanding noncovalent interactions remains key to designing or engineering their functional properties. While both aryl boronic acids and phenazine molecules individually represent an important class of compounds, their co-assembly in the crystalline state is of interest within the context of supramolecular chemistry and crystal engineering. Herein, we report the supramolecular features of two newly synthesized cocrystals, which are composed of para-F/CF3-substituted phenylboronic acids, respectively, and phenazine, as demonstrated by structure analysis by single-crystal X-ray diffraction. Full article
Show Figures

Figure 1

36 pages, 7153 KiB  
Review
Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides
by Woo Hyun Kwon, Kyoung Choi, Sang Jun Park, GeumByeol Park, Cho Young Park, Yoo Han Seo, Chun-Ho Kim and Jun Shik Choi
Biomimetics 2025, 10(7), 442; https://doi.org/10.3390/biomimetics10070442 - 4 Jul 2025
Viewed by 441
Abstract
Hydrogels are ECM-mimicking three-dimensional (3D) networks that are widely used in biomedical applications; however, conventional natural and synthetic polymer-based hydrogels present limitations such as poor mechanical strength, limited bioactivity, and low reproducibility. Self-assembling peptides (SAPs) offer a promising alternative, as they can form [...] Read more.
Hydrogels are ECM-mimicking three-dimensional (3D) networks that are widely used in biomedical applications; however, conventional natural and synthetic polymer-based hydrogels present limitations such as poor mechanical strength, limited bioactivity, and low reproducibility. Self-assembling peptides (SAPs) offer a promising alternative, as they can form micro- and nanostructured hydrogels through non-covalent interactions and allow precise control over their biofunctionality, mechanical properties, and responsiveness to biological cues. Through rational sequence design, SAPs can be engineered to exhibit tunable mechanical properties, controlled degradation rates, and multifunctionality, and can dynamically regulate assembly and degradation in response to specific stimuli such as pH, ionic strength, enzymatic cleavage, or temperature. Furthermore, SAPs have been successfully incorporated into conventional hydrogels to enhance cell adhesion, promote matrix remodeling, and provide a more physiologically relevant microenvironment. In this review, we summarize recent advances in SAP-based hydrogels, particularly focusing on their novel biofunctional properties such as anti-inflammatory, antimicrobial, and anticancer activities, as well as bioimaging capabilities, and discuss the mechanisms by which SAP hydrogels function in biological systems. Full article
Show Figures

Figure 1

15 pages, 2628 KiB  
Article
High Anti-Swelling Zwitterion-Based Hydrogel with Merit Stretchability and Conductivity for Motion Detection and Information Transmission
by Qingyun Zheng, Jingyuan Liu, Rongrong Chen, Qi Liu, Jing Yu, Jiahui Zhu and Peili Liu
Nanomaterials 2025, 15(13), 1027; https://doi.org/10.3390/nano15131027 - 2 Jul 2025
Viewed by 351
Abstract
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor [...] Read more.
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor long-term stability, and signal interference. In this paper, a double-network structure was constructed by polyvinyl alcohol (PVA) and poly([2-(methacryloyloxy) ethyl]7 dimethyl-(3-sulfopropyl) ammonium hydroxide) (PSBMA). The resultant PVA/PSBMA-PA hydrogel demonstrated notable swelling resistance, a property attributable to the incorporation of non-covalent interactions (electrostatic interactions and hydrogen bonding) through the addition of phytic acid (PA). The hydrogel exhibited high stretchability (maximum tensile strength up to 304 kPa), high conductivity (5.8 mS/cm), and anti-swelling (only 1.8% swelling occurred after 14 days of immersion in artificial seawater). Assembled as a sensor, it exhibited high strain sensitivity (0.77), a low detection limit (1%), and stable electrical properties after multiple tensile cycles. The utilization of PVA/PSBMA-PA hydrogel as a wearable sensor shows promise for detecting human joint movements, including those of the fingers, wrists, elbows, and knees. Due to the excellent resistance to swelling, the PVA/PSBMA-PA-based sensors are also suitable for underwater applications, enabling the detection of underwater mannequin motion. This study proposes an uncomplicated and pragmatic methodology for producing hydrogel sensors suitable for use within subaquatic environments, thereby concomitantly broadening the scope of applications for wearable electronic devices. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

20 pages, 7908 KiB  
Article
DFT Study of PVA Biocomposite/Oyster Shell (CaCO3) for the Removal of Heavy Metals from Wastewater
by Jose Alfonso Prieto Palomo, Juan Esteban Herrera Zabala and Joaquín Alejandro Hernández Fernández
J. Compos. Sci. 2025, 9(7), 340; https://doi.org/10.3390/jcs9070340 - 1 Jul 2025
Viewed by 250
Abstract
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which [...] Read more.
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which CaCO3-based biocomposites derived from mollusk shells have shown exceptional performance. In this study, a hybrid biocomposite composed of poly(vinyl alcohol) (PVA) and oyster shell-derived CaCO3 was computationally investigated using Density Functional Theory (DFT) to elucidate the electronic and structural basis for its high metal-removal efficiency. Calculations were performed at the B3LYP/6-311++G(d,p), M05-2X/6-311+G(d,p), and M06-2X/6-311++G(d,p) levels using GAUSSIAN 16. Among them, B3LYP was identified as the most balanced in terms of accuracy and computational cost. The hybridization with CaCO3 reduced the HOMO-LUMO gap by 20% and doubled the dipole moment (7.65 Debye), increasing the composite’s polarity and reactivity. Upon chelation with metal ions, the gap further dropped to as low as 0.029 eV (Cd2+), while the dipole moment rose to 17.06 Debye (Pb2+), signaling enhanced charge separation and stronger electrostatic interactions. Electrostatic potential maps revealed high nucleophilicity at carbonate oxygens and reinforced electrophilic fields around the hydrated metal centers, correlating with the affinity trend Cu2+ > Cd2+ > Pb2+. Fukui function analysis indicated a redistribution of reactive sites, with carbonate oxygens acting as ambiphilic centers suitable for multidentate coordination. Natural Bond Orbital (NBO) analysis confirmed the presence of highly nucleophilic lone pairs and weakened bonding orbitals, enabling flexible adsorption dynamics. Furthermore, NCI/RDG analysis highlighted attractive noncovalent interactions with Cu2+ and Pb2+, while FT-IR simulations demonstrated the formation of hydrogen bonding (O–H···O=C) and Ca2+···O coordination bridges between phases. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

20 pages, 4816 KiB  
Article
Exploring the Structural Design, Antibacterial Activity, and Molecular Docking of Newly Synthesized Zn(II) Complexes with NNO-Donor Carbazate Ligands
by Claudia C. Gatto, Daniel J. de Siqueira, Eduardo de A. Duarte, Érica C. M. Nascimento, João B. L. Martins, Mariana B. Santiago, Nagela B. S. Silva and Carlos H. G. Martins
Molecules 2025, 30(13), 2822; https://doi.org/10.3390/molecules30132822 - 30 Jun 2025
Viewed by 290
Abstract
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate [...] Read more.
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate (HL2), and 2-acetylpyridine-benzylcarbazate (HL3). All compounds were characterized by spectroscopic methods, and the crystal structures of the complexes were elucidated by single-crystal X-ray. Based on the analysis, distorted square pyramid geometry is suggested for complex (1) and an octahedral geometry is suggested for complexes (2) and (3) with the ligands exhibiting an NNO-donor system. The 3D Hirshfeld surface and the 2D fingerprint plot were used to study the non-covalent interactions in the crystal structures. The in vitro antibacterial investigation of the free ligands and their complexes was performed against different strains of periodontopathogen bacteria. The Zn(II) complexes showed more potent antibacterial activity than the free ligand. Molecular docking studies showed the metal complexes as promising candidates for further therapeutic exploration, particularly in targeting the ATP-binding cassette transporter with peptidase domain of the cariogenic bacteria S. mutans (PDB code 5XE9) and the prolyl tripeptidyl aminopeptidase from P. gingivalis anaerobic bacteria (PDB code 2EEP) inhibition. Full article
Show Figures

Graphical abstract

20 pages, 7489 KiB  
Article
Insights into the Silver Camphorimine Complexes Interactions with DNA Based on Cyclic Voltammetry and Docking Studies
by Joana P. Costa, Gonçalo C. Justino, Fernanda Marques and M. Fernanda N. N. Carvalho
Molecules 2025, 30(13), 2817; https://doi.org/10.3390/molecules30132817 - 30 Jun 2025
Viewed by 182
Abstract
Cyclic voltammetry (CV) is an accessible, readily available, non-expensive technique that can be used to search for the interaction of compounds with DNA and detect the strongest DNA-binding from a set of compounds, therefore allowing for the optimization of the number of cytotoxicity [...] Read more.
Cyclic voltammetry (CV) is an accessible, readily available, non-expensive technique that can be used to search for the interaction of compounds with DNA and detect the strongest DNA-binding from a set of compounds, therefore allowing for the optimization of the number of cytotoxicity assays. Focusing on this electrochemical approach, the study of twenty-seven camphorimine silver complexes of six different families was performed aiming at detecting interactions with calf thymus DNA (CT-DNA). All of the complexes display at least two cathodic waves attributed respectively to the Ag(I)→Ag(0) (higher potential) and ligand based (lower potential) reductions. In the presence of CT-DNA, a negative shift in the potential of the Ag(I)→Ag(0) reduction was observed in all cases. Additional changes in the potential of the waves, attributed to the ligand-based reduction, were also observed. The formation of a light grey product adherent to the Pt electrode in the case of {Ag(OH)} and {Ag2(µ-O)} complexes further corroborates the interaction of the complexes with CT-DNA detected by CV. The morphologic analysis of the light grey material was made by scanning electronic microscopy (SEM). The magnitude of the shift in the potential of the Ag(I)→Ag(0) reduction in the presence of CT-DNA differs among the families of the complexes. The complexes based on {Ag(NO3)} exhibit higher potential shifts than those based on {Ag(OH)}, while the characteristics of the ligand (AL-Y, BL-Y, CL-Z) and the imine substituents (Y,Z) fine-tune the potential shifts. The energy values calculated by docking corroborate the tendency in the magnitude of the interaction between the complexes and CT-DNA established by the reaction coefficient ratios (Q[Ag-DNA]/Q[Ag]). The molecular docking study extended the information regarding the type of interaction beyond the usual intercalation, groove binding, or electrostatic modes that are typically reported, allowing a finer understanding of the non-covalent interactions involved. The rationalization of the CV and cytotoxicity data for the Ag(I) camphorimine complexes support a direct relationship between the shifts in the potential and the cytotoxic activities of the complexes, aiding the decision on whether the cytotoxicity of a complex from a family is worthy of evaluation. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

19 pages, 3214 KiB  
Article
Molecular “Yin-Yang” Machinery of Synthesis of the Second and Third Fullerene C60 Derivatives
by Djuro Lj. Koruga, Lidija R. Matija, Ivana M. Stanković, Vladimir B. Pavlović and Aleksandra P. Dinić
Micromachines 2025, 16(7), 770; https://doi.org/10.3390/mi16070770 - 30 Jun 2025
Viewed by 376
Abstract
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around [...] Read more.
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around FD-C60 water layers are formed. SD-C60 (Zeta potential is −43.29 mV) is much more stable than fullerol (Zeta potential is −25.85 mV), so agglomeration/fragmentation of the fullerol structure, due to instability, can cause toxic effects. When fullerol in solution was exposed to an oscillatory magnetic field with Re (real) part [250/−92 mT, H(ωt) = Acos(ωt)], water layers around FD-C60 (fullerenol) are formed according to the Penrose process of 3D tiling formation, and the second derivative, SD-C60 (or 3HFWC), is self-organized. However, when Im (imaginary) part [250/−92 mT, H(ωt) = Bisin (ωt)] of the external magnetic field is applied in addition to SD-C60, ordered water chains and bubbling of water (“micelle”) are formed as a third derivative (TD-C60). Fullerol (FD-C60) interacts with biological structures biochemically, while the second (SD-C60) and third (TD-C60) derivatives act biophysically via non-covalent hydrogen bond oscillation. SD-C60 and TD-C60 significantly increased water solubility and reduced toxicity. The paper explains the synthesis of SD-C60 and TD-C60 from FD-C60 (fullerol) as a precursor by the influence of an oscillatory magnetic field (“Yin-Yang” principle) on hydrogen bonds in order to create water layers around fullerol. Examples of biomedical applications (cancer and Alzheimer’s) of this synergetic complex are given. This study shows that the “Yin-Yang” machinery, based on the nanophysics of C60 molecules and non-covalent hydrogen bonds, is possible. The first attempt has been composed to synthesize nanomaterial for biophysical vibrational nanomedicine. Full article
Show Figures

Figure 1

21 pages, 1902 KiB  
Article
Intramolecular Versus Intermolecular Bonding in Drug Gemcitabine and Nucleobases: A Computational Study
by Natarajan Sathiyamoorthy Venkataramanan, Ambigapathy Suvitha and Ryoji Sahara
Molecules 2025, 30(13), 2732; https://doi.org/10.3390/molecules30132732 - 25 Jun 2025
Viewed by 300
Abstract
The adsorption of the drug gemcitabine on nucleobases was investigated using a dispersion-corrected density functional theory (DFT) study. The planar structure of complexes is more stable than those with stacked and buckle-angled configurations. The complexes were found to possess at least two intermolecular [...] Read more.
The adsorption of the drug gemcitabine on nucleobases was investigated using a dispersion-corrected density functional theory (DFT) study. The planar structure of complexes is more stable than those with stacked and buckle-angled configurations. The complexes were found to possess at least two intermolecular hydrogen bonds. The binding energy and interaction energy are both negative, with the highest values observed for the gemcitabine–guanine and the lowest in the gemcitabine–thymine complex. The complex formation was found to be an enthalpy-driven process. Pyrimidine nucleobases have a lower enthalpy of formation than purine nucleobases. The computed HOMA and NICS values on the gemcitabine–nucleobase complexes show a substantial increase compared to the pristine nucleobases. An MESP analysis of the complexes shows a directional interaction and electron density shift between the gemcitabine and the nucleobases. A QTAIM analysis indicates that the intermolecular hydrogen bonds have a partial covalent character. The computed bond energy demonstrates that intermolecular NH⋅⋅⋅N bonds are more potent than other bonds. An energy decomposition analysis using the DLPNO−CCSD(T) method indicates that the complexes exhibit a substantial electrostatic attraction, and dispersion contributes the least towards the system stability. The intermolecular bonds are stronger than the intramolecular bonds in the drug–nucleobase complexes. The strength of intramolecular bonds is determined by the deformation of the gemcitabine ring during the complex formation. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

34 pages, 5288 KiB  
Review
An Overview of Seafood Allergens: Structure–Allergenicity Relationship and Allergenicity Elimination Processing Techniques
by Yang Yang, Yehao Zhang, Xinrong He, Fei Huan, Jinli Chen, Meng Liu, Siyang He, Shinong Gu and Guangming Liu
Foods 2025, 14(13), 2241; https://doi.org/10.3390/foods14132241 - 25 Jun 2025
Viewed by 457
Abstract
Seafood (fish, crustacean, and mollusk) allergy represents a critical global health issue. Food processing offers a viable strategy for allergenicity mitigation and serves as a critical intervention for seafood allergy prevention. This paper reviews recent advances in seafood allergen research, with particular focus [...] Read more.
Seafood (fish, crustacean, and mollusk) allergy represents a critical global health issue. Food processing offers a viable strategy for allergenicity mitigation and serves as a critical intervention for seafood allergy prevention. This paper reviews recent advances in seafood allergen research, with particular focus on molecular properties, epitopes, and structure–allergenicity relationships, which are foundations for designing processing technologies to mitigate allergenicity. Furthermore, an analysis of how various food processing techniques modulate allergen structures and epitopes, ultimately affecting their allergenicity, was conducted. Current World Health Organization (WHO)/International Union of Immunological Societies (IUIS) listings include 44 fish allergens and 60 shellfish allergens, with their characterization enabling targeted processing approaches for allergenicity elimination. Physical processing techniques, including thermal and non-thermal treatment, can dramatically influence the conformational and linear epitopes by altering or destroying the structure of an allergen. Chemistry-based processing techniques (enzymatic-catalyzed cross-linking and glycation), which induce covalent/non-covalent interactions between allergens and various modifiers, can effectively mask epitopes through molecular complexation. Biological processing attenuates allergenicity by inducing protein unfolding, polypeptide chain uncoiling, and enzymatic degradation. Nevertheless, the structure–activity relationship of seafood allergens remains insufficiently elucidated, despite its critical role in guiding processing technologies for allergenicity elimination and elucidating the fundamental mechanisms involved. Full article
(This article belongs to the Special Issue Quality Changes of Blue Food During Preservation and Processing)
Show Figures

Figure 1

15 pages, 3461 KiB  
Article
A Computational Approach for Graphene Doped with N,P,B Structures as Possible Electrode Materials for Potassium Ion Batteries (PIBs): A DFT Investigation
by A. Ahmad, A. A. M. Abahussain, M. H. Nazir and S. Z. J. Zaidi
Micromachines 2025, 16(7), 735; https://doi.org/10.3390/mi16070735 - 23 Jun 2025
Viewed by 281
Abstract
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. [...] Read more.
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. Potassium ion batteries (PIBs) can be proven a favorable alternative to metal ion batteries because of their widespread potassium reserves, low costs and enhanced protection against sparks. In this study, DFT simulations were employed using the B3LYP/6-311++g(d p) method to explore the application of graphene and its doped variants (N,B,P-graphene) as potential anode materials for PIBs. Various key parameters such as adsorption energy, Gibbs free energy, molecular orbital energies, non-covalent interactions, cell voltage, electron density distribution and density of states were computed as a means to evaluate the suitability of materials for PIB applications. Among the four structures, nitrogen- and phosphorus-doped graphene exhibited negative Gibbs free energy values of −0.020056 and −0.021117 hartree, indicating the thermodynamic favorability of charge transfer processes. Doping graphene with nitrogen and phosphorus decreases the HOMO-LUMO gap energy, facilitating efficient ion storage and charge transport. The doping of nitrogen and phosphorus increases the cell voltage from −1.05 V to 0.54 V and 0.57 V, respectively, while boron doping decreases the cell voltage. The cell voltage produced by graphene and its doped variants in potassium ion batteries has the following order: P-graphene (0.57 V) > N-graphene (0.54 V) > graphene (−1.05 V) > B-graphene (−1.54 V). This study illustrates how nitrogen- and phosphorus-doped graphene can be used as a propitious anode electrode for PIBs. Full article
(This article belongs to the Special Issue Nanotechnology in Li-Ion Batteries and Beyond)
Show Figures

Figure 1

13 pages, 5319 KiB  
Article
Self-Healing and Tough Polyacrylic Acid-Based Hydrogels for Micro-Strain Sensors
by Chuanjie Liu, Zhihong Liu and Bing Lu
Gels 2025, 11(7), 475; https://doi.org/10.3390/gels11070475 - 20 Jun 2025
Viewed by 351
Abstract
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination [...] Read more.
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination interactions, introduced by modified fenugreek galactomannan, ferric ions, and lignin silver nanoparticles, into a covalent polyacrylic acid (PAA) matrix. Synergistic covalent and multiple non-covalent interactions enabled the hydrogel with high self-healing ability and enhanced mechanical property. In particular, due to the introduction of multiple energy dissipation mechanisms, particularly migrative dynamic metal coordination interactions, the hydrogel exhibited ultra-high stretchability of up to 2000%. Furthermore, with the incorporation of lignin silver nanoparticles and ferric ions, the hydrogel demonstrated excellent strain sensitivity (gauge factor ≈ 3.94), with stable and repeatable resistance signals. Assembled into a flexible strain sensor, it effectively detected subtle human motions and organ vibrations, and even replaced conductive rubber in gaming controllers for real-time inputs. This study provides a versatile strategy for designing multifunctional hydrogels for advanced sensing applications. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Graphical abstract

17 pages, 3505 KiB  
Article
Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units
by Soichiro Kawamorita, Tatsuya Matsuoka, Kazuki Nakamura, Bijak Riyandi Ahadito and Takeshi Naota
Molecules 2025, 30(12), 2664; https://doi.org/10.3390/molecules30122664 - 19 Jun 2025
Viewed by 284
Abstract
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible [...] Read more.
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible linkers remain underexplored, despite increasing interest in their potential TSCT behavior. Herein, we report the design and synthesis of a donor–acceptor–donor (D-A-D)-type complex (1), in which a central naphthalenediimide (NDI) electron acceptor is linked to 2-phenylpyridinato(salicylaldiminato)platinum(II) complexes via flexible alkyl linkers. By systematically varying the linker length (n = 3, 4, 5, 6; 1ad), we achieved precise control over the spatial arrangement between the NDI core and the platinum moieties in solution. Notably, compound 1a (n = 3) adopts an S-shaped conformation in solution, giving rise to a distinct TSCT absorption band. The structural and photophysical properties were thoroughly investigated using single-crystal X-ray diffraction, 1H NMR, NOESY analysis, and DFT calculations, which collectively support the existence of the folded conformation and associated TSCT behavior. These findings highlight that TSCT can be effectively induced in flexible molecular systems by exploiting intramolecular spatial proximity and non-covalent interactions, thereby offering new avenues for the design of responsive optoelectronic materials. Full article
Show Figures

Graphical abstract

Back to TopTop