Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides
Abstract
1. Introduction
2. Bioactive Properties of Self-Assembling Peptides
2.1. Anti-Inflammatory
2.1.1. Mechanism of Anti-Inflammatory Peptides (AIPs)
2.1.2. Peptides for Enhancing Anti-Inflammatory Properties in Hydrogel
2.2. Antimicrobial
2.2.1. Mechanism of Antimicrobial Peptides (AMPs)
2.2.2. Peptides for Enhancing Antimicrobial Properties in Hydrogels
2.3. Anticancer
2.3.1. Mechanism of Anticancer Peptides (ACPs)
2.3.2. Peptides for Enhancing Anticancer Properties in Hydrogels
2.4. Bioimaging
2.4.1. Mechanism of Bioimaging Peptides
2.4.2. Peptides for Enhancing Bioimaging Properties in Hydrogels
3. Conclusions
4. Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACP | Anticancer Peptide |
AdcA | Specific Protein of Enterococcus faecium |
AFM | Atomic Force Microscopy |
AHA | Aldolized Hyaluronic Acid |
AIE | Aggregation-Induced Emission |
AIEgen | Aggregation-Induced Emission Luminogen |
AIP | Anti-Inflammatory Peptide |
AKT | Protein Kinase B |
ALP | Alkaline Phosphatase |
AMP | Antimicrobial Peptide |
Aβ | Amyloid-beta |
BBB | Blood–Brain Barrier |
CD31 | Cluster of Differentiation 31 |
CIA | Collagen-Induced Arthritis |
DC | Dendritic Cell |
DOX | Doxorubicin |
E. coli | Escherichia coli |
ECM | Extracellular Matrix |
EGFR | Epidermal Growth Factor Receptor |
ENTK | Enterokinase |
EPR | Enhanced Permeability and Retention |
ERK | Extracellular Signal-Regulated Kinase |
FE-SEM | Field Emission Scanning Electron Microscopy |
Foxp3 | Forkhead Box P3 |
FP | Specific Self-Assembling Peptide (Nap-DFDFDEGPIRRSDS) |
GLUT1 | Glucose Transporter 1 |
GMP | Good Manufacturing Practice |
GSH | Glutathione |
HA | Hyaluronic Acid |
IL | Interleukin |
IL-1β | Interleukin-1 beta |
IL-4 | Interleukin-4 |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IL-10 | Interleukin-10 |
IL-13 | Interleukin-13 |
IL-17 | Interleukin-17 |
IL-22 | Interleukin-22 |
IκBα | Inhibitor of kappa B alpha |
JNK | c-Jun N-terminal Kinase |
LBP | Lipopolysaccharide-Binding Protein |
LC3-II | Microtubule-associated protein 1 light chain 3-II |
LPS | Lipopolysaccharide |
LT | Leukotriene |
M0 | Unpolarized Macrophages |
M1 | Classically Activated Macrophages |
M2 | Alternatively Activated Macrophages |
MAPK | Mitogen-Activated Protein Kinase |
MC3T3-E1 | Pre-osteoblast Cell Line |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MMP | Matrix Metalloproteinase |
MRI | Magnetic Resonance Imaging |
MRSA | Methicillin-Resistant Staphylococcus aureus |
MSC | Mesenchymal Stem Cell |
mTOR | Mammalian Target of Rapamycin |
MTX | Methotrexate |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NIR-II | Near-Infrared-II |
NO | Nitric Oxide |
p38 | p38 Mitogen-Activated Protein Kinase |
PCa | Prostate Cancer |
PEG | Polyethylene Glycol |
PET | Positron Emission Tomography |
PGs | Prostaglandins |
PI3K | Phosphoinositide 3-Kinase |
PI3K/Akt | Phosphatidylinositol 3-Kinase/Protein Kinase B |
PNF | Peptide Nanofiber |
PNS | Peptide Nanosheet |
PTT | Photothermal Therapy |
PVA | Polyvinyl Alcohol |
QCS | Quaternized Chitosan |
RA | Rheumatoid Arthritis |
RORγt | Retinoic Acid-Related Orphan Receptor Gamma t |
ROS | Reactive Oxygen Species |
RQDT | Specific peptide name (no standard expansion provided) |
S. aureus | Staphylococcus aureus |
SACP | Self-Assembling Anticancer Peptide |
SAMP | Self-Assembling Antimicrobial Peptide |
SAP | Self-Assembling Peptide |
SCI | Spinal Cord Injury |
SKOV3/MDR | Multidrug-resistant SKOV3 (ovarian cancer cell line) |
SPECT | Single-Photon Emission Computed Tomography |
SPPS | Solid Phase Peptide Synthesis |
STAT3 | Signal Transducer and Activator of Transcription 3 |
STED | Stimulated Emission Depletion |
TADF | Thermally Activated Delayed Fluorescence |
TGF-β1 | Transforming Growth Factor β1 |
Th1 | T-helper 1 Cells |
Th17 | T-helper 17 Cells |
TLR4 | Toll-Like Receptor 4 |
TLR | Toll-Like Receptor |
TME | Tumor Microenvironment |
TNF-α | Tumor Necrosis Factor-alpha |
TPE | Tetraphenylethylene |
Treg | Regulatory T Cell |
VCAM-1 | Vascular Cell Adhesion Molecule 1 |
VEGF | Vascular Endothelial Growth Factor |
αPD-1 | Anti-Programmed Cell Death Protein 1 |
References
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.J.; Chun, H.J.; Kim, C.-H. Thermosensitive hydrogels for tissue engineering. Tissue Eng. Regen. Med. 2011, 8, 117–123. [Google Scholar]
- Soliman, B.G.; Nguyen, A.K.; Gooding, J.J.; Kilian, K.A. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. Adv. Mater. 2024, 36, e2404235. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Choi, K.; Park, C.Y.; Choi, J.S.; Kim, Y.J.; Chung, S.; Lee, S.; Kim, C.H.; Park, S.J. The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis. Tissue Eng. Regen. Med. 2023, 20, 593–605. [Google Scholar] [CrossRef]
- Choi, D.J.; Choi, K.; Park, S.J.; Kim, Y.J.; Chung, S.; Kim, C.H. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 11600. [Google Scholar] [CrossRef]
- Choi, D.J.; Park, S.J.; Gu, B.K.; Kim, Y.-J.; Chung, S.; Kim, C.-H. Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J. Ind. Eng. Chem. 2018, 67, 388–395. [Google Scholar] [CrossRef]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, e1900670. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Chang, C.W.; Yeh, Y.C. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol. Biosci. 2021, 21, e2100248. [Google Scholar] [CrossRef]
- Reidy, E.; Leonard, N.A.; Treacy, O.; Ryan, A.E. A 3D view of colorectal cancer models in predicting therapeutic responses and resistance. Cancers 2021, 13, 227. [Google Scholar] [CrossRef]
- Gyles, D.A.; Castro, L.D.; Silva, J.O.C., Jr.; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017, 88, 373–392. [Google Scholar] [CrossRef]
- Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36, 1263–1269. [Google Scholar] [CrossRef]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef]
- Stendahl, J.C.; Rao, M.S.; Guler, M.O.; Stupp, S.I. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 2006, 16, 499–508. [Google Scholar] [CrossRef]
- Najafi, H.; Jafari, M.; Farahavar, G.; Abolmaali, S.S.; Azarpira, N.; Borandeh, S.; Ravanfar, R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Bio-Des. Manuf. 2021, 4, 735–756. [Google Scholar] [CrossRef]
- Choi, S.H.; Hwang, H.S.; Han, S.; Eom, H.; Choi, J.S.; Han, S.; Lee, D.; Lee, S.Y.; Koo, H.; Kwon, H.J.; et al. Inhibition of protein-protein interactions using biodegradable depsipeptide nanoassemblies. J. Control. Release 2024, 366, 104–113. [Google Scholar] [CrossRef]
- Karavasili, C.; Fatouros, D.G. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv. Drug Deliv. Rev. 2021, 174, 387–405. [Google Scholar] [CrossRef]
- Huo, Y.; Hu, J.; Yin, Y.; Liu, P.; Cai, K.; Ji, W. Self-Assembling Peptide-Based Functional Biomaterials. Chembiochem 2023, 24, e202200582. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Onesto, V.; Marasco, D. Self-Assembling Peptides: From Design to Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 12662. [Google Scholar] [CrossRef]
- Oliver-Cervello, L.; Martin-Gomez, H.; Mas-Moruno, C. New trends in the development of multifunctional peptides to functionalize biomaterials. J. Pept. Sci. 2022, 28, e3335. [Google Scholar] [CrossRef]
- Du, Z.; Fan, B.; Dai, Q.; Wang, L.; Guo, J.; Ye, Z.; Cui, N.; Chen, J.; Tan, K.; Li, R. Supramolecular peptide nanostructures: Self-assembly and biomedical applications. Giant 2022, 9, 100082. [Google Scholar] [CrossRef]
- Jung, Y.J.; Choi, J.S.; Ryu, J.Y.; Zhang, Z.; Lim, Y.B. Cooperative Assembly of Self-Adjusting alpha-Helical Coiled Coils along the Length of an mRNA Chain to Form a Thermodynamically Stable Nanotube Carrier. J. Am. Chem. Soc. 2023, 145, 23048–23056. [Google Scholar] [CrossRef]
- Hwang, E.; Lim, Y.B. Self-Assembled Protein Nanostructures via Irreversible Peptide Assembly. ACS Macro Lett. 2023, 12, 1679–1684. [Google Scholar] [CrossRef]
- Kwon, S.H.; Lee, D.; Kim, H.; Jung, Y.-j.; Koo, H.; Lim, Y.-b. Structural control of self-assembled peptide nanostructures to develop peptide vesicles for photodynamic therapy of cancer. Mater. Today Bio 2022, 16, 100337. [Google Scholar]
- Loo, Y.; Goktas, M.; Tekinay, A.B.; Guler, M.O.; Hauser, C.A.; Mitraki, A. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Adv. Healthc. Mater. 2015, 4, 2557–2586. [Google Scholar] [CrossRef]
- Field, E.H.; Ratcliffe, J.; Johnson, C.J.; Binger, K.J.; Reynolds, N.P. Self-healing, 3D printed bioinks from self-assembled peptide and alginate hybrid hydrogels. Biomater. Adv. 2025, 169, 214145. [Google Scholar] [CrossRef]
- Huang, R.; Qi, W.; Feng, L.; Su, R.; He, Z. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 2011, 7, 6222–6230. [Google Scholar] [CrossRef]
- Selegard, R.; Aronsson, C.; Brommesson, C.; Danmark, S.; Aili, D. Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel. Sci. Rep. 2017, 7, 7013. [Google Scholar] [CrossRef]
- Dadar, M.; Shahali, Y.; Chakraborty, S.; Prasad, M.; Tahoori, F.; Tiwari, R.; Dhama, K. Antiinflammatory peptides: Current knowledge and promising prospects. Inflamm. Res. 2019, 68, 125–145. [Google Scholar] [CrossRef]
- Lee, I.; Kwon, W.H.; Kim, J.Y.; Kim, H.K.; Kim, J.E.; Lim, Y.B.; Jeong, W.J.; Choi, J.S. Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents. Tissue Eng. Regen. Med. 2025, 22, 441–451. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Z.; Xu, B. Instructed Assembly as Context-Dependent Signaling for the Death and Morphogenesis of Cells. Angew. Chem. Int. Ed. Engl. 2019, 58, 5567–5571. [Google Scholar] [CrossRef]
- Webber, M.J.; Appel, E.A.; Meijer, E.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26. [Google Scholar] [CrossRef]
- Leuschner, C.; Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des. 2004, 10, 2299–2310. [Google Scholar] [CrossRef]
- Song, Y.; Wu, C.; Zhang, X.; Bian, W.; Liu, N.; Yin, S.; Yang, M.; Luo, M.; Tang, J.; Yang, X. A short peptide potentially promotes the healing of skin wound. Biosci. Rep. 2019, 39, BSR20181734. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Liu, J.C.; Trujillo-de Santiago, G.; Cha, B.H.; Vishwakarma, A.; Ghaemmaghami, A.M.; Khademhosseini, A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J. Control. Release 2016, 240, 349–363. [Google Scholar] [CrossRef]
- Deng, S.; Xi, Y.; Wang, H.; Hao, J.; Niu, X.; Li, W.; Tao, Y.; Chen, G. Regulatory effect of vasoactive intestinal peptide on the balance of Treg and Th17 in collagen-induced arthritis. Cell. Immunol. 2010, 265, 105–110. [Google Scholar] [CrossRef]
- Kong, N.; Chen, D.; Liang, J.; Wu, B.; Wang, H. Reprogramming Macrophages toward Pro-inflammatory Polarization by Peptide Hydrogel. Biomacromolecules 2024, 25, 5918–5927. [Google Scholar] [CrossRef]
- Sun, Z.; Luan, X.; Sun, Z.; Li, D.; Hu, H.; Xue, Q.; Liu, B.; Yu, Q.; Wei, G.; Zhang, X. Bioactive Peptide Hydrogel Scaffold with High Fluidity, Thermosensitivity, and Neurotropism in 3D Spatial Structure for Promoted Repair of Spinal Cord Injury. Small 2025, 21, 2406990. [Google Scholar] [CrossRef]
- Wu, Y.; Ge, Y.; Wang, Z.; Zhu, Y.; Tian, T.; Wei, J.; Jin, Y.; Zhao, Y.; Jia, Q.; Wu, J.; et al. Synovium microenvironment-responsive injectable hydrogel inducing modulation of macrophages and elimination of synovial fibroblasts for enhanced treatment of rheumatoid arthritis. J. Nanobiotechnol. 2024, 22, 188. [Google Scholar] [CrossRef]
- Younis, M.; Tabish, T.A.; Firdharini, C.; Aslam, M.; Khair, M.; Anjum, D.H.; Yan, X.; Abbas, M. Self-Assembled Peptide-Based Fibrous Hydrogel as a Biological Catalytic Scaffold for Nitric Oxide Generation and Encapsulation. ACS Appl. Mater. Interfaces 2025, 17, 27964–27973. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Zeng, X.; Wu, L.; Gao, M.; Tong, N.; Duan, P.; Liu, J. Sustained delivery of IL-10 by self-assembling peptide hydrogel to reprogram macrophages and promote diabetic alveolar bone defect healing. Dent. Mater. 2023, 39, 418–429. [Google Scholar] [CrossRef]
- Liao, H.; Qi, W.; Xue, Z.; Wu, K.; Jiang, L.; Wu, C.; Huang, Z.; Li, Q.; Lu, Y. A multifunctional supramolecular hydrogel that rapidly binds TNF-α for efficient reduction of synovial inflammation and cartilage destruction in rheumatoid arthritis. Chem. Eng. J. 2023, 477, 147125. [Google Scholar] [CrossRef]
- Liu, L.; Ding, M.; Zheng, M.; Xu, G.; Gao, L.; Yang, W.; Wei, Z.; Shang, J.; Wang, L.; Wang, H.; et al. Transformable peptide blocks NF-kappaB/IkappaBalpha pathway through targeted coating IkappaBalpha against rheumatoid arthritis. Biomaterials 2025, 314, 122839. [Google Scholar] [CrossRef]
- Lu, Z.; Tan, K.; Xiang, S.; Zhang, Y.; Luo, F.; Liu, X.; Zhao, X.; Ouyang, L. Peptide loaded self-healing hydrogel promotes diabetic skin wound healing through macrophage orchestration and inflammation inhibition. Mater. Today Bio 2025, 32, 101690. [Google Scholar] [CrossRef]
- Su, H.; Ye, Q.; Wang, D.; Liu, A.; Wang, Y.; Zhang, Y.; Weng, L. A self-assembling peptide-based hydrogel containing NF-kappaB inhibitors and NGF for peripheral nerve injury repair. Biofabrication 2025, 17, 025031. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Kim, J.E.; Kang, J.H.; Kwon, W.H.; Lee, I.; Park, S.J.; Kim, C.H.; Jeong, W.J.; Choi, J.S.; Kim, K. Self-assembling biomolecules for biosensor applications. Biomater. Res. 2023, 27, 127. [Google Scholar] [CrossRef]
- Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol. 2017, 38, 87–96. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, G.; Xu, Y.; Luan, X.; Liu, J.; He, P.; Wei, G. Injectable Self-Healing Antibacterial Hydrogels with Tailored Functions by Loading Peptide Nanofiber-Biomimetic Silver Nanoparticles. Macromol. Rapid Commun. 2024, 45, e2400173. [Google Scholar] [CrossRef]
- Bundel, P.; Chawla, V.; Saikia, A.J.; Singh, Y. Nanohydroxyapatite-Loaded, Self-Assembled Peptide Gels for Antibacterial and Osteogenic Activities. ACS Appl. Nano Mater. 2024, 7, 22334–22348. [Google Scholar] [CrossRef]
- Kramarska, E.; Romero-Saavedra, F.; Squeglia, F.; Manna, S.; Sadones, O.; Marasco, D.; Berisio, R.; Huebner, J. A Self-Assembling Cross-Protective Antigen Against Multiple Gram-Positive Nosocomial Pathogens. ACS Omega 2025, 10, 19073–19081. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.; Li, M.; Xie, L.; Liu, K.; Liu, Y.; Lan, J.; Han, P.; Lin, H.; Song, L. Enhancing Titanium-Osteointegration: Antimicrobial, anti-inflammatory and osteogenic properties of multifunctional coatings through Layer-by-Layer Self-Assembly. Appl. Surf. Sci. 2025, 686, 162149. [Google Scholar] [CrossRef]
- Zhou, J.; Cha, R.; Wu, Z.; Zhang, C.; He, Y.; Zhang, H.; Liu, K.; Fareed, M.S.; Wang, Z.; Yang, C. An injectable, natural peptide hydrogel with potent antimicrobial activity and excellent wound healing-promoting effects. Nano Today 2023, 49, 101801. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Zhou, J.; Wang, Z.; Yang, C.; Wang, P.; Fareed, M.S.; He, Y.; Su, J.; Cha, R.; et al. The Antimicrobial, Hemostatic, and Anti-Adhesion Effects of a Peptide Hydrogel Constructed by the All-d-Enantiomer of Antimicrobial Peptide Jelleine-1. Adv. Healthc. Mater. 2023, 12, e2301612. [Google Scholar] [CrossRef]
- Wiita, E.G.; Toprakcioglu, Z.; Jayaram, A.K.; Knowles, T.P.J. Formation of Nanofibrillar Self-Healing Hydrogels Using Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2024, 16, 46167–46176. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, H.; Wang, Z.; Yuan, C.; Lu, J.; Yan, X. Treatment of Superbug Infection through a Membrane-Disruption and Immune-Regulation Cascade Effect Based on Supramolecular Peptide Hydrogels. Adv. Funct. Mater. 2023, 33, 2305726. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, W.; Chen, W.; Li, B.; Li, G.; Deng, H.; Zhang, L.; Shao, C.; Shan, A. Self-assembling peptide with dual function of cell penetration and antibacterial as a nano weapon to combat intracellular bacteria. Sci. Adv. 2025, 11, eads3844. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Lei, C.; Li, W.; Han, J.; Zhang, J.; Zhang, Y. A Sweet Warning: Mucin-Type O-Glycans in Cancer. Cells 2022, 11, 3666. [Google Scholar] [CrossRef]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. Methods Protoc. 2010, 624, 25–37. [Google Scholar]
- Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs 2006, 15, 933–946. [Google Scholar] [CrossRef]
- Gao, J.; Zhan, J.; Yang, Z. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides. Adv. Mater. 2020, 32, e1805798. [Google Scholar] [CrossRef]
- Raucher, D.; Ryu, J.S. Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol. Med. 2015, 21, 560–570. [Google Scholar] [CrossRef]
- Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 2013, 9, 761–768. [Google Scholar] [CrossRef]
- Felicio, M.R.; Silva, O.N.; Goncalves, S.; Santos, N.C.; Franco, O.L. Peptides with Dual Antimicrobial and Anticancer Activities. Front. Chem. 2017, 5, 5. [Google Scholar] [CrossRef]
- Wu, Y.; He, L.; Zhao, S.; Jiang, Y.; Yang, Z.; Deng, X. Tumor microenvironment pH-responsive size-transformable peptide self-assembling nanocarriers for tumor-specific treatment. Biomater. Adv. 2025, 173, 214293. [Google Scholar] [CrossRef]
- Mei, L.; Mei, Q.; Dong, W.; Wu, S. Redox-responsive self-assembled peptide hydrogel for mitochondrial-targeted anticancer drug delivery. Appl. Mater. Today 2024, 41, 102471. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, W.; Guo, M.; Zhang, X.; Zhang, Q.; Peng, F.; Yan, L.; Hu, Z.; Tangthianchaichana, J.; Shen, Y.; et al. MMP-2 Responsive Peptide Hydrogel-Based Nanoplatform for Multimodal Tumor Therapy. Int. J. Nanomed. 2024, 19, 53–71. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Z.; Li, B.; Tang, J.; Zhang, Z.; Wang, Z.; Yang, L.; Peng, J.; Li, J.; Hong, L. A novel octa-arginine-modified injectable self-assembling peptide hydrogel for multidrug-resistant cancer therapy. Mater. Des. 2024, 237, 112564. [Google Scholar] [CrossRef]
- Wu, X.; Shen, J.; Jiang, X.; Han, H.; Li, Z.; Xiang, Y.; Yuan, D.; Shi, J. Targeting GLUT1 degradation with assembling glycopeptide for cancer inhibition. Chem. Eng. J. 2024, 493, 152479. [Google Scholar] [CrossRef]
- Luo, R.; Wan, Y.; Liu, G.; Chen, J.; Luo, X.; Li, Z.; Su, D.; Lu, N.; Luo, Z. Engineering Self-Assembling Peptide Hydrogel to Enhance the Capacity of Dendritic Cells to Activate In Vivo T-Cell Immunity. Biomacromolecules 2024, 25, 1408–1428. [Google Scholar] [CrossRef]
- Guan, T.; Chen, Z.; Wang, X.; Gao, S.; Lu, X.; Li, Y.; Wang, Z.; Zhang, S.; Guo, Y.; Guo, M.; et al. Harnessing Mn2+ Ions and Antitumor Peptides: A Robust Hydrogel for Enhanced Tumor Immunotherapy. J. Am. Chem. Soc. 2025, 147, 6523–6535. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, D.; Feng, D.; Liu, Q.; Huang, Y.; Hou, J.; Ding, D.; Zhang, W. Transformable Supramolecular Self-Assembled Peptides for Cascade Self-Enhanced Ferroptosis Primed Cancer Immunotherapy. Adv. Mater. 2024, 36, e2311733. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 1–17. [Google Scholar] [CrossRef]
- Niu, G.; Zhang, R.; Shi, X.; Park, H.; Xie, S.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. AIE luminogens as fluorescent bioprobes. TrAC Trends Anal. Chem. 2020, 123, 115769. [Google Scholar] [CrossRef]
- Lee, S.; Xie, J.; Chen, X. Peptide-based probes for targeted molecular imaging. Biochemistry 2010, 49, 1364–1376. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X. Positron emission tomography imaging of cancer biology: Current status and future prospects. Semin. Oncol. 2011, 38, 70–86. [Google Scholar] [CrossRef]
- Liu, S. Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: Maximizing binding affinity via bivalency. Bioconjugate Chem. 2009, 20, 2199–2213. [Google Scholar] [CrossRef]
- Li, J.; Pu, K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2019, 48, 38–71. [Google Scholar] [CrossRef]
- Li, J.; Kuang, Y.; Shi, J.; Zhou, J.; Medina, J.E.; Zhou, R.; Yuan, D.; Yang, C.; Wang, H.; Yang, Z.; et al. Enzyme-Instructed Intracellular Molecular Self-Assembly to Boost Activity of Cisplatin against Drug-Resistant Ovarian Cancer Cells. Angew. Chem. Int. Ed. Engl. 2015, 54, 13307–13311. [Google Scholar] [CrossRef]
- Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620. [Google Scholar] [CrossRef]
- Chu, Y.; Jin, X.; Ji, G.; Li, P.; Xiao, S.; Wang, W.; Song, Z. Rigid, alpha-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging. ACS Nano 2025, 19, 680–690. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Wan, S.; Liu, X.; Huang, Y.; Xie, M.; Wei, X.; Zhu, W.; Yao, T.; Li, Y.; et al. Endothelium-targeted NF-kappaB siRNA nanogel for magnetic resonance imaging and visualized-anti-inflammation treatment of atherosclerosis. Biomaterials 2025, 314, 122897. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Wang, P.; Yuan, B.; Pan, Y.; Hu, X.; Lu, L.; Wu, A.; Li, J. AD-Y Shaped Neuropeptide Y Mimetic Peptide-Dye Self-Assembly with Maximal Emission Beyond 1300 nm and Glioma Mitochondrial Activity Modulation. Small 2024, 20, 2308621. [Google Scholar] [CrossRef]
- Borum, R.M.; Retout, M.; Creyer, M.N.; Chang, Y.-C.; Gregorio, K.; Jokerst, J.V. Self-assembled peptide-dye nanostructures for in vivo tumor imaging and photodynamic toxicity. NPJ Imaging 2024, 2, 4. [Google Scholar] [CrossRef]
- Luan, X.; Hu, H.; Sun, Z.; He, P.; Zhu, D.; Xu, Y.; Liu, B.; Wei, G. Assembling Ag2S quantum dots onto peptide nanosheet as a biomimetic two-dimensional nanoplatform for synergistic near infrared-II fluorescent imaging and photothermal therapy of tumor. J. Colloid Interface Sci. 2024, 663, 111–122. [Google Scholar] [CrossRef]
- Hernando-Munoz, C.; Revilla-Cuesta, A.; Abajo-Cuadrado, I.; Andreini, C.; Torroba, T.; Busto, N.; Fernandez, D.; Perdomo, G.; Acosta, G.; Royo, M.; et al. Self-assembling Depsipeptides on Aggregation-Induced Emission Luminogens: A New Way to Create Programmable Nanovesicles and Soft Nanocarriers. ACS Appl. Mater. Interfaces 2025, 17, 10097–10107. [Google Scholar] [CrossRef]
- Pei, S.; Liu, Z.; Jiao, Q.; Jin, Q.; Luo, X.; Liu, Y.; Zhou, S.; Pang, S.; Wu, X.; Xu, K.; et al. Self-Reporting Ratiometric AIEgen-Peptide Nanoprobes for Activatable Chemotherapy and Noninvasive Imaging of Therapeutic Outcomes. J. Med. Chem. 2025, 68, 7767–7779. [Google Scholar] [CrossRef]
- Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178. [Google Scholar] [CrossRef]
- Petrou, C.; Sarigiannis, Y. Peptide synthesis: Methods, trends, and challenges. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 1–21. [Google Scholar]
- Mant, C.T.; Chen, Y.; Yan, Z.; Popa, T.V.; Kovacs, J.M.; Mills, J.B.; Tripet, B.P.; Hodges, R.S. HPLC analysis and purification of peptides. Methods Mol. Biol. 2007, 386, 3–55. [Google Scholar] [CrossRef]
- Alshanski, I.; Bentolila, M.; Gitlin-Domagalska, A.; Zamir, D.; Zorsky, S.; Joubran, S.; Hurevich, M.; Gilon, C. Enhancing the efficiency of the solid phase peptide synthesis (SPPS) process by high shear mixing. Org. Process Res. Dev. 2018, 22, 1318–1322. [Google Scholar] [CrossRef]
- Kent, S.B.H. Fundamental Aspects of SPPS and Green Chemical Peptide Synthesis. J. Pept. Sci. 2025, 31, e70013. [Google Scholar] [CrossRef]
- Fang, P.; Pang, W.K.; Xuan, S.; Chan, W.L.; Leung, K.C. Recent advances in peptide macrocyclization strategies. Chem. Soc. Rev. 2024, 53, 11725–11771. [Google Scholar] [CrossRef]
- De Groot, A.S.; Roberts, B.J.; Mattei, A.; Lelias, S.; Boyle, C.; Martin, W.D. Immunogenicity risk assessment of synthetic peptide drugs and their impurities. Drug Discov. Today 2023, 28, 103714. [Google Scholar] [CrossRef]
- Pawlas, J.; Rasmussen, J.H. Re Green SPPS: Enabling circular chemistry in environmentally sensible solid-phase peptide synthesis. Green Chem. 2019, 21, 5990–5998. [Google Scholar] [CrossRef]
- Sawant, S.G.; Fielden, M.R.; Black, K.A. Evaluation of genotoxicity testing of FDA approved large molecule therapeutics. Regul. Toxicol. Pharmacol. 2014, 70, 87–97. [Google Scholar] [CrossRef]
- Thürmer, R. Regulatory perspective on synthetic peptides in Europe. In Peptide Therapeutics: Strategy and Tactics for Chemistry, Manufacturing and Controls; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M.S.; Pochan, D.J.; Schneider, J.P. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 2007, 104, 7791–7796. [Google Scholar] [CrossRef]
Categories | Name (Sequence) | Bioactive Properties | Limitations | Ref. |
---|---|---|---|---|
Anti- Inflammatory | Biphenyl group peptide (Bip-KFRKAFKRFF) | - M2 to M1 macrophage polarization - Multivalent CD206 engagement | Long-term in vivo efficacy and safety remain unvalidated beyond in vitro and short-term animal model studies | [38] |
RADA16, nerve-promoted peptide (PPFLMLLKGSTR (PP)) | - NSC proliferation enhancement - Neuronal differentiation promotion - Spinal cord matrix reconstruction | Translation to human clinical use remains unproven despite preclinical efficacy | [39] | |
BiPM@IOK (Bismuthene nanosheet polyethyleneimine@IVNFOFLSK) | - pH-responsive drug release - Phototherapy-assisted fibroblast clearance - Synergistic immunomodulation in RA | - Requires laser irradiation for full therapeutic efficacy - Limiting practicality for non-invasive or systemic treatment approaches | [40] | |
FFc5FF peptide (FFc5FF) | - Therapeutic NO generation and encapsulation - Anti-inflammatory gas signaling - Targeted biomedical gas delivery | - Requires alkaline pH and SNAP donor for NO generation - Limited endogenous activation under physiological conditions | [41] | |
KLD1R peptide (Ac-KLDLKLDLKLDLR-CONH2) | - M2 macrophage polarization mediated by IL-10 - Alveolar bone regeneration - Diabetic tissue-specific immunomodulation | - Therapeutic efficacy depends on IL-10 loading - Hydrogel alone shows limited regenerative effect without cytokine | [42] | |
Termed FP peptide (Nap-DFDFDEGPIRRSDS) | - TNF-α and ROS scavenging - Synovial inflammation suppression - Cartilage protection | - Relies on local intra-articular injection - Limited systemic applicability without invasive delivery | [43] | |
BFD peptide (BPFFVLK-DSGLDSM) | - In situ nanofiber transformation - NF-κB pathway signaling inhibition - Targeted anti-inflammatory delivery | - Requires prolonged intracellular incubation to form functional nanofibers - Clinical translation and long-term effects remain unvalidated | [44] | |
Hydrogel containing polypeptide (Ac2-26 (Ac)) | - M2 macrophage polarization - Tissue regeneration in diabetic skin injuries - Angiogenesis stimulation | - Poor oral absorption and limited bioavailability - Low membrane permeability and rapid systemic clearance - Uncertainty in dose-response optimization for clincial application | [45] |
Categories | Name (Sequence) | Bioactive Properties | Limitations | Ref. |
---|---|---|---|---|
Antimicrobial | Peptide nanofiber peptide (PNF) (KIIIIKYWYAF) | - Self-healing antimicrobial hydrogel formation - Broad-spectrum infection prevention with tissue compatibility | - Need for precise AgNP control - Risk of nanoparticle-induced toxicity | [54] |
Nanohydroxyapatite-loaded antimicrobial tripeptides (Fmoc-FRF, Dpha-FRF) | - Simultaneous bone regeneration and osteogenic differentiation - Broad-spectrum antimicrobial action | - Moderate mechanical strength - Limited long-term stability | [55] | |
Q11 (AcQQKFQFQFEQQ-Am) + EH motif (n-GSEEEDHDHGEEDHHHE) | - Multivalent vaccine adjuvanticity - Immune activation | - Prolonged polymerization time - Delayed structural uniformity | [56] | |
KR12 peptide (KRIVQRIKDFLR) | - Titanium based surface-integrated antimicrobial activity - Implant associated infection prevention | - Cytotoxicity at high concentrations - Reduced cell viability | [57] | |
Jelleine-1 peptides (PFKLSLHL-NH2) | - Antibiotic-free antibacterial effect - Wound healing promotion | - Concentration-dependent gelation - Limited functionality under acidic conditions | [58] | |
Jelleine-1 peptides (FFIHIKS) | - Effective against MRSA without the use of traditional antibiotics - Promotes rapid wound closure - Capable of forming stable nanofibrous hydrogels | - Short in vivo retention time - Environmental condition dependency - Long-term can cause immunogenic risks | [59] | |
KLVFF self-healing nanofibrillar peptide (KLVFF) | - Enhanced antimicrobial efficacy through synergistic ion release - Hydrogel network reinforcement | - High dose requirement - Reduced in vivo efficiency - Limited therapeutic practicality | [60] | |
C12G2 peptide (KKFFWDIL) | - Effective elimination of multi-resistant bacteria - Downregulation of pro-inflammatory cytokines - Acceleration of infected skin abscess healing in vivo | - Higher minimum inhibitory concentrations - High aggregation threshold requirement for hydrogel formation - Formulation complexity to optimize | [61] | |
M(Myr)- 3FT F(Fmoc)- 3FT N(Nap)- 3FT (FFF+Tat peptide) | - Cell permeable membrane disruption - Intracellular multidrug- resistant bacteria eradication via ROS induction | - Nonspecific cellular uptake - Potential off-target effects | [62] |
Categories | Name (Sequence) | Bioactive Properties | Limitations | Ref. |
---|---|---|---|---|
Anti-cancer | St-PSAPs (ST: Ac-AAAFFHH-NH2) | - pH-responsiveness to overcome tumor heterogeneity - Simple chemical modification | - Focus on in vitro model - Unclear drug release mechanism - Lack of long-term stability and immune response | [71] |
Pep-CS-LND hydrogel (Nap-GFFYK-CS-K(LND) KLAK) | - Redox responsiveness & mitochondrial targeting - Improved drug solubility | - Weak mechanical strength - Complexity of targeting mechanism - Limited control over drug release | [72] | |
aP/IR@FMKB (Fmoc-KPLGLAGCRGDK) | - Target cancer cells to MMP-2 enzyme - Multimodal therapy integration - Prolonged local retention | - Limited mechanical strength - Challenges in drug release control - Restricted model testing - Complex fabrication process | [73] | |
RADA16-R8 (Ac-(RADA)4-GG-RRRRRRRR–CONH2) | - Efficacy against multidrug-resistance cancer -Controlled release and biodegradability -Hemostatic properties | - Limited drug loading - Short-term stability - Complex fabrication | [74] | |
Targeting GLUT1 glycopeptide (Naphthalene-FFKLVRRVR-glycosylation)- | - Effective cellular uptake and cancer inhibition - Lysosomal dysfunction induction - Broad applicability across cancer cell line | - Limited cell line testing - Lack of long-term safety data - Complex peptide synthesis - Dependence on specific mechanism | [75] | |
RLDI & RQDT (RLDI: Ac-(RLDIKVEFCC)-CONH2 RQDT: Ac-(RQDTKTEYCC)-CONH2) | - Nanofiber scaffold design - Enhance DC functionality | - Complex peptide synthesis - Unclear optimal delivery method - Limited resolution of immunosuppressive environment | [76] | |
N-Pep-Mn gel (N-Pep: Nap-FFYSV) | - Sustained drug release and local retention - Robust immune activation - Long-term immune memory effect | - Limited cancer model - Complex manufacturing process - Limitations of local administration - Partial resolution of immunosuppressive mechanism | [77] | |
TEP-FFG-CRApY ((TPA-Eth-Py)-FFG–CRAWYQNpCALRR) | - Immunotherapy for low-immunogenic tumors - Light-controlled therapy | - Complex synthesis - Light dependency - Tumor microenvironment dependency | [78] |
Categories | Name (Sequence) | Bioactive Properties | Limitations | Ref. |
---|---|---|---|---|
Bioimaging | Polypeptide-TADF (Polypeptide: L-lysine repeated) | - Deep tissue penetration - Long fluorescence lifetime | - Single fluorophore reliance - Toxicity at high concentrations | [88] |
VCAM-1-targeted peptide (VHSPNK) | - Target endothelium to atherosclerosis diagnosis and treatment - Real-time treatment monitoring - High-resolution MR imaging | - Limited use of fluorescence imaging - Short monitoring duration - Lack of long-term stability | [89] | |
DNPY(14)-ENTK-IR1048 (DNPY(14)-ENTK(Ac-CK[KDDDDKYD]HYNNPIWRQRY)) | - To improve Blood-brain-barrier (BBB) permeability & long-term tumor tracking - Mitochondria-specific self-assembly | - Complex synthesis - Fluorophore dependency | [90] | |
iRGD-DD, iRGD-WW ((CRGDKGPDC)-DD or WW) | - Target RGD to cancer imaging and therapy - High endosomal escape | - Reduced quantum yield - Lack of long-term stability - No comparison with alternative platform | [91] | |
PNS/PEG-Ag2SQDs nanohybrids (PNS: Fmoc-FKKGSH) | - Strong NIR-II fluorescence - High photothermal efficiency - Tumor-specific accumulation | - Short-term fluorescence monitoring - Reliance on single imaging modality - Limited fluorescence persistence - Lack of long-term toxicity data | [92] | |
CH08 depsipeptide (ValVValV) | - Nanovesicle structure - Multifunctionality and programmability | - Restricted to in vitro studies - Light-dependent limitation - Complexity of synthesis and scalability | [93] | |
AIEgen-peptide nanoprobe (TPE-1(Hyd-DOX)-DEVD) | - Tumor-specific chemotherapy - Real time therapeutic monitoring - Ratiometric fluorescence | - FRET dependency - Lack of long-term toxicity data - Single fluorescence modality | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, W.H.; Choi, K.; Park, S.J.; Park, G.; Park, C.Y.; Seo, Y.H.; Kim, C.-H.; Choi, J.S. Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides. Biomimetics 2025, 10, 442. https://doi.org/10.3390/biomimetics10070442
Kwon WH, Choi K, Park SJ, Park G, Park CY, Seo YH, Kim C-H, Choi JS. Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides. Biomimetics. 2025; 10(7):442. https://doi.org/10.3390/biomimetics10070442
Chicago/Turabian StyleKwon, Woo Hyun, Kyoung Choi, Sang Jun Park, GeumByeol Park, Cho Young Park, Yoo Han Seo, Chun-Ho Kim, and Jun Shik Choi. 2025. "Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides" Biomimetics 10, no. 7: 442. https://doi.org/10.3390/biomimetics10070442
APA StyleKwon, W. H., Choi, K., Park, S. J., Park, G., Park, C. Y., Seo, Y. H., Kim, C.-H., & Choi, J. S. (2025). Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides. Biomimetics, 10(7), 442. https://doi.org/10.3390/biomimetics10070442