Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = near-equatorial locality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3859 KiB  
Article
Temporal and Latitudinal Occurrences of Geomagnetic Pulsations Recorded in South America by the Embrace Magnetometer Network
by Jose Paulo Marchezi, Odim Mendes and Clezio Marcos Denardini
Atmosphere 2025, 16(6), 742; https://doi.org/10.3390/atmos16060742 - 18 Jun 2025
Viewed by 335
Abstract
This study investigates the occurrence and distribution of geomagnetic pulsations (Pc2–Pc5) over South America during 2014, analyzing their dependence on magnetic latitude, local time, and geomagnetic activity. Geomagnetic field data were obtained from the Embrace magnetometer network, which spans Brazil and Argentina and [...] Read more.
This study investigates the occurrence and distribution of geomagnetic pulsations (Pc2–Pc5) over South America during 2014, analyzing their dependence on magnetic latitude, local time, and geomagnetic activity. Geomagnetic field data were obtained from the Embrace magnetometer network, which spans Brazil and Argentina and includes regions influenced by the Equatorial Electrojet (EEJ) and the South Atlantic Magnetic Anomaly (SAMA). Both continuous and discrete wavelet transforms (CWT and DWT) were employed to analyze non-stationary signals and reconstruct pulsation activity during quiet and disturbed geomagnetic periods. The results reveal that Pc5 and Pc3 pulsations exhibit a pronounced diurnal peak around local noon, with significantly stronger and more widespread activity under storm conditions. Spatial analyses highlight localized enhancements near the dip equator during quiet times and broader latitudinal spread during geomagnetic disturbances. These findings underscore the strong modulation of pulsation activity by geomagnetic conditions and offer new insights into wave behavior at low and mid-latitudes. This work contributes to understanding magnetosphere–ionosphere coupling and has implications for space weather prediction and geomagnetically induced current (GIC) risk assessment in the South American sector. Full article
(This article belongs to the Special Issue Ionospheric Disturbances and Space Weather)
Show Figures

Figure 1

33 pages, 11504 KiB  
Article
Perpendicular Electrical Conductivity in the Topside Ionosphere Derived from Swarm Measurements
by Fabio Giannattasio, Alessio Pignalberi, Roberta Tozzi, Paola De Michelis, Simone Mestici, Giuseppe Consolini, Igino Coco and Michael Pezzopane
Remote Sens. 2024, 16(17), 3129; https://doi.org/10.3390/rs16173129 - 24 Aug 2024
Cited by 1 | Viewed by 1413
Abstract
The study of the physical properties of the topside ionosphere is fundamental to investigating the energy balance of the ionosphere and developing accurate models to predict relevant phenomena, which are often at the root of Space Weather effects in the near-Earth environment. One [...] Read more.
The study of the physical properties of the topside ionosphere is fundamental to investigating the energy balance of the ionosphere and developing accurate models to predict relevant phenomena, which are often at the root of Space Weather effects in the near-Earth environment. One of the most important physical parameters characterising the ionospheric medium is electrical conductivity, which is crucial for the onset and amplification of ionospheric currents and for calculating the power density dissipated by such currents. We characterise, for the first time, electrical conductivity in the direction perpendicular to the geomagnetic field, namely Pedersen and Hall conductivities, in the topside ionosphere at an altitude of about 450 km. For this purpose, we use eight years of in situ simultaneous measurements of electron density, electron temperature and geomagnetic field strength acquired by the Swarm A satellite. We present global statistical maps of perpendicular electrical conductivity and study their variations depending on magnetic latitude and local time, seasons, and solar activity. Our findings indicate that the most prominent features of perpendicular electrical conductivity are located at low latitudes and are probably driven by the complex dynamics of the Equatorial Ionisation Anomaly. At higher latitudes, perpendicular conductivity is a few orders of magnitude lower than that at low latitudes. Nevertheless, conductivity features are modulated by solar activity and seasonal variations at all latitudes. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

27 pages, 14436 KiB  
Article
Peruvian North Coast Climate Variability and Regional Ocean–Atmosphere Forcing
by Mark R. Jury and Luis E. Alfaro-Garcia
Coasts 2024, 4(3), 508-534; https://doi.org/10.3390/coasts4030026 - 12 Jul 2024
Cited by 1 | Viewed by 2243
Abstract
This study analyses climate variability on the north coast of Peru to understand how the local weather is coupled with anomalous ocean conditions. Using high-resolution satellite reanalysis, statistical outcomes are generated via composite analysis and point-to-field regression. Daily time series data for 1979–2023 [...] Read more.
This study analyses climate variability on the north coast of Peru to understand how the local weather is coupled with anomalous ocean conditions. Using high-resolution satellite reanalysis, statistical outcomes are generated via composite analysis and point-to-field regression. Daily time series data for 1979–2023 for Moche area (8S, 79W) river discharge, rainfall, wind, sea surface temperature (SST) and potential evaporation are evaluated for departures from the average. During dry weather in early summer, the southeast Pacific anticyclone expands, an equatorward longshore wind jet ~10 m/s accelerates off northern Peru, and the equatorial trough retreats to 10N. However, most late summers exhibit increased river discharge as local sea temperatures climb above 27 °C, accompanied by 0.5 m/s poleward currents and low salinity. The wet spell composite featured an atmospheric zonal overturning circulation comprised of lower easterly and upper westerly winds > 3 m/s that bring humid air from the Amazon. Convection is aided by diurnal heating and sea breezes that increase the likelihood of rainfall ~ 1 mm/h near sunset. Wet spells in March 2023 were analyzed for synoptic weather forcing and the advection of warm seawater from Ecuador. Although statistical correlations with Moche River discharge indicate a broad zone of equatorial Pacific ENSO forcing (Nino3 R~0.5), the long-range forecast skill is rather modest for February–March rainfall (R2 < 0.2). Full article
Show Figures

Figure 1

19 pages, 3836 KiB  
Article
Seasonal–Longitudinal Variability of Equatorial Plasma Bubbles Observed by FormoSat-7/Constellation Observing System for Meteorology Ionosphere and Climate II and Relevant to the Rayleigh–Taylor Instability
by Lung-Chih Tsai, Shin-Yi Su, Harald Schuh, Mohamad Mahdi Alizadeh and Jens Wickert
Remote Sens. 2024, 16(13), 2310; https://doi.org/10.3390/rs16132310 - 25 Jun 2024
Cited by 3 | Viewed by 1395
Abstract
The FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and Climate II (FS7/COSMIC2) program has acquired over three hundred thousand equatorial plasma bubble (EPB) observations from 2019 to 2023 in the equatorial and near low-latitude regions. The huge FS7/COSMIC2 database offers an opportunity to perform [...] Read more.
The FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and Climate II (FS7/COSMIC2) program has acquired over three hundred thousand equatorial plasma bubble (EPB) observations from 2019 to 2023 in the equatorial and near low-latitude regions. The huge FS7/COSMIC2 database offers an opportunity to perform statistical inspections of the proposed hypothesis on seasonal versus longitudinal variability of EPB occurrence rates relevant to the Rayleigh–Taylor (R-T) instability. The detected EPBs are distributed along the magnetic equator with a half width of ~20° in geomagnetic latitude. The obtained EPB occurrence rates in local time (LT) rose rapidly after sunsets, and could be deconstructed into two overlapped Gaussian distributions resembling a major peak around 23:00 LT and a minor peak around 20:20 LT. The two groups of Gaussian-distributed EPBs in LT were classified as first- and second-type EPBs, which could be caused by different mechanisms such as sporadic E (Es) instabilities and pre-reversal enhancement (PRE) fields. The obtained seasonal–longitudinal distributions of both types of EPBs presented two diffused traces of high occurrence rates, which happened near the days and longitudes when and where the angle between the two lines of magnetic declination and solar terminator at the magnetic equator was equal to zero. Finally, we analyzed the climatological and seasonal–longitudinal variability of EPB occurrences and compared the results with the physical R-T instability model controlled by Es instabilities and/or PRE fields. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

11 pages, 3046 KiB  
Technical Note
Occurrence Characteristics of Nighttime Merged EIA Based on NASA GOLD Observations from 2018 to 2023
by Kun Wu and Liying Qian
Remote Sens. 2024, 16(9), 1575; https://doi.org/10.3390/rs16091575 - 29 Apr 2024
Viewed by 1349
Abstract
The ionosphere equatorial ionization anomaly (EIA) is usually characterized by two plasma density maxima in the Earth’s equatorial region. Merged EIA (MEIA) is a unique phenomenon in the evolution of the EIA. Currently, the occurrence characteristics of MEIA are still not well understood. [...] Read more.
The ionosphere equatorial ionization anomaly (EIA) is usually characterized by two plasma density maxima in the Earth’s equatorial region. Merged EIA (MEIA) is a unique phenomenon in the evolution of the EIA. Currently, the occurrence characteristics of MEIA are still not well understood. In this study, we investigate the occurrence characteristics of nighttime MEIA using NASA Global-scale Observations of the Limb and Disk (GOLD) observations between October 2018 and the end of 2023. We found that the occurrence of nighttime MEIA exhibits solar cycle, seasonal, and local time variations. The occurrence rate of the MEIA is inversely dependent on solar activity. Occurrence of the MEIA maximizes near the equinoxes, with a primary (secondary) low occurrence rate near the June (December) solstice. In addition, occurrences of the MEIA are suppressed during the pre-reversal enhancement (PRE), resulting in relatively fewer events. Furthermore, it was found that the occurrence of the MEIA is not significantly dependent on the strength of geomagnetic activity. As far as we know, this study represents the first instance of utilizing observations from GOLD observations to investigate the characteristics of MEIA occurrences and their correlations with solar activity, season, and local time. Full article
Show Figures

Figure 1

32 pages, 12596 KiB  
Article
Multi-Timescale Characteristics of Southwestern Australia Nearshore Surface Current and Its Response to ENSO Revealed by High-Frequency Radar
by Hongfei Gu and Yadan Mao
Remote Sens. 2024, 16(1), 209; https://doi.org/10.3390/rs16010209 - 4 Jan 2024
Cited by 1 | Viewed by 2175
Abstract
The surface currents in coastal areas are closely related to the ecological environment and human activities, and are influenced by both local and remote factors of different timescales, resulting in complex genesis and multi-timescale characteristics. In this research, 9-year-long, hourly high-frequency radar (HFR) [...] Read more.
The surface currents in coastal areas are closely related to the ecological environment and human activities, and are influenced by both local and remote factors of different timescales, resulting in complex genesis and multi-timescale characteristics. In this research, 9-year-long, hourly high-frequency radar (HFR) surface current observations are utilized together with satellite remote sensing reanalysis products and mooring data, and based on the Empirical Orthogonal Function (EOF) and correlation analysis, we revealed the multi-timescale characteristics of the surface currents in Fremantle Sea (32°S), Southwestern Australia, and explored the corresponding driving factors as well as the impact of El Niño-Southern Oscillation (ENSO) on the nearshore currents. Results show that the currents on the slope are dominated by the southward Leeuwin Current (LC), and the currents within the shelf are dominated by winds, which are subject to obvious diurnal and seasonal variations. The strong bathymetry variation there, from a wide shelf in the north to a narrow shelf in this study region, also plays an important role, resulting in the frequent occurrence of nearshore eddies. In addition, the near-zonal winds south of 30°S in winter contribute to the interannual variability of the Leeuwin Current at Fremantle, especially in 2011, when the onshore shelf circulation is particularly strong because of the climatic factors, together with the wind-driven offshore circulation, which results in significant and long-lasting eddies. The southward Leeuwin Current along Southwestern Australia shows a strong response to interannual climatic variability. During La Niña years, the equatorial thermal anomalies generate the westward anomalies in winds and equatorial currents, which in turn strengthen the Leeuwin Current and trigger the cross-shelf current as well as downwelling within the shelf at Fremantle, whereas during El Niño years, the climate anomalies and the response of coastal currents are opposite. This paper provides insights into the multi-timescale nature of coastal surface currents and the relative importance of different driving mechanisms. It also demonstrates the potential of HFR to reveal the response of nearshore currents to climate anomalies when combined with other multivariate data. Meanwhile, the methodology adopted in this research is applicable to other coastal regions with long-term available HFR observations. Full article
Show Figures

Figure 1

18 pages, 14118 KiB  
Article
Analysis of Ionospheric Anomalies before the Tonga Volcanic Eruption on 15 January 2022
by Jiandi Feng, Yunbin Yuan, Ting Zhang, Zhihao Zhang and Di Meng
Remote Sens. 2023, 15(19), 4879; https://doi.org/10.3390/rs15194879 - 9 Oct 2023
Cited by 12 | Viewed by 2868
Abstract
In this paper, GNSS stations’ observational data, global ionospheric maps (GIM) and the electron density of FORMOSAT-7/COSMIC-2 occultation are used to study ionospheric anomalies before the submarine volcanic eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. (i) We detect the negative total [...] Read more.
In this paper, GNSS stations’ observational data, global ionospheric maps (GIM) and the electron density of FORMOSAT-7/COSMIC-2 occultation are used to study ionospheric anomalies before the submarine volcanic eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. (i) We detect the negative total electron content (TEC) anomalies by three GNSS stations on 5 January before the volcanic eruption after excluding the influence of solar and geomagnetic disturbances and lower atmospheric forcing. The GIMs also detect the negative anomaly in the global ionospheric TEC only near the epicenter of the eruption on 5 January, with a maximum outlier exceeding 6 TECU. (ii) From 1 to 3 January (local time), the equatorial ionization anomaly (EIA) peak shifts significantly towards the Antarctic from afternoon to night. The equatorial ionization anomaly double peak decreases from 4 January, and the EIA double peak disappears and merges into a single peak on 7 January. Meanwhile, the diurnal maxima of TEC at TONG station decrease by nearly 10 TECU and only one diurnal maximum occurred on 4 January (i.e., 5 January of UT), but the significant ionospheric diurnal double-maxima (DDM) are observed on other dates. (iii) We find a maximum value exceeding NmF2 at an altitude of 100~130 km above the volcanic eruption on 5 January (i.e., a sporadic E layer), with an electron density of 7.5 × 105 el/cm3. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Figure 1

12 pages, 2877 KiB  
Article
In Situ Observation of Near-Surface Wind Seasonal Variation on the Southern Coast of Sri Lanka
by Xuancheng Lu, Shuyun Huang, Dongxiao Wang, Yao Luo, Tilak Priyadarshana Gamage and P. B. Terney Pradeep Kumara
J. Mar. Sci. Eng. 2023, 11(9), 1721; https://doi.org/10.3390/jmse11091721 - 1 Sep 2023
Cited by 2 | Viewed by 2299
Abstract
The characteristics of local surface wind are closely related to the assessment of wind power resources and the oscillation period of offshore wind turbines. In this research, we analyzed near-surface wind observation data from the southern coast of Sri Lanka, comparing the surface [...] Read more.
The characteristics of local surface wind are closely related to the assessment of wind power resources and the oscillation period of offshore wind turbines. In this research, we analyzed near-surface wind observation data from the southern coast of Sri Lanka, comparing the surface wind variation characteristics across different seasons. Through spectral analysis, we discuss the wind stability and oscillation period, aiming to provide information for the management strategies and oscillation issues of offshore wind turbines in the North Equatorial Indian Ocean to ensure their stable operation. Our findings showed that the Indian summer monsoon dominated the seasonal surface wind variation in the southern coast of Sri Lanka. The local monsoon period began in mid-May and ended in mid-October, during which stable southwest winds prevailed with an average maximum 10 m wind speed exceeding 6.0 m/s. In contrast, surface wind was unstable and weaker during autumn and winter. The surface wind speed exhibited a clear diurnal oscillation throughout the year. The wind speed power spectral density exhibited clear peaks at periods of 24 h, 12 h, and 6 h. Full article
(This article belongs to the Special Issue Oscillations in Offshore Wind Turbines)
Show Figures

Figure 1

24 pages, 7856 KiB  
Article
Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data
by Rasim Shahzad, Munawar Shah, M. Arslan Tariq, Andres Calabia, Angela Melgarejo-Morales, Punyawi Jamjareegulgarn and Libo Liu
Remote Sens. 2023, 15(10), 2687; https://doi.org/10.3390/rs15102687 - 22 May 2023
Cited by 18 | Viewed by 5037
Abstract
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low [...] Read more.
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low and mid-latitudes are investigated in terms of the prompt penetration electric field (PPEF), the equatorial electrojet (EEJ), and the magnetic H component from INTERMAGNET stations near the equator. East and Southeast Asia, Russia, and Oceania exhibited positive vTEC disturbances, while South American stations showed negative vTEC disturbances during all the storms. We also analyzed the vTEC from the Swarm satellites and found similar results to the retrieved vTEC data during the June 2015 and August 2018 storms. Moreover, we observed that ionospheric plasma tended to increase rapidly during the local afternoon in the main phase of the storms and has the opposite behavior at nighttime. The equatorial ionization anomaly (EIA) crest expansion to higher latitudes is driven by PPEF during daytime at the main and recovery phases of the storms. The magnetic H component exhibits longitudinal behavior along with the EEJ enhancement near the magnetic equator. Full article
(This article belongs to the Special Issue Satellite Observations of the Global Ionosphere and Plasma Dynamics)
Show Figures

Graphical abstract

46 pages, 5840 KiB  
Article
Deep Clouds on Jupiter
by Michael H. Wong, Gordon L. Bjoraker, Charles Goullaud, Andrew W. Stephens, Statia H. Luszcz-Cook, Sushil K. Atreya, Imke de Pater and Shannon T. Brown
Remote Sens. 2023, 15(3), 702; https://doi.org/10.3390/rs15030702 - 25 Jan 2023
Cited by 13 | Viewed by 4362
Abstract
Jupiter’s atmospheric water abundance is a highly important cosmochemical parameter that is linked to processes of planetary formation, weather, and circulation. Remote sensing and in situ measurement attempts still leave room for substantial improvements to our knowledge of Jupiter’s atmospheric water abundance. With [...] Read more.
Jupiter’s atmospheric water abundance is a highly important cosmochemical parameter that is linked to processes of planetary formation, weather, and circulation. Remote sensing and in situ measurement attempts still leave room for substantial improvements to our knowledge of Jupiter’s atmospheric water abundance. With the motivation to advance our understanding of water in Jupiter’s atmosphere, we investigate observations and models of deep clouds. We discuss deep clouds in isolated convective storms (including a unique storm site in the North Equatorial Belt that episodically erupted in 2021–2022), cyclonic vortices, and northern high-latitude regions, as seen in Hubble Space Telescope visible/near-infrared imaging data. We evaluate the imaging data in continuum and weak methane band (727 nm) filters by comparison with radiative transfer simulations, 5 micron imaging (Gemini), and 5 micron spectroscopy (Keck), and conclude that the weak methane band imaging approach mostly detects variation in the upper cloud and haze opacity, although sensitivity to deeper cloud layers can be exploited if upper cloud/haze opacity can be separately constrained. The cloud-base water abundance is a function of cloud-base temperature, which must be estimated by extrapolating 0.5-bar observed temperatures downward to the condensation region near 5 bar. For a given cloud base pressure, the largest source of uncertainty on the local water abundance comes from the temperature gradient used for the extrapolation. We conclude that spatially resolved spectra to determine cloud heights—collected simultaneously with spatially-resolved mid-infrared spectra to determine 500-mbar temperatures and with improved lapse rate estimates—would be needed to answer the following very challenging question: Can observations of deep water clouds on Jupiter be used to constrain the atmospheric water abundance? Full article
(This article belongs to the Special Issue Remote Sensing Observations of the Giant Planets)
Show Figures

Graphical abstract

31 pages, 9352 KiB  
Article
Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions
by Sheila Serrano-Vincenti, Thomas Condom, Lenin Campozano, León A. Escobar, Andrea Walpersdorf, David Carchipulla-Morales and Marcos Villacís
Atmosphere 2022, 13(11), 1809; https://doi.org/10.3390/atmos13111809 - 31 Oct 2022
Cited by 6 | Viewed by 2559
Abstract
This study finds the relationship between increases in precipitable water vapor (PWV), and intense rainfall events in four different climatological regions of South America’s equatorial northwest: the coast, Andes valley, high mountains, and Amazon. First, the PWV was derived from tropospheric zenith delay [...] Read more.
This study finds the relationship between increases in precipitable water vapor (PWV), and intense rainfall events in four different climatological regions of South America’s equatorial northwest: the coast, Andes valley, high mountains, and Amazon. First, the PWV was derived from tropospheric zenith delay measured by Global Navigation Satellite System (GNSS) instrumentation located near meteorological stations within the regions of interest using hourly data from the year 2014. A harmonic analysis approach through continuous wavelet cross-spectrum and coherence, as well as discrete wavelets, was used to determine a measure of the lags found between PWV and specific heavy rain events and then compared with satellite IR images and meteorological anomalies. The link between PWV peaks and rainfall was the most evident on the coast, and less discernible in the other stations possibly due to local dynamic factors. The results showed a lag of 11 h between the preceding PWV increase and an intense rainfall event. This was apparent in all of the stations, except in Amazon where it was 6 h, with the highest precision at the coast and with the largest dispersion in the high mountains. The interpretation of this lag for each region is also discussed. Full article
Show Figures

Figure 1

19 pages, 5547 KiB  
Article
Statistical Study of Ionospheric Equivalent Slab Thickness at Guam Magnetic Equatorial Location
by Yuqiang Zhang, Zhensen Wu, Jian Feng, Tong Xu, Zhongxin Deng, Ming Ou, Wen Xiong and Weimin Zhen
Remote Sens. 2021, 13(24), 5175; https://doi.org/10.3390/rs13245175 - 20 Dec 2021
Cited by 5 | Viewed by 3233
Abstract
The ionospheric equivalent slab thickness (τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. In this paper, a comprehensive statistical analysis [...] Read more.
The ionospheric equivalent slab thickness (τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. In this paper, a comprehensive statistical analysis of the diurnal, seasonal, solar, and magnetic activity variations in the τ at Guam (144.86°E, 13.62°N, 5.54°N dip lat), which is located near the magnetic equator, is presented using the GPS-TEC and ionosonde NmF2 data during the years 2012–2017. It is found that, for geomagnetically quiet days, the τ reaches its maximum value in the noontime, and the peak value in winter and at the equinox are larger than that in summer. Moreover, there is a post-sunset peak observed in the winter and equinox, and the τ during the post-midnight period is smallest in equinox. The mainly diurnal and seasonal variation of τ can be explained within the framework of relative variation of TEC and NmF2 during different seasonal local time. The dependence of τ on the solar activity shows positive correlation during the daytime, and the opposite situation applies for the nighttime. Specifically, the disturbance index (DI), which can visually assess the relationship between instantaneous τ values and the median, is introduced in the paper to quantitatively describe the overall pattern of the geomagnetic storm effect on the τ variation. The results show that the geomagnetic storm seems to have positive effect on the τ during most of the storm-time period at Guam. An example, on the 1 June 2013, is also presented to analyze the physical mechanism. During the positive storms, the penetration electric field, along with storm time equator-ward neutral wind, tends to increase upward drift and uplift F region, causing the large increase in TEC, accompanied by a relatively small increase in NmF2. On the other hand, an enhanced equatorward wind tends to push more plasma, at low latitudes, into the topside ionosphere in the equatorial region, resulting in the TEC not undergoing severe depletion, as with NmF2, during the negative storms. The results would complement the analysis of τ behavior during quiet and disturbed conditions at equatorial latitudes in East Asia. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing)
Show Figures

Figure 1

7 pages, 2031 KiB  
Interesting Images
The Reef Coral Coscinaraea marshae Is Not a High-Latitude Endemic
by Bert W. Hoeksema, Ofri Johan and Andreas Kunzmann
Diversity 2021, 13(12), 681; https://doi.org/10.3390/d13120681 - 19 Dec 2021
Cited by 2 | Viewed by 3013
Abstract
The ‘temperate’ reef coral Coscinaraea marshae Wells, 1962, is reported from Siberut Island (West Sumatra, Indonesia), a near-equatorial locality, 3375 km away from its northernmost range limit in Western Australia, where it is considered a high-latitude endemic. This tropical record suggests that the [...] Read more.
The ‘temperate’ reef coral Coscinaraea marshae Wells, 1962, is reported from Siberut Island (West Sumatra, Indonesia), a near-equatorial locality, 3375 km away from its northernmost range limit in Western Australia, where it is considered a high-latitude endemic. This tropical record suggests that the latitudinal distributions of poorly recorded reef corals may not yet be fully understood, which might be relevant in the light of progressing seawater warming. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

15 pages, 8359 KiB  
Article
The North Equatorial Countercurrent East of the Dateline, Its Variations and Its Relationship to the El Niño Event
by Yusuf Jati Wijaya, Ulung Jantama Wisha and Yukiharu Hisaki
J. Mar. Sci. Eng. 2021, 9(10), 1041; https://doi.org/10.3390/jmse9101041 - 22 Sep 2021
Cited by 4 | Viewed by 2966
Abstract
Using forty years (1978–2017) of Ocean Reanalysis System 4 (ORAS4) dataset, the purpose of this study is to investigate the fluctuation of the North Equatorial Countercurrent (NECC) to the east of the dateline in relation to the presence of three kinds of El [...] Read more.
Using forty years (1978–2017) of Ocean Reanalysis System 4 (ORAS4) dataset, the purpose of this study is to investigate the fluctuation of the North Equatorial Countercurrent (NECC) to the east of the dateline in relation to the presence of three kinds of El Niño events. From spring (MAM) through summer (JJA), we found that the NECC was stronger during the Eastern Pacific El Niño (EP El Niño) and the MIX El Niño than during the Central Pacific El Niño (CP El Niño). When it comes to winter (DJF), on the other hand, the NECC was stronger during the CP and MIX El Niño and weaker during the EP El Niño. This NECC variability was affected by the fluctuations of thermocline depth near the equatorial Pacific. Moreover, we also found that the seasonal southward shift of the NECC occurred between winter and spring, but the shift was absent during the CP and MIX El Niño events. This meridional shift was strongly affected by the local wind stress. Full article
(This article belongs to the Special Issue Sea Surface Temperature: From Observation to Applications)
Show Figures

Figure 1

24 pages, 15719 KiB  
Article
Cloud Masks Derived from the Mars Daily Global Maps and an Application to the Tropical Cloud Belt on Mars
by Huiqun Wang and Gonzalo González Abad
Geosciences 2021, 11(8), 324; https://doi.org/10.3390/geosciences11080324 - 31 Jul 2021
Cited by 10 | Viewed by 3103
Abstract
An image processing technique is used to derive cloud masks from the color Mars Daily Global Maps (MDGMs) that are composed from the Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) wide-angle image swaths. The blue channel of each MDGM is used to [...] Read more.
An image processing technique is used to derive cloud masks from the color Mars Daily Global Maps (MDGMs) that are composed from the Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) wide-angle image swaths. The blue channel of each MDGM is used to select cloud candidates and the blue-to-red ratio map is compared with a reference ratio map to filter out false positives. Quality control is performed manually. The derived cloud masks cover 1 Mars year from the summer of Mars year (MY) 28 to the summer of MY 29. The product has a 0.1° longitude by 0.1° latitude resolution and is available each day. This makes it possible to characterize the evolution of the tropical cloud belt from several new perspectives. The tropical cloud belt steadily builds up during northern spring and early summer, peaks near the early- to mid-summer transitional period, and rapidly declines afterward. From the perspective of cloud occurrence frequency and time mean, the cloud belt appears meandrous and zonally discontinuous, with minima in the Amazonis Planitia and Arabia Terra longitudinal sectors. A pronounced cloud branch diverges from the main cloud belt and extends from the Valles Marineris towards the Noachis and Hellas region. The cloud belt exhibits noticeable oscillatory behavior whereby cloud brightening alternates between the western and eastern hemispheres near the equator with a periodicity between 20 and 30 sols. The cloud belt oscillation occurred each Mars year around Ls = 140°, except for the Mars years when intense dust storms made disruptions. The phenomenon appears to be associated with an eastward propagating equatorial Kelvin wave with zonal wavenumber 1. This wave has a much longer wave period than the diurnal and semidiurnal Kelvin waves discussed in most of the previous studies and may be an important factor for the intra-seasonal variability of the tropical cloud belt. The convolution of clouds’ local time variation with MRO’s orbit shift pattern results in a seemingly highly regular 5-day traveling wave in Hovmöller diagrams of cloud masks. Full article
Show Figures

Figure 1

Back to TopTop