Deep Clouds on Jupiter
Abstract
:1. Introduction
2. Imaging Deep Jovian Clouds with HST
2.1. Imaging Data
2.1.1. HST Imaging Programs
2.1.2. HST Data Processing
2.1.3. Gemini Imaging Data and Data Processing
2.1.4. Cloud Depths from Imaging
2.2. Settings of Deep Clouds
2.2.1. Deep Cloud Setting 1: Moist Convective Storms
2.2.2. Deep Cloud Setting 2: Cyclonic Vortices
2.2.3. Deep Cloud Setting 3: The Northern High Latitudes
- Viewing geometry: The boundary near 45°N cannot be solely an effect of viewing geometry, based on the data in Figure 1. The CM7 ratio (Figure 1G) increases at high emission/incidence angles, raising the possibility that the 45°N boundary may be a viewing effect. However, at any fixed latitude, the CM7 ratio only increases noticeably at emission angles greater than °, whereas the distinct high-latitude region begins at a much lower emission angle (roughly equivalent to the planetographic latitude). Secondly, the enhanced contribution from hazes at high viewing angles, combined with increased haze densities approaching the auroral region, should increase the 727 nm reflectivity more than the continuum, so we would expect the CM7 ratio to actually decrease towards the poles as a geometric effect. Therefore, there is strong evidence that the observed CM7 enhancement north of 45°N represents a physical change to the aerosol structure. This is further supported by evidence for a brightness enhancement of the region in at 4.7 µm in Figure 1, Figure 7, Figure 8, as well as Figure 20 in Section 4.1.
- Separating upper/deep cloud opacity contributions. Although high CM7 values may suggest deeper clouds north of 45°N, radiative transfer modeling is needed to confirm whether upper and lower cloud opacity effects can be separated (next section). The role of upper cloud/haze opacity can be seen immediately in the 727-nm frame itself, which is darker north of 45°N, even after Minnaert correction (Figure 1E, Figure 8B). The drop in continuum reflectivity is less pronounced. The 5-µm images show enhanced thermal emission, but this wavelength is sensitive to integrated cloud opacity in both deep and shallow layers. Overall, qualitative analysis suggests a significant depletion of upper cloud/haze opacity, coupled with moderate deep cloud opacity (because even 5-µm bright regions in the high northern latitudes are not as bright as in low-latitude locations such as hot spots in the NEB).
2.3. Radiative Transfer Modeling
- Stratospheric haze: A vertically extended but optically thin upper layer of small non-absorbing particles is required to match center-to-limb curves at high incidence and/or emission angles. Parameters for this layer were held fixed for all calculations shown in this paper. Values were chosen to broadly match values found in several recent works that used constraints provided by spectroscopy and/or zonal-mean center-to-limb brightness variation [65,85,86]. These works found spatially variable stratospheric haze parameters, but to simplify our investigation into deep clouds using only continuum and 727-nm narrowband filters, we kept stratospheric haze parameters fixed in all model runs.
- Chromophore haze: A thin layer of small absorbing particles in the upper troposphere; the crème-brûlée crust. Parameters for this layer were held fixed for all calculations. The layer is moderately compact in the vertical direction. The index of refraction set to 1.4 + i0.1, generally consistent with the chromophore material characterized by Carlson et al. [105], which was an irradiated product of CH and NH successfully used to model Jupiter’s visible-wavelength spectrum in recent work [14,65,84,85,86]. Other chromophore candidates have similar absorption characteristics, and it is difficult to identify Jupiter’s chromophores based on the planet’s spectrum alone [66,106,107].
- Upper tropospheric cloud/haze: A non-absorbing cloud/haze layer in the upper troposphere; the custard part of the crème-brûlée. We chose representative particle characteristics with some haze-like properties (moderately small radius, puffy distribution with large across the vertical layer), but with relatively large optical depths that might be more consistent with condensation clouds. A large within the uppermost high-opacity layer has been suggested going back to the earliest analyses of methane absorption in the visible/near-IR spectral range [108,109]. Our simple treatment of the uppermost high-opacity layer is meant to simulate more complex but degenerate mixtures haze/cloud opacity bounded between the ammonia cloud base and the tropopause. Absorption was modeled as being concentrated in the fixed chromophore layer, so the index of refraction of this upper tropospheric cloud/haze layer was fixed at 1.4 + i10. The base pressure level of this layer was found to have minimal influence compared to the total opacity, when was varied over the 300–800 mbar range (keeping the fractional scale height fixed at 1 and the low-pressure cutoff fixed at 300 mbar). The variable parameter for this layer was total optical depth (tested at 1, 3, 5, 10, and 15).
- Deep cloud: This layer was intended to simulate NHSH or HO cloud opacity. To simulate a vertically-compact condensation cloud layer, we distributed the aerosol opacity above a variable cloud base with fractional scale height 0.1 and a low-pressure cutoff of . Although is the model parameter, at high optical depths, it is really the cloud top that is significant, but for the vertically compact clouds assumed in the model, these agree to within 10%. The variable parameters for this layer were cloud base level (tested at 2, 3, 4, 5, and 6 bar) and total optical depth (tested at 0, 5, 25, and 100).
Start Time (UT) | Program | HST Instruments and Filters Used | Figure Numbers |
---|---|---|---|
2022-05-22 23:32 | GO-16913 | WFC3/UVIS: F395N, F502N, F631N, FQ727N, FQ750N, FQ889N | Figure 1, Figure 4, Figure 6 and Figures S1–S12 |
2019-04-06 10:39 | GO-15665 | WFC3/UVIS: F631N, FQ727N, FQ889N | Figure 2, Figure 5, Figures 19 and 20 |
2020-07-22 08:19 | GO-16053 | WFC3/UVIS: F631N, FQ727N, FQ889N | Figure 3 |
2007-05-11 12:16 | GO-10782 | WFPC2/PC1: F410M, F502N, F673N | Figure 5 |
2020-09-15 16:33 | GO-16074 | WFC3/UVIS: F395N, F502N, F631N, FQ727N, FQ889N | Figure 8 |
Parameter | Stratospheric Haze | Chromophore Haze | Upper Cloud/Haze | Deep Cloud |
---|---|---|---|---|
1 mbar | 100 mbar | 300 mbar | 0.9 × | |
100 mbar | 300 mbar | 500 mbar | variable: 2, 3, 4, 5, 6 bar | |
1 | 0.3 | 1 | 0.1 | |
at 700 nm | 0.1 | 0.15 | variable: 1, 3, 5, 10, 15 | variable: 0, 5, 25, 100 |
r (µm) | 0.2 | 0.2 | 0.5 | 2 |
1.4 | 1.4 | 1.4 | 1.4 | |
0.01 |
3. The Water Cloud Level and the Oxygen Abundance
3.1. The ECCM Model
3.2. Thermal Structure and Water Cloud Levels
3.3. Thermal Structure and the Upper Clouds
4. Results
4.1. Information Content of the Imaging Data
- We perform PCA to characterize the spatial variation in terms of new empirical orthogonal components, constrained by three input variables: the CM7 ratio, the incidence angle cosine , and the at 631 nm.
- We test whether the resulting three orthogonal components might translate to physical constraints on the upper and deep aerosol layers. Specifically, we test a scaling where the maps of the amplitudes of PCs 1–3 across the domain (panels G–I of Figure 19) are normalized to span the range of cloud layer properties in the radiative transfer model shown in Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15.
- For each map pixel, we convert the PC amplitudes to values of , , and to set radiative transfer model parameter values, using the PCA results to simulate values at 631 and 727 nm (and the corresponding CM7 ratios).
4.2. The O/H Ratio from Deep Clouds
- Folded filamentary regions (FFRs). The CH-composite map in Figure 7 of Bjoraker et al. [11] shows a FFR structure (extending from 290°W to the eastern edge of the map at 260°W) where deep clouds were retrieved in the 55°–57°S range. In the north, the spectral slit also intersected an FFR, but the full 42°–48°N range featuring deep clouds also includes areas outside the FFR.
- NEB cyclones. Cloud tops in the 5–6.5 bar range were retrieved for some areas in the 17°–19°N range (Figures 19, 21, 23, and 24 in Bjoraker et al. [11]). The CH-composite base map shows cyclonic vortices at the locations of these deep clouds, similar to other cyclones at this latitude that may have generated mesoscale waves [137,138]. The vortices are considered to be non-convecting because the CH-composite maps do not show tall/thick convective towers. Figure 24 of Bjoraker et al. [11] shows that the two cyclones have water vapor concentrations differing by a factor of 2, but very similar deep cloud top pressures, which validates the premise that the CHD equivalent width is impacted by cloud opacity rather than by opacity in the extended wings of water vapor lines.
- Rossby plumes. Cloud tops in the 5.5–6.5 bar range were retrieved at select positions along a scan covering 6°–9°N (Figures 20, 22, 25, and 26 in Bjoraker et al. [11]). The deep clouds seem to be linked to the Rossby wave system [25,139,140] that produces 5 µm hot spots at the wave trough [141] and plumes of enhanced ammonia at the wave crests [142]. Cloud tops from 5.5 to 6.5 bar were retrieved under a range of varying upper cloud opacity (Figure 22 of Bjoraker et al. [11]).
- Great Red Spot. Bjoraker et al. [44] found cloud tops in the 4–6 bar range within the GRS, based on spectra with long integration times to achieve signal-to-noise ratios sufficient to measure the CHD line shape through upper-layer cloud opacity at 4.7 m. Temperatures at 500 mbar range from 133 K from TEXES at Gemini North [143] to 136 K from Cassini CIRS [144], encompassing the value of 134 K from Voyager IRIS [145].
4.3. Pressure Levels of the Upper Clouds
5. Discussion
6. Conclusions
- Deep cloud tops at 5–7 bar from spectroscopic data [11] provide a strict upper limit of O/H > 0.5 × protosolar. Values closer to the means (for 500-mbar temperature and cloud top pressure) correspond to O/H > 1–4 × protosolar.
- Over the full range of temperatures considered, clouds at 3 bar or deeper in almost all cases must be water clouds (too deep to be NHSH).
- A layer of cloud and haze in an upper layer (p < 1 bar) has a strong effect on CM7 and filter reflectivities. This upper layer had over all locations in a full-disk image of Jupiter.
- No results from 727-nm and continuum filter reflectivities alone can conclusively determine deep cloud levels, because changes in the opacity of the upper layer are degenerate with properties of the deep cloud layer.
- During the 2021–2022 period, convective activity in the NEB first shut off, then resumed at a single “stealth superstorm” longitude that drifted around the planet at a constant speed (about °/day in System III). Activity at the stealth superstorm longitude had both similarities and differences to large convective superstorms seen on Jupiter and Saturn: it continued for many months and drifted at a constant speed like a superstorm, but it had modest vertical extent and did not always show the three-component cloud structure consistent with active moist convection.
- We identified a region north of 45°N seen to have unique cloud structure at several epochs within the Juno era, although a full time-series analysis was not performed. The region has elevated and roughly uniform/homogeneous 5-µm brightness compared to other regions, and it is darker at visible/near-infrared wavelengths, with a high CM7 ratio. A PCA analysis supports the interpretation that this region has reduced upper cloud/haze opacity, but similar deep cloud opacity and distribution as at other latitudes. The same region has enhanced lightning frequency in Juno data [82,151].
- Deep clouds are sometimes seen without evidence of active moist convection. In some cases, these deep clouds may precede convective outbreaks or persist after them. Compact central clouds can sometimes be seen within non-convecting cyclonic vortices (i.e., vortices without turbulent filamentary cloud structure or intense lightning activity).
- Future work to determine the pressure level of deep clouds from imaging data in the weak methane band would benefit from simultaneous spectroscopy to characterize the vertical distribution of opacity over multiple levels. However, current ground-based spectroscopic instrumentation in the 600–900 nm range is seeing-limited, without the ability to resolve features at the km scales detectable with HST. Full-disk spectroscopic observations at HST spatial resolution is not yet technologically feasible, but advances in adaptive optics could eventually lead to a better understanding of deep clouds on Jupiter.
- Much tighter O/H constraints in the future could be achieved by combining high-resolution spectra at 5 m to measure deep cloud top levels, with simultaneous resolved mid-infrared temperature retrievals. This is technologically feasible with instrumentation such as TEXES, although such an effort would benefit from simultaneous imaging at higher spatial resolution to characterize the effects of horizontal inhomogeneity.
- The current uncertainty in the deep lapse rate (between 500 mbar and the water cloud base) leads to an uncertainty with a factor of about four in the O/H abundance derived from water cloud pressure levels, even in best-case scenarios when simultaneous infrared deep cloud level and 500-mbar temperature retrievals are both available. There is currently no clear pathway toward better observational constraints on the deep lapse rate, but improvements in analysis of existing data and theoretical models might lead to the next advance. In particular, submillimeter and microwave observations are sensitive to temperature as well as composition (mainly ammonia), so efforts to somehow disentangle these degenerate properties would have high potential value.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AURA | Association of Universities for Research in Astronomy, Inc. |
CAPE | Convective available potential energy |
CIN | Convective inhibition |
CIRS | Composite InfraRed Spectrometer |
CM7 | Continuum to methane (727-nm) reflectivity ratio |
ECCM | Equilibrium cloud condensation model |
ESA | European Space Administration |
ESO | European Southern Observatory |
EZ | Equatorial Zone, 7.2°S–6.9°N [123] |
FFR | Folded filamentary region (convectively-active cyclonic vortex) |
FITS | Flexible Image Transport System (binary data format) |
GRS | Great Red Spot |
HST | Hubble Space Telescope |
JIRAM | Juno InfraRed Auroral Mapper |
JPL | Jet Propulsion Laboratory |
LCL | Lifting condensation level (cloud base) |
MAST | Mikulski Archive for Space Telescopes |
MUSE | Multi Unit Spectroscopic Explorer |
MWR | Juno Microwave Radiometer |
NASA | National Aeronautic and Space Administration |
NEB | North Equatorial Belt, 6.9°N–17.4°N [123] |
NIMS | Near Infrared Mapping Spectrometer |
NIRI | Near InfraRed Imager |
NOIRLab | National Optical Infrared Laboratory |
NSF | National Science Foundation |
PC | Principal component |
PCA | Principal components analysis |
PJ | Perijove (Jupiter periapsis) |
RGB | Red, green, and blue |
SAO | Smithsonian Astrophysical Observatory |
SEB | South Equatorial Belt, 19.7°S–7.2°S [123] |
SM | Supplemental Materials |
STScI | Space Telescope Science Institute |
TEXES | Texas Echelon Cross Echelle Spectrograph |
UT | Universal Time |
VLT | Very Large Telescope |
WFC3 | Wide Field Camera 3 |
WFPC2 | Wide-Field and Planetary Camera 2 |
References
- West, R.A.; Strobel, D.F.; Tomasko, M.G. Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus 1986, 65, 161–217. [Google Scholar] [CrossRef]
- Karkoschka, E.; Tomasko, M.G. The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 2011, 211, 780–797. [Google Scholar] [CrossRef]
- Karkoschka, E. Neptune’s cloud and haze variations 1994-2008 from 500 HST-WFPC2 images. Icarus 2011, 215, 759–773. [Google Scholar] [CrossRef]
- Luszcz-Cook, S.H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H.B. Retrieving Neptune’s aerosol properties from Keck OSIRIS observations. I. Dark regions. Icarus 2016, 276, 52–87. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Teanby, N.A.; Fletcher, L.N.; Toledo, D.; Orton, G.S.; Wong, M.H.; Roman, M.T.; Pérez-Hoyos, S.; James, A.; Dobinson, J. Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots. J. Geophys. Res. Planets 2022, 127, e07189. [Google Scholar] [CrossRef] [PubMed]
- Atreya, S.K.; Wong, A.S.; Baines, K.H.; Wong, M.H.; Owen, T.C. Jupiter’s ammonia clouds—Localized or ubiquitous? Planet. Space Sci. 2005, 53, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.H.; de Pater, I.; Asay-Davis, X.; Marcus, P.S.; Go, C.Y. Vertical structure of Jupiter’s Oval BA before and after it reddened: What changed? Icarus 2011, 215, 211–225. [Google Scholar] [CrossRef]
- Marcus, P.S.; Pei, S.; Jiang, C.H.; Hassanzadeh, P. Three-Dimensional Vortices Generated by Self-Replication in Stably Stratified Rotating Shear Flows. Phys. Rev. Lett. 2013, 111, 084501. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Fletcher, L.N.; Luszcz-Cook, S.; DeBoer, D.; Butler, B.; Hammel, H.B.; Sitko, M.L.; Orton, G.; Marcus, P.S. Neptune’s global circulation deduced from multi-wavelength observations. Icarus 2014, 237, 211–238. [Google Scholar] [CrossRef]
- Tollefson, J.; Pater, I.d.; Marcus, P.S.; Luszcz-Cook, S.; Sromovsky, L.A.; Fry, P.M.; Fletcher, L.N.; Wong, M.H. Vertical wind shear in Neptune’s upper atmosphere explained with a modified thermal wind equation. Icarus 2018, 311, 317–339. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M. The Spatial Variation of Water Clouds, NH3, and H2O on Jupiter Using Keck Data at 5 microns. Remote Sens. 2022, 14, 4567. [Google Scholar] [CrossRef]
- Gao, P.; Wakeford, H.R.; Moran, S.E.; Parmentier, V. Aerosols in Exoplanet Atmospheres. J. Geophys. Res. Planets 2021, 126, e06655. [Google Scholar] [CrossRef]
- Li, L.; Ingersoll, A.P.; Vasavada, A.R.; Simon-Miller, A.A.; Del Genio, A.D.; Ewald, S.P.; Porco, C.C.; West, R.A. Vertical wind shear on Jupiter from Cassini images. J. Geophys. Res. Planets 2006, 111, E04004. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Baines, K.H.; Fry, P.M.; Carlson, R.W. A possibly universal red chromophore for modeling color variations on Jupiter. Icarus 2017, 291, 232–244. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Dunn, D.; Romani, P.; Zahnle, K. Reconciling Galileo Probe Data and Ground-Based Radio Observations of Ammonia on Jupiter. Icarus 2001, 149, 66–78. [Google Scholar] [CrossRef]
- Wong, M.H.; Mahaffy, P.R.; Atreya, S.K.; Niemann, H.B.; Owen, T.C. Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 2004, 171, 153–170. [Google Scholar] [CrossRef]
- Li, C.; Ingersoll, A.; Janssen, M.; Levin, S.; Bolton, S.; Adumitroaie, V.; Allison, M.; Arballo, J.; Bellotti, A.; Brown, S.; et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 2017, 44, 5317–5325. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ingersoll, A.; Bolton, S.; Levin, S.; Janssen, M.; Atreya, S.; Lunine, J.; Steffes, P.; Brown, S.; Guillot, T.; et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 2020, 4, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Amarsi, A.M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. Astron. Astrophys. 2021, 653, A141. [Google Scholar] [CrossRef]
- Turcotte, S.; Wimmer-Schweingruber, R.F. Possible in situ tests of the evolution of elemental and isotopic abundances in the solar convection zone. J. Geophys. Res. Space Phys. 2002, 107, 1442. [Google Scholar] [CrossRef] [Green Version]
- Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergström, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Peña-Garay, C.; Song, N. A New Generation of Standard Solar Models. Astrophys. J. 2017, 835, 202. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.B.; Atreya, S.K.; Carignan, G.R.; Donahue, T.M.; Haberman, J.A.; Harpold, D.N.; Hartle, R.E.; Hunten, D.M.; Kasprzak, W.T.; Mahaffy, P.R.; et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 1998, 103, 22831–22846. [Google Scholar] [CrossRef]
- Showman, A.P.; Dowling, T.E. Nonlinear Simulations of Jupiter’s 5-Micron Hot Spots. Science 2000, 289, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Friedson, A.J. Water, ammonia, and H2S mixing ratios in Jupiter’s five-micron hot spots: A dynamical model. Icarus 2005, 177, 1–17. [Google Scholar] [CrossRef]
- Janssen, M.A.; Oswald, J.E.; Brown, S.T.; Gulkis, S.; Levin, S.M.; Bolton, S.J.; Allison, M.D.; Atreya, S.K.; Gautier, D.; Ingersoll, A.P.; et al. MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Sci. Rev. 2017, 213, 139–185. [Google Scholar] [CrossRef]
- Bolton, S.J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J.E.P.; DeJong, E.; et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science 2017, 356, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Allison, M.; Atreya, S.; Bhattacharya, A.; Fletcher, L.; Galanti, E.; Guillot, T.; Ingersoll, I.; Kaspi, Y.; Li, L.; et al. Jupiter’s tropospheric temperature and composition revealed by the Juno Microwave Radiometer. Nat. Astron. 2022, submitted.
- Steffes, P.; Bolton, S.; Levin, S. Laboratory Measurements of the Microwave Opacity of Water Vapor under Temperature Conditions Characteristic of the Deep Atmopshere of Jupiter. In Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece, 16–24 July 2022; Volume 44. Abstract Number B5.3-0028-22. Available online: https://ui.adsabs.harvard.edu/abs/2022cosp...44..550S (accessed on 19 October 2022).
- Dyudina, U.A.; Ingersoll, A.P.; Vasavada, A.R.; Ewald, S.P.; the Galileo SSI Team. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter. Icarus 2002, 160, 336–349. [Google Scholar] [CrossRef]
- Wong, M.H.; Lunine, J.I.; Atreya, S.K.; Johnson, T.; Mahaffy, P.R.; Owen, T.C.; Encrenaz, T. Oxygen and Other Volatiles in the Giant Planets and their Satellites. Rev. Mineral. Geochem. 2008, 68, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Aglyamov, Y.S.; Lunine, J.; Becker, H.N.; Guillot, T.; Gibbard, S.G.; Atreya, S.; Bolton, S.J.; Levin, S.; Brown, S.T.; Wong, M.H. Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter. J. Geophys. Res. Planets 2021, 126, e06504. [Google Scholar] [CrossRef]
- Levin, Z.; Borucki, W.J.; Toon, O.B. Lightning generation in planetary atmospheres. Icarus 1983, 56, 80–115. [Google Scholar] [CrossRef]
- Becker, H.N.; Alexander, J.W.; Atreya, S.K.; Bolton, S.J.; Brennan, M.J.; Brown, S.T.; Guillaume, A.; Guillot, T.; Ingersoll, A.P.; Levin, S.M.; et al. Small lightning flashes from shallow electrical storms on Jupiter. Nature 2020, 584, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Guillot, T.; Stevenson, D.J.; Atreya, S.K.; Bolton, S.J.; Becker, H.N. Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”. J. Geophys. Res. Planets 2020, 125, e06403. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Larson, H.P.; Kunde, V.G. The gas composition of Jupiter derived from 5 micron airborne spectroscopic observations. Icarus 1986, 66, 579–609. [Google Scholar] [CrossRef]
- Guillot, T.; Li, C.; Bolton, S.J.; Brown, S.T.; Ingersoll, A.P.; Janssen, M.A.; Levin, S.M.; Lunine, J.I.; Orton, G.S.; Steffes, P.G.; et al. Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations. J. Geophys. Res. Planets 2020, 125, e06404. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Kaspi, Y.; Guillot, T.; Showman, A.P. How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres? Space Sci. Rev. 2020, 216, 30. [Google Scholar] [CrossRef] [Green Version]
- Duer, K.; Gavriel, N.; Galanti, E.; Kaspi, Y.; Fletcher, L.N.; Guillot, T.; Bolton, S.J.; Levin, S.M.; Atreya, S.K.; Grassi, D.; et al. Evidence for Multiple Ferrel-Like Cells on Jupiter. Geophys. Res. Lett. 2021, 48, e95651. [Google Scholar] [CrossRef]
- de Pater, I.; Sault, R.J.; Moeckel, C.; Moullet, A.; Wong, M.H.; Goullaud, C.; DeBoer, D.; Butler, B.J.; Bjoraker, G.; Ádámkovics, M.; et al. First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection. Astron. J. 2019, 158, 139. [Google Scholar] [CrossRef]
- Prinn, R.G.; Barshay, S.S. Carbon monoxide on Jupiter and implications for atmospheric convection. Science 1977, 198, 1031–1034. [Google Scholar] [CrossRef]
- Fegley, B., Jr.; Lodders, K. Chemical models of the deep atmospheres of Jupiter and Saturn. Icarus 1994, 110, 117–154. [Google Scholar] [CrossRef]
- Bézard, B.; Lellouch, E.; Strobel, D.; Maillard, J.P.; Drossart, P. Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources. Icarus 2002, 159, 95–111. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Hewagama, T.; Ádámkovics, M.; Orton, G.S. The Gas Composition and Deep Cloud Structure of Jupiter’s Great Red Spot. Astron. J. 2018, 156, 101. [Google Scholar] [CrossRef]
- Visscher, C.; Moses, J.I. Quenching of Carbon Monoxide and Methane in the Atmospheres of Cool Brown Dwarfs and Hot Jupiters. Astrophys. J. 2011, 738, 72. [Google Scholar] [CrossRef] [Green Version]
- Venot, O.; Hébrard, E.; Agúndez, M.; Dobrijevic, M.; Selsis, F.; Hersant, F.; Iro, N.; Bounaceur, R. A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 2012, 546, A43. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gierasch, P.J.; Lunine, J.I.; Mousis, O. New insights on Jupiter’s deep water abundance from disequilibrium species. Icarus 2015, 250, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lunine, J.I.; Mousis, O. Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe. Icarus 2016, 276. [Google Scholar] [CrossRef] [Green Version]
- Hyder, A.; Li, C.; Chanover, N. Hydrodynamical and Thermochemical Modeling of Jupiter’s Atmosphere—Constraining the Vertical Mass Transport. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022; Abstract Number P25B-07. Available online: https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1082358 (accessed on 19 October 2022).
- Dressel, L. WFC3 Instrument Handbook for Cycle 30 v. 14; Space Telescope Science Institute: Baltimore, MD, USA, 2022; Available online: https://ui.adsabs.harvard.edu/abs/2022wfci.book...14D (accessed on 19 October 2022).
- Lupie, O.; Hanley, C.; Nelan, J. Wide Field Camera #3 Filter Selection Process — Part II Compendium of Community Input; Instrument Science Report WFC3 2000-008; Space Telescope Science Institute: Baltimore, MD, USA, 2000; Available online: https://ui.adsabs.harvard.edu/abs/2000wfc..rept....8L (accessed on 19 October 2022).
- Hodapp, K.W.; Jensen, J.B.; Irwin, E.M.; Yamada, H.; Chung, R.; Fletcher, K.; Robertson, L.; Hora, J.L.; Simons, D.A.; Mays, W.; et al. The Gemini Near-Infrared Imager (NIRI). Publ. Astron. Soc. Pac. 2003, 115, 1388–1406. [Google Scholar] [CrossRef]
- Westphal, J.A. Observations of localised 5-micron radiation from Jupiter. Astrophys. J. 1969, 157, L63–L64. [Google Scholar] [CrossRef] [Green Version]
- Terrile, R.J.; Westphal, J.A. The Vertical Cloud Structure of Jupiter from 5 μm Measurements. Icarus 1977, 30, 274–281. [Google Scholar] [CrossRef]
- Wong, M.H.; Simon, A.A.; Tollefson, J.W.; de Pater, I.; Barnett, M.N.; Hsu, A.I.; Stephens, A.W.; Orton, G.S.; Fleming, S.W.; Goullaud, C.; et al. High-resolution UV/Optical/IR Imaging of Jupiter in 2016-2019. Astrophys. J. Suppl. Ser. 2020, 247, 58. [Google Scholar] [CrossRef]
- Imai, M.; Wong, M.H.; Kolmašová, I.; Brown, S.T.; Santolík, O.; Kurth, W.S.; Hospodarsky, G.B.; Bolton, S.J.; Levin, S.M. High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms. Geophys. Res. Lett. 2020, 47, e88397. [Google Scholar] [CrossRef]
- Bolton, S.J.; Levin, S.M.; Guillot, T.; Li, C.; Kaspi, Y.; Orton, G.; Wong, M.H.; Oyafuso, F.; Allison, M.; Arballo, J.; et al. Microwave observations reveal the deep extent and structure of Jupiter’s atmospheric vortices. Science 2021, 374, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H. Fringing in the WFC3/UVIS detector. In 2010 STScI Calibration Workshop: Hubble after SM4. Preparing JWST; Deustua, S., Oliveira, C., Eds.; Space Telescope Science Institute: Baltimore, MD, USA, 2011; pp. 189–200. Available online: https://ui.adsabs.harvard.edu/abs/2010hstc.workE..22W (accessed on 19 October 2022).
- Calamida, A.; Mack, J.; Medina, J.; Shanahan, C.; Bajaj, V.; Deustua, S. New Time-Dependent WFC3 UVIS Inverse Sensitivities; Instrument Science Report WFC3 2021-004; Space Telescope Science Institute: Baltimore, MD, USA, 2021; Available online: https://ui.adsabs.harvard.edu/abs/2021wfc..rept....4C (accessed on 19 October 2022).
- Asay-Davis, X.S.; Marcus, P.S.; Wong, M.H.; de Pater, I. Jupiter’s shrinking Great Red Spot and steady Oval BA: Velocity measurements with the ‘Advection Corrected Correlation Image Velocimetry’ automated cloud-tracking method. Icarus 2009, 203, 164–188. [Google Scholar] [CrossRef]
- Banfield, D.; Gierasch, P.J.; Bell, M.; Ustinov, E.; Ingersoll, A.P.; Vasavada, A.R.; West, R.A.; Belton, M.J.S. Jupiter’s Cloud Structure from Galileo Imaging Data. Icarus 1998, 135, 230–250. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Del Genio, A.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Gierasch, P.J.; Ingersoll, A.P.; Banfield, D.; Ewald, S.P.; Helfenstein, P.; Simon-Miller, A.; Vasavada, A.; Breneman, H.H.; Senske, D.A.; Galileo Imaging Team. Observation of moist convection in Jupiter’s atmosphere. Nature 2000, 403, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Sayanagi, K.M.; Dyudina, U.A.; Ewald, S.P.; Fischer, G.; Ingersoll, A.P.; Kurth, W.S.; Muro, G.D.; Porco, C.C.; West, R.A. Dynamics of Saturn’s great storm of 2010-2011 from Cassini ISS and RPWS. Icarus 2013, 223, 460–478. [Google Scholar] [CrossRef] [Green Version]
- Fry, P.M.; Sromovsky, L.A. Investigating temporal changes in Jupiter’s aerosol structure with rotationally-averaged 2015–2020 HST WFC3 images. Icarus 2023, 389, 115224. [Google Scholar] [CrossRef]
- West, R.A.; Baines, K.H.; Friedson, A.J.; Banfield, D.; Ragent, B.; Taylor, F.W. Jovian clouds and haze. In Jupiter. The Planet, Satellites and Magnetosphere; Bagenal, F., Dowling, T.E., McKinnon, W.B., Eds.; Cambridge University Press: New York, NY, USA, 2004; pp. 79–104. [Google Scholar]
- Little, B.; Anger, C.D.; Ingersoll, A.P.; Vasavada, A.R.; Senske, D.A.; Breneman, H.H.; Borucki, W.J.; The Galileo SSI Team. Galileo Images of Lightning on Jupiter. Icarus 1999, 142, 306–323. [Google Scholar] [CrossRef]
- Simon, A.A.; Wong, M.H.; Orton, G.S. First Results from the Hubble OPAL Program: Jupiter in 2015. Astrophys. J. 2015, 812, 55. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lavega, A.; Rogers, J.H.; Orton, G.S.; García-Melendo, E.; Legarreta, J.; Colas, F.; Dauvergne, J.L.; Hueso, R.; Rojas, J.F.; Pérez-Hoyos, S.; et al. A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations. Geophys. Res. Lett. 2017, 44, 4679–4686. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.; Mizumoto, S. Jupiter in 2022/23: Report no.2. British Astronomical Association 2022. Available online: https://britastro.org/section_information_/jupiter--section--overview/jupiter--in--2022--23/jupiter--in--2022--23--report--no--2 (accessed on 11 January 2022).
- Brueshaber, S. Multi-Instrument Observations of a Jovian Thunderstorm from Juno and Ground-Based Telescopes. In Proceedings of the EGU General Assembly, Vienna, Austria, 23–27 May 2022. Abstract Number EGU22-10499. [Google Scholar] [CrossRef]
- Beebe, R.F.; Orton, G.S.; West, R.A. Time-Variable Nature of the Jovian Cloud Properties and Thermal Structure: An Observational Perspective. In Proceedings of the Workshop on Time-Variable Phenomena in the Jovian System, Flagstaff, AZ, USA, 25–27 August 1987; NASA Special Publication 494. Belton, M.J.S., West, R.A., Rahe, J., Eds.; NASA: Washington, DC, USA, 1989; pp. 245–288. Available online: https://ntrs.nasa.gov/citations/19890019103 (accessed on 19 October 2022).
- Smith, B.A.; Soderblom, L.A.; Beebe, R.; Boyce, J.; Briggs, G.; Carr, M.; Collins, S.A.; Cook, A.F.I.; Danielson, G.E.; Davies, M.E.; et al. The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results. Science 1979, 206, 927–950. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.A.; Wong, M.H.; Sromovsky, L.A.; Fletcher, L.N.; Fry, P.M. Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sens. 2022, 14, 1518. [Google Scholar] [CrossRef]
- Dowling, T.E. Dynamics of jovian atmospheres. Annu. Rev. Fluid Mech. 1995, 27, 293–334. [Google Scholar] [CrossRef]
- Iñurrigarro, P.; Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Eichstädt, G.; Rogers, J.H.; Orton, G.S.; Hansen, C.J.; Pérez-Hoyos, S.; Rojas, J.F.; et al. Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter’s South Temperate Belt. Icarus 2020, 336, 113475. [Google Scholar] [CrossRef] [Green Version]
- Hueso, R.; Iñurrigarro, P.; Sánchez-Lavega, A.; Foster, C.R.; Rogers, J.H.; Orton, G.S.; Hansen, C.; Eichstädt, G.; Ordonez-Etxeberria, I.; Rojas, J.F.; et al. Convective storms in closed cyclones in Jupiter’s South Temperate Belt: (I) observations. Icarus 2022, 380, 114994. [Google Scholar] [CrossRef]
- Palotai, C.; Brueshaber, S.; Sankar, R.; Sayanagi, K. Moist Convection in the Giant Planet Atmospheres. Remote Sens. 2023, 15, 219. [Google Scholar] [CrossRef]
- Go, C.; de Pater, I.; Rogers, J.; Orton, G.; Marcus, P.; Wong, M.H.; Yanamandra-Fischer, P.A.; Joels, J. The Global Upheaval of Jupiter. In Proceedings of the AAS/Division for Planetary Sciences Meeting, Orlando, FL, USA, 8–12 October 2007; Volume 39. Abstract Number 19.09. Available online: https://ui.adsabs.harvard.edu/abs/2007DPS....39.1909G (accessed on 19 October 2022).
- Sankar, R.; Palotai, C. A new convective parameterization applied to Jupiter: Implications for water abundance near the 24°N region. Icarus 2022, 380, 114973. [Google Scholar] [CrossRef]
- Foster, C.; Rogers, J.; Mizumoto, S.; Orton, G.; Hansen, C.; Momary, T.; Casely, A. A rare methane-bright outbreak in Jupiter’s South Temperate domain. In Proceedings of the Europlanet Science Congress, Online, 21 September–9 October 2020. Abstract Number EPSC2020-196. [Google Scholar] [CrossRef]
- Brown, S.; Janssen, M.; Adumitroaie, V.; Atreya, S.; Bolton, S.; Gulkis, S.; Ingersoll, A.; Levin, S.; Li, C.; Li, L.; et al. Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature 2018, 558, 87–90. [Google Scholar] [CrossRef]
- Adriani, A.; Filacchione, G.; Di Iorio, T.; Turrini, D.; Noschese, R.; Cicchetti, A.; Grassi, D.; Mura, A.; Sindoni, G.; Zambelli, M.; et al. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. 2017, 213, 393–446. [Google Scholar] [CrossRef]
- Braude, A.S.; Irwin, P.G.J.; Orton, G.S.; Fletcher, L.N. Colour and tropospheric cloud structure of Jupiter from MUSE/VLT: Retrieving a universal chromophore. Icarus 2020, 338, 113589. [Google Scholar] [CrossRef] [Green Version]
- Dahl, E.K.; Chanover, N.J.; Orton, G.S.; Baines, K.H.; Sinclair, J.A.; Voelz, D.G.; Wijerathna, E.A.; Strycker, P.D.; Irwin, P.G.J. Vertical Structure and Color of Jovian Latitudinal Cloud Bands during the Juno Era. Planet. Sci. J. 2021, 2, 16. [Google Scholar] [CrossRef]
- Pérez-Hoyos, S.; Sánchez-Lavega, A.; Sanz-Requena, J.F.; Barrado-Izagirre, N.; Carrión-González, Ó.; Anguiano-Arteaga, A.; Irwin, P.G.J.; Braude, A.S. Color and aerosol changes in Jupiter after a North Temperate Belt disturbance. Icarus 2020, 352, 114031. [Google Scholar] [CrossRef]
- Molter, E.; de Pater, I.; Luszcz-Cook, S.; Hueso, R.; Tollefson, J.; Alvarez, C.; Sánchez-Lavega, A.; Wong, M.H.; Hsu, A.I.; Sromovsky, L.A.; et al. Analysis of Neptune’s 2017 bright equatorial storm. Icarus 2019, 321, 324–345. [Google Scholar] [CrossRef] [Green Version]
- Ádámkovics, M.; Wong, M.H.; Laver, C.; de Pater, I. Widespread Morning Drizzle on Titan. Science 2007, 318, 962. [Google Scholar] [CrossRef] [Green Version]
- Luszcz-Cook, S.H.; de Pater, I.; Ádámkovics, M.; Hammel, H.B. Seeing double at Neptune’s south pole. Icarus 2010, 208, 938–944. [Google Scholar] [CrossRef] [Green Version]
- de Pater, I.; Wong, M.H.; Marcus, P.; Luszcz-Cook, S.; Ádámkovics, M.; Conrad, A.; Asay-Davis, X.; Go, C. Persistent rings in and around Jupiter’s anticyclones - Observations and theory. Icarus 2010, 210, 742–762. [Google Scholar] [CrossRef]
- de Kleer, K.; Luszcz-Cook, S.; de Pater, I.; Ádámkovics, M.; Hammel, H.B. Clouds and aerosols on Uranus: Radiative transfer modeling of spatially-resolved near-infrared Keck spectra. Icarus 2015, 256, 120–137. [Google Scholar] [CrossRef]
- Ádámkovics, M.; Mitchell, J.L.; Hayes, A.G.; Rojo, P.M.; Corlies, P.; Barnes, J.W.; Ivanov, V.D.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; et al. Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT. Icarus 2016, 270, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Stamnes, K.; Tsay, S.C.; Jayaweera, K.; Wiscombe, W. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- McCartney, E.J. Optics of the Atmosphere. Scattering by Molecules and Particles; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Allen, C.W. Astrophysical Quantities; University of London, Athlone Press: London, UK, 1963. [Google Scholar]
- Sromovsky, L.A. Effects of Rayleigh-scattering polarization on reflected intensity: A fast and accurate approximation method for atmospheres with aerosols. Icarus 2005, 173, 284–294. [Google Scholar] [CrossRef]
- Sromovsky, L.A. Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune. Icarus 2005, 173, 254–283. [Google Scholar] [CrossRef] [Green Version]
- Karkoschka, E. Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum. Icarus 1994, 111, 174–192. [Google Scholar] [CrossRef]
- Karkoschka, E. Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD-Spectrophotometry. Icarus 1998, 133, 134–146. [Google Scholar] [CrossRef]
- Karkoschka, E.; Tomasko, M. The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 2009, 202, 287–309. [Google Scholar] [CrossRef]
- Lacis, A.A.; Oinas, V. A description of the correlated-k distribution method for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 1991, 96, 9027–9064. [Google Scholar] [CrossRef] [Green Version]
- Karkoschka, E.; Tomasko, M.G. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 2010, 205, 674–694. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Bowles, N.; Braude, A.S.; Garland, R.; Calcutt, S. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter. Icarus 2018, 302, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Edgington, S.G.; Atreya, S.K.; Trafton, L.M.; Caldwell, J.J.; Beebe, R.F.; Simon, A.A.; West, R.A. Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph Observations. Icarus 1999, 142, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.W.; Baines, K.H.; Anderson, M.S.; Filacchione, G.; Simon, A.A. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter’s Great Red Spot. Icarus 2016, 274, 106–115. [Google Scholar] [CrossRef]
- Strycker, P.D.; Chanover, N.J.; Simon-Miller, A.A.; Banfield, D.; Gierasch, P.J. Jovian chromophore characteristics from multispectral HST images. Icarus 2011, 215, 552–583. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, M.J.; Hudson, R.L.; Chanover, N.J.; Simon, A.A. The spectrum of Jupiter’s Great Red Spot: The case for ammonium hydrosulfide (NH4SH). Icarus 2016, 271, 265–268. [Google Scholar] [CrossRef]
- Tejfel’, V.G. Molecular absorption and the possible structure of the cloud layers of Jupiter and Saturn. J. Atmos. Sci. 1969, 26, 854–859. [Google Scholar] [CrossRef]
- Bergstralh, J.T. Methane Absorption in the Jovian Atmosphere. II. Absorption Line Formation. Icarus 1973, 19, 390–418. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; et al. The Galileo Solid-State Imaging experiment. Space Sci. Rev. 1992, 60, 413–455. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; Squyres, S.; McEwen, A.; Thomas, P.; Murray, C.D.; Del Genio, A.; Ingersoll, A.P.; Johnson, T.V.; Neukum, G.; et al. Cassini Imaging Science: Instrument Characteristics Furthermore, Anticipated Scientific Investigations At Saturn. Space Sci. Rev. 2004, 115, 363–497. [Google Scholar] [CrossRef]
- Atreya, S.K.; Wong, M.H.; Owen, T.C.; Mahaffy, P.R.; Niemann, H.B.; de Pater, I.; Drossart, P.; Encrenaz, T. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 1999, 47, 1243–1262. [Google Scholar] [CrossRef]
- Wong, M.H.; Atreya, S.K.; Kuhn, W.R.; Romani, P.N.; Mihalka, K.M. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models. Icarus 2015, 245, 273–281. [Google Scholar] [CrossRef]
- Weidenschilling, S.J.; Lewis, J.S. Atmospheric and cloud structures of the Jovian planets. Icarus 1973, 20, 465–476. [Google Scholar] [CrossRef]
- Atreya, S.K.; Romani, P. Photochemistry and Clouds of Jupiter, Saturn and Uranus. In Planetary Meteorology; Hunt, G.E., Ed.; Cambridge University Press: New York, NY, USA, 1985; pp. 17–68. [Google Scholar]
- Mousis, O.; Atkinson, D.H.; Ambrosi, R.; Atreya, S.; Banfield, D.; Barabash, S.; Blanc, M.; Cavalié, T.; Coustenis, A.; Deleuil, M.; et al. In Situ exploration of the giant planets. Exp. Astron. 2021. [Google Scholar] [CrossRef]
- Tollefson, J.; de Pater, I.; Molter, E.M.; Sault, R.J.; Butler, B.J.; Luszcz-Cook, S.; DeBoer, D. Neptune’s Spatial Brightness Temperature Variations from the VLA and ALMA. Planet. Sci. J. 2021, 2, 105. [Google Scholar] [CrossRef]
- Seiff, A.; Kirk, D.B.; Knight, T.C.D.; Young, R.E.; Mihalov, J.D.; Young, L.A.; Milos, F.S.; Schubert, G.; Blanchard, R.C.; Atkinson, D. Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 1998, 103, 22857–22890. [Google Scholar] [CrossRef]
- von Zahn, U.; Hunten, D.M.; Lehmacher, G. Helium in Jupiter’s atmosphere: Results from the Galileo probe helium interferometer experiment. J. Geophys. Res. 1998, 103, 22815–22830. [Google Scholar] [CrossRef]
- Mahaffy, P.R.; Niemann, H.B.; Alpert, A.; Atreya, S.K.; Demick, J.; Donahue, T.M.; Harpold, D.N.; Owen, T.C. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. J. Geophys. Res. 2000, 105, 15061–15072. [Google Scholar] [CrossRef]
- Gupta, P.; Atreya, S.K.; Steffes, P.G.; Fletcher, L.N.; Guillot, T.; Allison, M.D.; Bolton, S.J.; Helled, R.; Levin, S.; Li, C.; et al. Jupiter’s Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planet. Sci. J. 2022, 3, 159. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Conrath, B.J.; Gierasch, P.J.; Orton, G.S.; Achterberg, R.K.; Flasar, F.M.; Fisher, B.M. Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus 2006, 180, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Greathouse, T.K.; Orton, G.S.; Sinclair, J.A.; Giles, R.S.; Irwin, P.G.J.; Encrenaz, T. Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 2016, 278, 128–161. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, J.A.; Seiff, A.; Young, R.E. The Stratification of Jupiter’s Troposphere at the Galileo Probe Entry Site. Icarus 2002, 158, 410–433. [Google Scholar] [CrossRef]
- Sugiyama, K.i.; Odaka, M.; Kuramoto, K.; Hayashi, Y.Y. Static stability of the Jovian atmospheres estimated from moist adiabatic profiles. Geophys. Res. Lett. 2006, 33, L03201. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Selsis, F.; Hersant, F.; Guillot, T. Condensation-inhibited convection in hydrogen-rich atmospheres. Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 2017, 598, A98. [Google Scholar] [CrossRef]
- Cho, J.Y.K.; de la Torre Juárez, M.; Ingersoll, A.P.; Dritschel, D.G. A high-resolution, three-dimensional model of Jupiter’s Great Red Spot. J. Geophys. Res. 2001, 106, 5099–5106. [Google Scholar] [CrossRef]
- Shetty, S.; Asay-Davis, X.S.; Marcus, P.S. On the Interaction of Jupiter’s Great Red Spot and Zonal Jet Streams. J. Atmos. Sci. 2007, 64, 4432. [Google Scholar] [CrossRef] [Green Version]
- Legarreta, J.; Sánchez-Lavega, A. Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices. Icarus 2008, 196, 184–201. [Google Scholar] [CrossRef]
- Shetty, S.; Marcus, P.S. Changes in Jupiter’s Great Red Spot (1979-2006) and Oval BA (2000-2006). Icarus 2010, 210, 182–201. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Marcus, P.S.; Le Gal, P. The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation. J. Fluid Mech. 2012, 706, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Lemasquerier, D.; Facchini, G.; Favier, B.; Le Bars, M. Remote determination of the shape of Jupiter’s vortices from laboratory experiments. Nat. Phys. 2020, 16, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Ragent, B.; Colburn, D.S.; Rages, K.A.; Knight, T.C.D.; Avrin, P.; Orton, G.S.; Yanamandra-Fisher, P.A.; Grams, G.W. The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment. J. Geophys. Res. 1998, 103, 22891–22910. [Google Scholar] [CrossRef]
- Gillett, F.C.; Low, F.J.; Stein, W.A. The 2.8-14-MICRON Spectrum of Jupiter. Astrophys. J. 1969, 157, 925. [Google Scholar] [CrossRef]
- Owen, T.; Westphal, J.A. The Clouds of Jupiter: Observational Characteristics. Icarus 1972, 16, 392–396. [Google Scholar] [CrossRef]
- Bjoraker, G.L.; Wong, M.H.; de Pater, I.; Ádámkovics, M. Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes. Astrophys. J. 2015, 810, 122. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.A.; Hueso, R.; Iñurrigarro, P.; Sánchez-Lavega, A.; Morales-Juberías, R.; Cosentino, R.; Fletcher, L.N.; Wong, M.H.; Hsu, A.I.; de Pater, I.; et al. A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths. Astron. J. 2018, 156, 79. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.N.; Melin, H.; Adriani, A.; Simon, A.A.; Sanchez-Lavega, A.; Donnelly, P.T.; Antuñano, A.; Orton, G.S.; Hueso, R.; Kraaikamp, E.; et al. Jupiter’s Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM. Astron. J. 2018, 156, 67. [Google Scholar] [CrossRef] [PubMed]
- Showman, A.P.; Ingersoll, A.P. Interpretation of Galileo Probe Data and Implications for Jupiter’s Dry Downdrafts. Icarus 1998, 132, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Showman, A.P.; de Pater, I. Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus 2005, 174, 192–204. [Google Scholar] [CrossRef]
- Ortiz, J.L.; Orton, G.S.; Friedson, A.J.; Stewart, S.T.; Fisher, B.M.; Spencer, J.R. Evolution and persistence of 5-μm hot spots at the Galileo probe entry latitude. J. Geophys. Res. 1998, 103, 23051–23069. [Google Scholar] [CrossRef]
- de Pater, I.; Sault, R.J.; Wong, M.H.; Fletcher, L.N.; DeBoer, D.; Butler, B. Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz. Icarus 2019, 322, 168–191. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, L.N.; Orton, G.S.; Greathouse, T.K.; Rogers, J.H.; Zhang, Z.; Oyafuso, F.A.; Eichstädt, G.; Melin, H.; Li, C.; Levin, S.M.; et al. Jupiter’s Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. J. Geophys. Res. Planets 2020, 125, e06399. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Mousis, O.; Yanamandra-Fisher, P.; Parrish, P.D.; Irwin, P.G.J.; Fisher, B.M.; Vanzi, L.; Fujiyoshi, T.; Fuse, T.; et al. Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging. Icarus 2010, 208, 306–328. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Gierasch, P.J.; Beebe, R.F.; Conrath, B.; Flasar, F.M.; Achterberg, R.K.; the Cassini CIRS Team. New Observational Results Concerning Jupiter’s Great Red Spot. Icarus 2002, 158, 249–266. [Google Scholar] [CrossRef]
- Orton, G.S.; Friedson, A.J.; Yanamandra-Fisher, P.A.; Caldwell, J.; Hammel, H.B.; Baines, K.H.; Bergstralh, J.T.; Martin, T.Z.; West, R.A.; Veeder, G.J., Jr.; et al. Spatial Organization and Time Dependence of Jupiter’s Tropospheric Temperatures, 1980-1993. Science 1994, 265, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Hanley, T.R.; Steffes, P.G.; Karpowicz, B.M. A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus 2009, 202, 316–335. [Google Scholar] [CrossRef]
- Grassi, D.; Adriani, A.; Mura, A.; Dinelli, B.M.; Sindoni, G.; Turrini, D.; Filacchione, G.; Migliorini, A.; Moriconi, M.L.; Tosi, F.; et al. Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophys. Res. Lett. 2017, 44, 4615–4624. [Google Scholar] [CrossRef]
- Giles, R.S.; Fletcher, L.N.; Irwin, P.G.J.; Orton, G.S.; Sinclair, J.A. Ammonia in Jupiter’s Troposphere From High-Resolution 5 μm Spectroscopy. Geophys. Res. Lett. 2017, 44, 10. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.H.; Pollack, J.B.; Seiff, A. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 1998, 103, 22911–22928. [Google Scholar] [CrossRef]
- Kolmašová, I.; Imai, M.; Santolík, O.; Kurth, W.S.; Hospodarsky, G.B.; Gurnett, D.A.; Connerney, J.E.P.; Bolton, S.J. Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nat. Astron. 2018, 2, 544–548. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Showman, A.P. Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys. 2005, 68, 1935–1996. [Google Scholar] [CrossRef] [Green Version]
- Achterberg, R.K.; Conrath, B.J.; Gierasch, P.J. Cassini CIRS retrievals of ammonia in Jupiter’s upper troposphere. Icarus 2006, 182, 169–180. [Google Scholar] [CrossRef]
- Hodges, A.L.; Steffes, P.G.; Gladstone, R.; Folkner, W.M.; Buccino, D.; Bolton, S.J.; Levin, S. Simulations of Potential Radio Occultation Studies of Jupiter’s Atmosphere using the Juno Spacecraft. In Proceedings of the AGU Fall Meeting, Online, 1–17 December 2020; Abstract Number P012–07. Available online: https://ui.adsabs.harvard.edu/abs/2020AGUFMP012...07H (accessed on 19 October 2022).
- Owen, T. The Atmosphere of Jupiter. Science 1970, 167, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Militzer, B.; Hubbard, W.B.; Wahl, S.; Lunine, J.I.; Galanti, E.; Kaspi, Y.; Miguel, Y.; Guillot, T.; Moore, K.M.; Parisi, M.; et al. Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core. Planet. Sci. J. 2022, 3, 185. [Google Scholar] [CrossRef]
- Helled, R.; Stevenson, D.J.; Lunine, J.I.; Bolton, S.J.; Nettelmann, N.; Atreya, S.; Guillot, T.; Militzer, B.; Miguel, Y.; Hubbard, W.B. Revelations on Jupiter’s formation, evolution and interior: Challenges from Juno results. Icarus 2022, 378, 114937. [Google Scholar] [CrossRef]
- Miguel, Y.; Bazot, M.; Guillot, T.; Howard, S.; Galanti, E.; Kaspi, Y.; Hubbard, W.B.; Militzer, B.; Helled, R.; Atreya, S.K.; et al. Jupiter’s inhomogeneous envelope. Astron. Astrophys. 2022, 662. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Weir, A.L.; Smith, S.E.; Taylor, F.W.; Lambert, A.L.; Calcutt, S.B.; Cameron-Smith, P.J.; Carlson, R.W.; Baines, K.; Orton, G.S.; et al. Cloud structure and atmospheric composition of Jupiter retrieved from Galileo near-infrared mapping spectrometer real-time spectra. J. Geophys. Res. Planets 1998, 103, 23001–23022. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Sihra, K.; Bowles, N.; Taylor, F.W.; Calcutt, S.B. Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure. Icarus 2005, 176, 255–271. [Google Scholar] [CrossRef]
- Matcheva, K.I.; Conrath, B.J.; Gierasch, P.J.; Flasar, F.M. The cloud structure of the jovian atmosphere as seen by the Cassini/CIRS experiment. Icarus 2005, 179, 432–448. [Google Scholar] [CrossRef]
- Alexander, C.; Irwin, P.G.J. Predetermining Parameters of Jupiter’s Atmosphere in Order to Simplify Cloud Structure. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022; Abstract Number P25B-02. Available online: https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1085758 (accessed on 19 October 2022).
- Romani, P.N.; de Pater, I.; Dunn, D.; Zahnle, K.; Washington, B. Adsorption of Ammonia onto Ammonium Hydrosulfide Cloud Particles in Jupiter’s Atmosphere. In Proceedings of the AAS/Division for Planetary Sciences Meeting, Pasadena, CA, USA, 9–13 October 2000; Volume 32. Abstract Number 04.05. Available online: https://ui.adsabs.harvard.edu/abs/2000DPS....32.0405R (accessed on 19 October 2022).
- Lewis, J.S. The clouds of Jupiter and the NH3-H2O and NH 3-H 2S systems. Icarus 1969, 10, 365–378. [Google Scholar] [CrossRef]
- Kasper, T.; Wong, M.H.; Marschall, J.; de Pater, I.; Romani, P.N.; Kalogerakis, K.S. Uptake of ammonia gas by Jovian ices. In Proceedings of the EPSC-DPS Joint Meeting, Nantes, France, 2–7 October 2011; Abstract Number EPSC-DPS2011-352. Available online: https://ui.adsabs.harvard.edu/abs/2011epsc.conf..352K (accessed on 19 October 2022).
Feature Type | (bar) | (K) | Bjoraker et al. [11] Figure Numbers | Latitudes |
---|---|---|---|---|
FFRs | 7 | 131.7–134.2 (South), 131.5–133.9 (North) | 4, 6, 11, 14 | 55°S–57°S, 42°N–48°N |
NEB cyclones | 5–6.5 | 133.1–140.5 | 19, 21, 23, 24 | 17°N–19°N |
Rossby plumes | 5.5–6.5 | 133.0–139.1 | 20, 22, 25, 26 | 6°N–9°N |
GRS | 4–6 | 133.0–136.0 | – | 22°S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, M.H.; Bjoraker, G.L.; Goullaud, C.; Stephens, A.W.; Luszcz-Cook, S.H.; Atreya, S.K.; de Pater, I.; Brown, S.T. Deep Clouds on Jupiter. Remote Sens. 2023, 15, 702. https://doi.org/10.3390/rs15030702
Wong MH, Bjoraker GL, Goullaud C, Stephens AW, Luszcz-Cook SH, Atreya SK, de Pater I, Brown ST. Deep Clouds on Jupiter. Remote Sensing. 2023; 15(3):702. https://doi.org/10.3390/rs15030702
Chicago/Turabian StyleWong, Michael H., Gordon L. Bjoraker, Charles Goullaud, Andrew W. Stephens, Statia H. Luszcz-Cook, Sushil K. Atreya, Imke de Pater, and Shannon T. Brown. 2023. "Deep Clouds on Jupiter" Remote Sensing 15, no. 3: 702. https://doi.org/10.3390/rs15030702
APA StyleWong, M. H., Bjoraker, G. L., Goullaud, C., Stephens, A. W., Luszcz-Cook, S. H., Atreya, S. K., de Pater, I., & Brown, S. T. (2023). Deep Clouds on Jupiter. Remote Sensing, 15(3), 702. https://doi.org/10.3390/rs15030702