Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,040)

Search Parameters:
Keywords = natural and socio-economic factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2092 KiB  
Article
Land Use Conflict Under Different Scenarios Based on the PLUS Model: A Case Study of the Development Pilot Zone in Jilin, China
by Shengyue Zhang, Yanjun Zhang, Xiaomeng Wang and Yuefen Li
Sustainability 2025, 17(15), 7161; https://doi.org/10.3390/su17157161 (registering DOI) - 7 Aug 2025
Abstract
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify [...] Read more.
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify their driving factors, based on land use data from 2000 to 2023. The study employs land use data, the PLUS model, SCCI, and the geographic detector to analyze conflict dynamics and influencing factors. Cropland and forest land have steadily declined, while construction land has expanded. Conflicts exhibit a spatial gradient of “western pressure, central alleviation, and eastern stability,” with hotspots in Changchun, Jilin, and Yanji. Conflict evolution is categorized into three phases: intensification (2000–2010), peak (2010–2015), and mitigation (2015–2023), as shaped by industrialization and later policy interventions. Among four simulated scenarios, the Sustainable Development (SD) scenario most effectively postpones conflict escalation. Population density and DEM emerged as dominant driving factors. Natural factors have greater explanatory power for land use conflicts than do socio-economic or locational factors. Strengthening spatial planning coordination and refining conflict governance are key to balancing human–environment interactions in the region. Full article
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

20 pages, 16128 KiB  
Article
Water-Yield Variability and Its Attribution in the Yellow River Basin of China over Four Decades
by Luying Li, Xin Chen, Yayuan Che, Hao Yang, Ziqiang Du, Zhitao Wu, Tao Liu, Zhenrong Du, Xiangcheng Li and Yaoyao Li
Land 2025, 14(8), 1579; https://doi.org/10.3390/land14081579 - 2 Aug 2025
Viewed by 255
Abstract
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water [...] Read more.
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water resources. Thus, we used the InVEST model to explore its spatiotemporal dynamics across multiple scales (“basin–county–pixel”). Then, we integrated socio-economic and natural factors to elucidate the driving forces and spatial heterogeneity of water-yield dynamics. Our findings indicated that water-yield trends increased in 71.76% of the YRB, and significant water-yield increases were detected in 13.9% of the basin over the past 40 years. A phase-wise comparison revealed a shift in water yield from a decreasing trend in the first two decades to a significant increasing trend in the last two decades. Hotspot analysis revealed that hotspots of increasing water-yield trends have shifted from the downstream section of the basin toward the southwest, while hotspots of decreasing water-yield trends first concentrated in the basin’s southern part and then disappeared. Both natural and socioeconomic factors have exerted positive and negative impacts on water-yield dynamics. Among them, the dynamics of water yield have been predominantly driven by natural variables. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 315
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

47 pages, 5162 KiB  
Review
Drought Analysis Methods: A Multidisciplinary Review with Insights on Key Decision-Making Factors in Method Selection
by Abdul Baqi Ahady, Elena-Maria Klopries, Holger Schüttrumpf and Stefanie Wolf
Water 2025, 17(15), 2248; https://doi.org/10.3390/w17152248 - 28 Jul 2025
Viewed by 660
Abstract
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing [...] Read more.
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing methodologies that address its multifaceted nature, reflecting the interdisciplinary challenges of drought analysis. However, previous reviews have typically focused on individual methods, while this study presents a unified, multidisciplinary framework that integrates multiple drought analysis methods and links them to key factors guiding method selection. To address this gap, five widely used methods—index-based, remote sensing, threshold-level methods (TLM), impact-based methods, and the storyline approach—are critically evaluated from a multidisciplinary perspective. In addition, the study examines spatial and temporal trends in scientific publications, illustrating how the application of these methods has evolved over time and across regions. The primary objective of this review is twofold: (1) to provide a holistic, state-of-the-art synthesis of these methods, their applications, and their limitations; and (2) to evaluate and prioritize the critical decision-making factors, including drought type, data type/availability, study scale, and management objectives that influence method selection. By bridging this gap, the paper offers a conceptual decision-support framework for selecting context-appropriate drought analysis methods. However, challenges remain, including the vast diversity of methods beyond the scope of this review and the limited consideration of less influential factors such as user expertise, computational resources, and policy context. The paper concludes with insights and recommendations for optimizing method selection under varying circumstances, aiming to support both drought research and effective policy implementation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

27 pages, 7520 KiB  
Article
Multifactor Configurational Pathways Driving the Eco-Efficiency of Cultivated Land Utilization in China: A Dynamic Panel QCA
by Zihao Xu, Jialong Duan, Lei Zhan, Chuanmin Yan and Zhigang Huang
Land 2025, 14(8), 1549; https://doi.org/10.3390/land14081549 - 28 Jul 2025
Viewed by 202
Abstract
Cultivated land is fundamental to agricultural production, and the eco-efficiency of cultivated land utilization is widely acknowledged as a crucial indicator for assessing rational land use. Accordingly, this study applies a Super-SBM model with undesirable outputs to evaluate the eco-efficiency of cultivated land [...] Read more.
Cultivated land is fundamental to agricultural production, and the eco-efficiency of cultivated land utilization is widely acknowledged as a crucial indicator for assessing rational land use. Accordingly, this study applies a Super-SBM model with undesirable outputs to evaluate the eco-efficiency of cultivated land utilization (ECLU) across 31 provinces in China utilizing provincial panel data from 2005 to 2023 and further employs dynamic fuzzy-set qualitative comparative analysis to investigate, across spatial and temporal dimensions, how government policy, agricultural technology, socioeconomic conditions, and natural conditions interact to achieve a high ECLU and to elucidate the diverse configurational pathways through which these factors converge to deliver a high ECLU. Our findings demonstrate that the ECLU originates from the joint influence of several factors, and no single factor alone can provide a high level of eco-efficiency. In particular, a high GDP per capita and strong government agricultural expenditure intensity are pivotal for achieving a high ECLU, whereas a low GDP per capita and weak government agricultural expenditure intensity are the core conditions associated with poor eco-efficiency outcomes. We identify three distinct driving pathways that foster a high ECLU: the Economy–Technology–Government Synergistic Pathway, Nature–Economy Dual-Driver Pathway, and Government-Supported Land–Economy Pathway. Between-configuration consistency (BECONS) exhibits no significant temporal effect; however, a constellation of external factors triggered a pronounced, collective reduction in configurational consistency from 2008 to 2014. Regional analysis reveals pronounced heterogeneity: Spatially, the Economy–Technology–Government Synergistic Pathway is concentrated in China’s central and eastern provinces, the Nature–Economy Dual-Driver Pathway clusters mainly in the central belt, and the Government-Supported Land–Economy Pathway predominates in the west. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 236
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

17 pages, 1747 KiB  
Article
Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models
by Jiang Zhu, Hui Tang, Keyan Fang, Frode Stordal, Anders Bryn, Min Gao and Xiaodong Liu
Fire 2025, 8(8), 297; https://doi.org/10.3390/fire8080297 - 28 Jul 2025
Viewed by 454
Abstract
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated [...] Read more.
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated fire-related modules to simulate wildfires and their impacts, few models have fully considered various human-related factors causing human ignitions. Using global examples, this study aims to identify key factors associated with human impacts on wildfires and provides suggestions for enhancing model simulations. The main categories explored in this paper are human behavior and activities, socioeconomic background, policy, laws, regulations, and cultural and traditional activities, all of which can influence wildfires. Employing an integrated and interdisciplinary assessment approach, this study evaluates existing DGVMs and provides suggestions for their improvement. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment, 2nd Edition)
Show Figures

Figure 1

20 pages, 6273 KiB  
Review
A Comprehensive Review of Urban Expansion and Its Driving Factors
by Ming Li, Yongwang Cao, Jin Dai, Jianxin Song and Mengyin Liang
Land 2025, 14(8), 1534; https://doi.org/10.3390/land14081534 - 26 Jul 2025
Viewed by 250
Abstract
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in [...] Read more.
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in order to identify the research hotspots and trends of urban expansion and its driving factors. The number of articles significantly increased during the period of 1992–2022. The spatiotemporal characteristics and driving forces of urban expansion, urban growth models and simulations, and the impacts of urban expansion were the main research topics. The rate of urban expansion showed regional differences. Socioeconomic factors, political and institutional factors, natural factors, path effects, and proximity effects were the main driving factors. Urban expansion promoted economic growth, occupied cultivated land, and affected ecological environments. Big data and deep learning techniques were recently applied due to advancements in information techniques. With the increasing awareness of environmental protection, the number of studies on environmental impacts and spatial planning regulations has increased. Some political and institutional factors, such as subsidies, taxation, spatial planning, new development strategies, regulation policies, and economic industries, had controversial or unknown impacts. Further research on these factors and their mechanisms is needed. A limitation of this study is that articles which were not indexed, were not included in bibliometric analysis. Further studies can review these articles and conduct comparative research to capture the diversity. Full article
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 239
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

31 pages, 4920 KiB  
Article
Quantifying the Geopark Contribution to the Village Development Index Using Machine Learning—A Deep Learning Approach: A Case Study in Gunung Sewu UNESCO Global Geopark, Indonesia
by Rizki Praba Nugraha, Akhmad Fauzi, Ernan Rustiadi and Sambas Basuni
Sustainability 2025, 17(15), 6707; https://doi.org/10.3390/su17156707 - 23 Jul 2025
Viewed by 334
Abstract
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark [...] Read more.
The Gunung Sewu UNESCO Global Geopark (GSUGGp) is one of Indonesia’s 12 UNESCO-designated geoparks. Its presence is expected to enhance rural development by boosting the local economy through tourism. However, there is a lack of statistical evidence quantifying the economic benefits of geopark development, mainly due to the complex, non-linear nature of these impacts and limited village-level economic data available in Indonesia. To address this gap, this study aims to measure how socio-economic and environmental factors contribute to the Village Development Index (VDI) within the GSUGGp area, which includes the districts of Gunung Kidul, Wonogiri, and Pacitan. A machine learning–deep learning approach was employed, utilizing four algorithms grouped into eight models, with hyperparameter tuning and cross-validation, tested on a sample of 92 villages. The analysis revealed insights into how 17 independent variables influence the VDI. The Artificial Neural Network (ANN) algorithm outperformed others, achieving an R-squared of 0.76 and an RMSE of 0.040, surpassing random forest, CART, SVM, and linear models. Economically related factors—considered the foundation of rural development—had the strongest impact on village progress within GSUGGp. Additionally, features related to tourism, especially beach tourism linked to geological landscapes, contributed significantly. These findings are valuable for guiding geopark management and policy decisions, emphasizing the importance of integrated strategies and strong cooperation among local governments at the regency and provincial levels. Full article
(This article belongs to the Special Issue GeoHeritage and Geodiversity in the Natural Heritage: Geoparks)
Show Figures

Figure 1

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 254
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

21 pages, 1716 KiB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Viewed by 223
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

23 pages, 5058 KiB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 330
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 582
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

Back to TopTop