sustainability-logo

Journal Browser

Journal Browser

Innovations in Environment Protection and Sustainable Development

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Environmental Sustainability and Applications".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 4269

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Environmental Engineering, Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
Interests: environmental management; environmental pollution; environmental impact assessment; environmental analysis; sustainability; environmental engineering; biofiltration; air purification; wastewater treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Environmental protection and sustainable development are interrelated concepts that aim to preserve natural resources and ensure the well-being of both present and future generations. Sustainable development cannot be achieved without environmental protection, and conversely, sustainable development is essential for mitigating the negative environmental impacts of human activities. Both concepts strive to balance fulfilling current needs while safeguarding the planet for future generations. They seek to ensure that the economic, social, and environmental needs of today and tomorrow are met. One of the primary objectives of sustainable development is to develop the economy without exhausting natural resources. The United Nations Sustainable Development Goals (SDGs), established in 2015, provide a comprehensive framework for addressing global challenges and ensuring that no-one is excluded. Among the 17 goals, several focus specifically on environmental protection and sustainability. These include goals related to clean water and sanitation, affordable and clean energy, responsible consumption and production, climate action, and preserving life both below water and on land. Despite advancements in environmental protection and sustainable development, several urgent issues persist today. These include climate change, characterized by rising global temperatures, extreme weather events, and sea level rise, and the significant threats they pose to ecosystems, human health, and the economy. Deforestation, driven by agricultural expansion and urbanization, is another major contributor to increasing carbon emissions and declining biodiversity. Additionally, overconsumption and poor waste management practices lead to greater environmental pollution and resource depletion. Analogously, economic inequality and the poorly implemented policies related to it make it difficult to solve these problems. Environmental protection and sustainable development are essential for fostering a harmonious relationship between humanity and the planet. By integrating sustainable practices across all sectors—the economy, politics, and society—we can ensure a prosperous future for both the Earth and future generations.

This Special Issue focuses on the current state of knowledge on the links between environmental protection and sustainable development.

Dr. Rasa Vaiškūnaitė
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental protection
  • sustainable development
  • sustainability
  • United Nations Sustainable Development Goals
  • environmental management
  • overconsumption and waste management
  • environmental impact assessment
  • climate change
  • deforestation
  • clean energy
  • renewable energy sources
  • economic inequality

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3120 KB  
Article
Variability in the Carbon Management Index and Enzymatic Activity Under Distinct Altitudes in the Alpine Wetlands of Lesotho
by Knight Nthebere, Dominic Mazvimavi, Makoala Marake, Mosiuoa Mochala, Tebesi Raliengoane, Behrooz Mohseni, Krasposy Kujinga and Jean Marie Kileshye Onema
Sustainability 2025, 17(19), 8571; https://doi.org/10.3390/su17198571 - 24 Sep 2025
Abstract
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) [...] Read more.
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) to explore the variation and correlation between SEA and CMI as influenced by altitudinal gradients in alpine wetlands. This information is essential for exploring the impacts of soil degradation and guiding restoration efforts. The study was designed in blocks (catchments) with six altitudinal variations (from 2500 to 3155 m a.s.l), equivalent to alpine wetlands from three catchments (Senqunyane, Khubelu and Sani) as follows: Khorong and Tenesolo in Senqunyane; Khamoqana and Khalong-la-Lichelete in Sani; and Lets’eng-la-Likhama and Koting-Sa-ha Ramosetsana in Khubelu. The soil samples were collected in February 2025 (autumn season, i.e., wet season) at depths of 0–15 and 15–30 cm and analyzed for bulk density, texture, pH, electrical conductivity (EC), soil organic carbon (SOC), SEA, and carbon pools, and the CMI was computed following standard procedures. The results demonstrated that the soil was loam to sandy loam and was slightly acidic and non-saline in nature in the 0–15 cm layer across the wetlands. The significant decreases in SEA were 45.33%, 32.20% and 15.11% (p < 0.05) for dehydrogenase, fluorescein di-acetate and β-Galactosidase activities, respectively, in KSHM compared with those in Khorong (lower elevated site). The passive carbon pool (CPSV) was dominant over the active carbon pool (CACT) and contributed 76–79% of the SOC to the total organic carbon, with a higher CPSV (79%) observed at KSHM. The CMI was also greater (91.05 and 75.88) under KSHM at the 0–15 cm and 15–30 cm soil depths, respectively, than in all the other alpine wetlands, suggesting better carbon management at higher altitudinal gradients and less enzymatic activity. These trends shape climate change outcomes by affecting soil carbon storage, with high-altitude regions serving as significant, though relatively less active, carbon reservoirs. The PCA-Biplot graph revealed a negative correlation between the CMI and SEA, and these variables drove more variation across sites, highlighting a complex interaction influenced by higher altitude with its multiple ecological drivers, such as temperature variation, nutrient dynamics, and shifts in microbial communities. Further studies on metagenomics in alpine soils are needed to uncover altitude-driven microbial adaptations and their role in carbon dynamics. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

33 pages, 461 KB  
Article
Integration of Forest-Climatic Projects into Regional Sustainable Development Strategies: Russian Experience of Central Forest-Steppe
by Svetlana S. Morkovina, Nataliya V. Yakovenko, Elena A. Kolesnichenko, Ekaterina A. Panyavina, Sergey S. Sheshnitsan, Natalia K. Pryadilina and Andrey N. Topcheev
Sustainability 2025, 17(17), 7877; https://doi.org/10.3390/su17177877 - 1 Sep 2025
Viewed by 424
Abstract
The strategic goal of the transition to a low-carbon economy in Russia requires the active integration of forest-climatic projects into regional sustainable development strategies, especially for areas with high agricultural pressure such as the central forest-steppe of the European part of the Russian [...] Read more.
The strategic goal of the transition to a low-carbon economy in Russia requires the active integration of forest-climatic projects into regional sustainable development strategies, especially for areas with high agricultural pressure such as the central forest-steppe of the European part of the Russian Federation. The region contains over 18 million hectares of forest land, which is approximately 2.1% of the area of Russian forests, and intensive agricultural development increases the need for innovative approaches to restoring forest ecosystems. The work uses indicators of the state forest register, data on 18 reforestation projects and 22 afforestation projects, and the results of forecasting the dynamics of greenhouse gas absorption until 2030. It is estimated that by 2030, the sequestration potential of the forests of the central forest-steppe can be increased by 28–30%, which will neutralize up to 12% of emissions from industrial enterprises in the region. In the paper, to unify the assessment, it is proposed to use the carbon intensity factor of investment costs, which, in a number of implemented projects, ranged from 1.2 to 2.7 RUB/1 kg CO2 eq., reflecting the cost of achieving one ton of absorbed CO2 equivalent. At ratios above 1, the economic value of the carbon units created exceeds investment costs by at least 20%. Environmental–economic modeling showed that with an increase in the forest cover of the region by 1% (180 thousand hectares), the annual absorption of CO2 increases by approximately 0.9–1.1 million tons, and the increase in potential income from the sale of carbon units could amount to 1.6–2.2 billion RUB per year at the current price of 1.8–2 RUB/kg CO2-eq. The use of an integral criterion of environmental and economic efficiency helps increase the transparency and investment-attractiveness of forest-climatic projects, as well as the effective integration of natural and climatic solutions into long-term strategies for the sustainable development of the Central Forest-Steppe of Russia. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

20 pages, 1083 KB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Viewed by 1051
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 913
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

28 pages, 348 KB  
Article
Artificial Intelligence Technologies as Smart Solutions for Sustainable Protected Areas Management
by Ahmet Atalay, Dalia Perkumienė, Larbi Safaa, Mindaugas Škėma and Marius Aleinikovas
Sustainability 2025, 17(11), 5006; https://doi.org/10.3390/su17115006 - 29 May 2025
Viewed by 1295
Abstract
Artificial intelligence (AI) is becoming not only an auxiliary tool, but also one of the main factors helping to shape natural resource management models. The application of artificial intelligence in protected areas allows for a transition to more sustainable management of protected areas. [...] Read more.
Artificial intelligence (AI) is becoming not only an auxiliary tool, but also one of the main factors helping to shape natural resource management models. The application of artificial intelligence in protected areas allows for a transition to more sustainable management of protected areas. By applying artificial intelligence technologies, it is possible not only to respond to changes or violations that have already occurred but also to more effectively predict potential threats, form long-term protection strategies, and make rational decisions based on accurate and timely data analysis. This study aims to determine the possibilities and importance of applying artificial intelligence technologies to the sustainable management of protected areas. The sample group of this study consists of a total of 135 experts from Turkey, Lithuania, and Morocco (45 from each country). The sample includes professionals with expertise in the relevant field, namely lawyers (9), academics (9), managers of protected areas (9), government officials responsible for protected areas (9), and representatives of non-governmental organizations (9). This study employed qualitative research methods, within which a case study design was adopted. For the analysis of the findings, thematic analysis and content analysis techniques were utilized to ensure a comprehensive and in-depth interpretation of the data. Analysis of the results of this study showed that integrating AI into the management of protected areas increases management efficiency and helps create long-term strategies, but successful application depends on cooperation between technology developers, scientists, and environmental specialists. Also, AI applications are expected to be a critical part of the process of environmental sustainability and fighting climate change. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Back to TopTop