Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models
Abstract
1. Introduction
2. Categories of Human Impacts on Wildfires
2.1. Human Behavior and Activities
2.2. Socioeconomic Factors
2.3. Policies, Laws, and Regulations
2.4. Daily Practice, Traditional Customs
3. Human Intervention in Fire-Enabled DGVM Models
4. Further Suggestions for Developing DGVMs
4.1. Refining the Relationship Between Human Factors and Wildfires in Current Parametrizations
4.2. Adding New Human Factors to DGVMs
4.3. Towards Integration with IAMs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, P.; Barber, Q.E.; Taylor, S.W.; Whitman, E.; Castellanos Acuna, D.; Boulanger, Y.; Chavardès, R.D.; Chen, J.; Englefield, P.; Flannigan, M.; et al. Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun. 2024, 15, 6764. [Google Scholar] [CrossRef] [PubMed]
- Senf, F.; Heinold, B.; Kubin, A.; Müller, J.; Schrödner, R.; Tegen, I. How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments. Atmos. Chem. Phys. 2023, 23, 8939–8958. [Google Scholar] [CrossRef]
- Mass, C.; Ovens, D. The meteorology of the August 2023 Maui wildfire. Weather Forecast. 2024, 39, 1097–1115. [Google Scholar] [CrossRef]
- California Department of Forestry and Fire Protection (Cal Fire). California Wildfire Incident Report; California Department of Forestry and Fire Protection (Cal Fire): Sacramento, CA, USA, 2025. Available online: https://www.fire.ca.gov/incidents/2025 (accessed on 23 July 2025).
- Rainsford, F.W.; Kelly, L.T.; Leonard, S.W.; Bennett, A.F. How does prescribed fire shape bird and plant communities in a temperate dry forest ecosystem? Ecol. Appl. 2021, 31, e02308. [Google Scholar] [CrossRef]
- Smith, B.M.; Carpenter, D.; Holland, J.; Andruszko, F.; Gathorne-Hardy, A.; Eggleton, P. Resolving a heated debate: The utility of prescribed burning as a management tool for biodiversity on lowland heath. J. Appl. Ecol. 2023, 60, 2040–2051. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Pyne, S.J. World Fire: The Culture of Fire on Earth. Master’s Thesis, University of Washington, Seattle, WA, USA, 1997. [Google Scholar]
- Tedim, F.; Leone, V. The dilemma of wildfire definition: What it reveals and what it implies. Front. For. Glob. Change 2020, 3, 553116. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.; Hauck, J.; Quéré, C.L.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Simler-Williamson, A.B.; Metz, M.R.; Frangioso, K.M.; Rizzo, D.M. Wildfire alters the disturbance impacts of an emerging forest disease via changes to host occurrence and demographic structure. J. Ecol. 2021, 109, 676–691. [Google Scholar] [CrossRef]
- Gleim, E.R.; Zemtsova, G.E.; Berghaus, R.D.; Levin, M.L.; Conner, M.; Yabsley, M.J. Frequent prescribed fires can reduce risk of tick-borne diseases. Sci. Rep. 2019, 9, 9974. [Google Scholar] [CrossRef]
- Duff, T.J.; Cawson, J.G.; Penman, T.D. Determining burnability: Predicting completion rates and coverage of prescribed burns for fuel management. For. Ecol. Manag. 2019, 433, 431–440. [Google Scholar] [CrossRef]
- Gonino, G.M.; Figueiredo, B.R.; Manetta, G.I.; Alves, G.H.Z.; Benedito, E. Fire increases the productivity of sugarcane, but it also generates ashes that negatively affect native fish species in aquatic systems. Sci. Total Environ. 2019, 664, 215–221. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl. Acad. Sci. USA 2020, 117, 12481–12485. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.; Burton, C.; Betts, R.A.; Werf, G.R.; et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Shi, G.; Yan, H.; Zhang, W.; Dodson, J.; Heijnis, H.; Burrows, M. Rapid warming has resulted in more wildfires in northeastern Australia. Sci. Total Environ. 2021, 771, 144888. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, J.L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Varga, K.; Jones, C.; Trugman, A.; Carvalho, L.M.; McLoughlin, N.; Seto, D.; Thompson, C.; Daum, K. Megafires in a warming world: What wildfire risk factors led to California’s largest recorded wildfire. Fire 2022, 5, 16. [Google Scholar] [CrossRef]
- Krikken, F.; Lehner, F.; Haustein, K.; Drobyshev, I.; van Oldenborgh, G.J. Attribution of the role of climate change in the forest fires in Sweden 2018. Nat. Hazards Earth Syst. Sci. 2021, 21, 2169–2179. [Google Scholar] [CrossRef]
- Marchi, M.; Chianucci, F.; Ferrara, C.; Pontuale, G.; Pontuale, E.; Mavrakis, A.; Rossi, F.; Salvati, L. Sustainable land-use, wildfires, and evolving local contexts in a mediterranean country, 2000–2015. Sustainability 2018, 10, 3911. [Google Scholar] [CrossRef]
- Bachelet, D.; Ferschweiler, K.; Sheehan, T.J.; Sleeter, B.M.; Zhu, Z. Projected carbon stocks in the conterminous USA with land use and variable fire regimes. Glob. Change Biol. 2015, 21, 4548–4560. [Google Scholar] [CrossRef]
- Gallardo, M.; Gómez, I.; Vilar, L.; Martínez-Vega, J.; Martín, M.P. Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain). Reg. Environ. Change 2016, 16, 1047–1061. [Google Scholar] [CrossRef]
- Cui, X.; Alam, M.A.; Perry, G.L.; Paterson, A.M.; Wyse, S.V.; Curran, T.J. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 2019, 233, 329–336. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Carroll, M.S.; Stasiewicz, A.M.; Williams, D.R.; Becker, D.R. Incorporating social diversity into wildfire management: Proposing “pathways” for fire adaptation. For. Sci. 2018, 64, 515–532. [Google Scholar] [CrossRef]
- Canepa, A.; Drogo, F. Wildfire crime, apprehension and social vulnerability in Italy. For. Policy Econ. 2021, 122, 102330. [Google Scholar] [CrossRef]
- McKemey, M.B.; Rangers, B.; Ens, E.J.; Hunter, J.T.; Ridges, M.; Costello, O.; Reid, N.C. Co-producing a fire and seasons calendar to support renewed Indigenous cultural fire management. Austral Ecol. 2021, 46, 1011–1029. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; O’Brien, J.A.; Goldammer, J.G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 2013, 38, 57–80. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Nogueira-Moure, E.; Prestemon, J.P.; Touza, J. Spatial patterns of social vulnerability in relation to wildfire risk and wildland-urban interface presence. Landsc. Urban Plan. 2022, 228, 104577. [Google Scholar] [CrossRef]
- Abbas, S.; Nichol, J.E.; Muhammad Irteza, S.; Usman, M. Impact of fire on secondary forest succession in a sub-tropical landscape. Forests 2023, 14, 865. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Abrams, J.; Ellison, A. Developing fire adapted communities: The importance of interactions among elements of local context. Soc. Nat. Resour. 2016, 29, 1246–1261. [Google Scholar] [CrossRef]
- Schumann III, R.L.; Mockrin, M.; Syphard, A.D.; Whittaker, J.; Price, O.; Gaither, C.J.; Emrich, C.T.; Butsic, V. Wildfire recovery as a “hot moment” for creating fire-adapted communities. Int. J. Disaster Risk Reduct. 2020, 42, 101354. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef]
- Miller, R.K.; Field, C.B.; Mach, K.J. Barriers and enablers for prescribed burns for wildfire management in California. Nat. Sustain. 2020, 3, 101–109. [Google Scholar] [CrossRef]
- Kerdoncuff, M.; Måren, I.E.; Eycott, A.E. Traditional prescribed burning of coastal heathland provides niches for xerophilous and sun-loving beetles. Biodivers. Conserv. 2023, 32, 4083–4109. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Ying, L.; Han, J.; Du, Y.; Shen, Z. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Akter, S.; Grafton, R.Q. Do fires discriminate? Socio-economic disadvantage, wildfire hazard exposure and the Australian 2019–20 ‘Black Summer’fires. Clim. Change 2021, 165, 53. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 2001, 10, 661–677. [Google Scholar] [CrossRef]
- Hantson, S.; Kelley, D.I.; Arneth, A.; Harrison, S.P.; Archibald, S.; Bachelet, D.; Forrest, M.; Hickler, T.; Lasslop, G.; Li, F.; et al. Quantitative assessment of fire and vegetation properties in historical simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. Discuss. 2020, 2020, 3299–3318. [Google Scholar] [CrossRef]
- Bakke, S.J.; Wanders, N.; Van Der Wiel, K.; Tallaksen, L.M. A data-driven model for Fennoscandian wildfire danger. Nat. Hazards Earth Syst. Sci. 2023, 23, 65–89. [Google Scholar] [CrossRef]
- Li, F.; Val Martin, M.; Andreae, M.O.; Arneth, A.; Hantson, S.; Kaiser, J.W.; Lasslop, G.; Yue, C.; Bachelet, D.; Forrest, M.; et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 2019, 19, 12545–12567. [Google Scholar] [CrossRef]
- Sun, J.; Qi, W.; Huang, Y.; Xu, C.; Yang, W. Facing the wildfire spread risk challenge: Where are we now and where are we going? Fire 2023, 6, 228. [Google Scholar] [CrossRef]
- Yue, W.; Ren, C.; Liang, Y.; Lin, X.; Liang, J. Method of wildfire risk assessment in consideration of land-use types: A case study in Central China. Forests 2023, 14, 1393. [Google Scholar] [CrossRef]
- Gellman, J.; Walls, M.; Wibbenmeyer, M. Wildfire, smoke, and outdoor recreation in the western United States. For. Policy Econ. 2022, 134, 102619. [Google Scholar] [CrossRef]
- Meier, S.; Elliott, R.; Strobl, E. The regional economic impact of wildfires: Evidence from Southern Europe. J. Environ. Econ. Manag. 2023, 118, 102787. [Google Scholar] [CrossRef]
- Viedma, O.; Urbieta, I.R.; Moreno, J.M. Wildfires and the role of their drivers are changing over time in a large rural area of west-central Spain. Sci. Rep. 2018, 8, 17797. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Hesseln, H. Wildland fire prevention: A review. Curr. For. Rep. 2018, 4, 178–190. [Google Scholar] [CrossRef]
- Hwang, S.N.; Meier, K. Associations between wildfire risk and socio-economic-demographic characteristics using GIS technology. J. Geogr. Inf. Syst. 2022, 14, 365–388. [Google Scholar] [CrossRef]
- Zumbrunnen, T.; Menéndez, P.; Bugmann, H.; Conedera, M.; Gimmi, U.; Bürgi, M. Human impacts on fire occurrence: A case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg. Environ. Change 2012, 12, 935–949. [Google Scholar] [CrossRef]
- Hu, T.; Zhou, G. Drivers of lightning-and human-caused fire regimes in the Great Xing’an Mountains. For. Ecol. Manag. 2014, 329, 49–58. [Google Scholar] [CrossRef]
- Lan, Z.; Su, Z.; Guo, M.; Alvarado, E.C.; Guo, F.; Hu, H.; Wang, G. Are climate factors driving the contemporary wildfire occurrence in China? Forests 2021, 12, 392. [Google Scholar] [CrossRef]
- Smit, I.P.; Asner, G.P.; Govender, N.; Vaughn, N.R.; van Wilgen, B.W. An examination of the potential efficacy of high-intensity fires for reversing woody encroachment in savannas. J. Appl. Ecol. 2016, 53, 1623–1633. [Google Scholar] [CrossRef]
- Twidwell, D.; Bielski, C.H.; Scholtz, R.; Fuhlendorf, S.D. Advancing fire ecology in 21st century rangelands. Rangel. Ecol. Manag. 2021, 78, 201–212. [Google Scholar] [CrossRef]
- Salis, M.; Arca, B.; Alcasena-Urdiroz, F.; Massaiu, A.; Bacciu, V.; Bosseur, F.; Caramelle, P.; Dettori, S.; Oliveira, A.S.; Molina-Terren, D.; et al. Analyzing the recent dynamics of wildland fires in Quercus suber L. woodlands in Sardinia (Italy), Corsica (France) and Catalonia (Spain). Eur. J. For. Res. 2019, 138, 415–431. [Google Scholar] [CrossRef]
- Velle, L.G.; Nilsen, L.S.; Vandvik, V. The age of Calluna stands moderates post-fire regeneration rate and trends in northern Calluna heathlands. Appl. Veg. Sci. 2012, 15, 119–128. [Google Scholar] [CrossRef]
- Shuman, J.K.; Balch, J.K.; Barnes, R.T.; Higuera, P.E.; Roos, C.I.; Schwilk, D.W.; Stavros, E.N.; Banerjee, T.; Bela, M.M.; Bendix, J.; et al. Reimagine fire science for the anthropocene. PNAS Nexus 2022, 1, pgac115. [Google Scholar] [CrossRef] [PubMed]
- Butry, D.T.; Prestemon, J.P.; Abt, K.L. Optimal timing of wildfire prevention education. Ecol. Environ. 2010, 137, 197–206. [Google Scholar] [CrossRef]
- Carmona, A.; González, M.; Nahuelhual, L.; Silva, J. Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Rev. Bosque 2012, 33, 321–328. Available online: https://revistabosque.org/index.php/bosque/article/view/658 (accessed on 23 July 2025). [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Cosgun, U.; González-Cabán, A. Factors explaining forest fires in the Serik and Tasagil forest provinces (SW Anatolia-Turkey). In General Technical Reports PSW-GTR-261 (In English); US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2019; Volume 261, pp. 145–165. [Google Scholar]
- Kim, S.J.; Lim, C.H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; de Almeida Ribeiro, N.M.C. Socioeconomic aspects of the forests in Portugal: Recent evolution and perspectives of sustainability of the resource. Forests 2019, 10, 361. [Google Scholar] [CrossRef]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems 2018, 21, 619–628. [Google Scholar] [CrossRef]
- Anderson, S.E.; Plantinga, A.J.; Wibbenmeyer, M. Unequal treatments: Federal Wildfire Fuels Projects and socioeconomic status of nearby communities. Environ. Energy Policy Econ. 2023, 4, 177–201. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T. Wildfire policy in Mediterranean France: How far is it efficient and sustainable? Risk Anal. 2018, 38, 472–488. [Google Scholar] [CrossRef]
- Pezzatti, G.B.; Zumbrunnen, T.; Bürgi, M.; Ambrosetti, P.; Conedera, M. Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach. For. Policy Econ. 2013, 29, 7–18. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. [Google Scholar] [CrossRef]
- Nicholls, D.L.; Halbrook, J.M.; Benedum, M.E.; Han, H.S.; Lowell, E.C.; Becker, D.R.; Barbour, R.J. Socioeconomic constraints to biomass removal from forest lands for fire risk reduction in the western US. Forests 2018, 9, 264. [Google Scholar] [CrossRef]
- Aquilué, N.; Fortin, M.J.; Messier, C.; Brotons, L. The potential of agricultural conversion to shape forest fire regimes in Mediterranean landscapes. Ecosystems 2020, 23, 34–51. [Google Scholar] [CrossRef]
- Brinkert, A.; Hölzel, N.; Sidorova, T.V.; Kamp, J. Spontaneous steppe restoration on abandoned cropland in Kazakhstan: Grazing affects successional pathways. Biodivers. Conserv. 2016, 25, 2543–2561. [Google Scholar] [CrossRef]
- Wawrzeniuk, J. The Role of Fire in the Posthumous Customs of Podlachia on the Border of Poland and Belarus. Stud. Myth. Slavica 2020, 23, 159–170. [Google Scholar] [CrossRef]
- Sidneva, S. The transformation oF modern greek calendar customs associated with fire: Tradition and contemporaneity. Traditiones 2012, 41, 263–269. [Google Scholar] [CrossRef]
- Brown, C.G. Up-Helly-aa: Custom, Culture, and Community in Shetland; Manchester University Press: Manchester, UK, 1998. [Google Scholar]
- Sharpe, J.A. Remember, Remember: A Cultural History of Guy Fawkes Day; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Jian, Z.; Yang, L.; Xu, X.; Huai, X.; Di, Y.; Zhao, Y. Analysis of temporal-spatial characteristics of wildfire in Hunan province during Qingming Festival. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 842–845. [Google Scholar] [CrossRef]
- Rauf, R.; Zainal, Z.; Prayuda, R.; Rahman, K.; Yuza, A.F. Civil Society’s Participatory Models: A Policy of Preventing Land and Forest Fire in Indonesia. Int. J. Innov. 2020, 14, 1030–1046. [Google Scholar]
- Rabin, S.S.; Melton, J.R.; Lasslop, G.; Bachelet, D.; Forrest, M.; Hantson, S.; Kaplan, J.O.; Li, F.; Mangeon, S.; Daniel, S.; et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1, Experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 2017, 10, 1175–1197. [Google Scholar] [CrossRef]
- Mangeon, S.; Voulgarakis, A.; Gilham, R.; Harper, A.; Sitch, S.; Folberth, G. INFERNO: A fire and emissions scheme for the UK Met Office’s Unified Model. Geosci. Model Dev. 2016, 9, 2685–2700. [Google Scholar] [CrossRef]
- Knorr, W.; Jiang, L.; Arneth, A. Climate, CO2 and human population impacts on global wildfire emissions. Biogeosciences 2016, 13, 267–282. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21st century. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 847–859. [Google Scholar] [CrossRef]
- Forrest, M.; Burton, C.; Drüke, M.; Hantson, S.; Li, F.; Melton, J.; Nieradzik, L.; Rabin, S.; Sitch, S.; Yue, C.; et al. Causes of uncertainty in simulated burnt area by fire-enabled DGVMs. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-12604. [Google Scholar]
- Lasslop, G.; Thonicke, K.; Kloster, S. SPITFIRE within the MPI Earth system model: Model development and evaluation. J. Adv. Model. Earth Syst. 2014, 6, 740–755. [Google Scholar] [CrossRef]
- Iglesias, V.; Stavros, N.; Balch, J.K.; Barrett, K.; Cobian-Iñiguez, J.; Hester, C.; Kolden, C.A.; Leyk, S.; Nagy, R.C.; Reid, C.E.; et al. Fires that matter: Reconceptualizing fire risk to include interactions between humans and the natural environment. Environ. Res. Lett. 2022, 17, 045014. [Google Scholar] [CrossRef]
- Oliver, P.; James, M.; Sarah, M.; Karlheinz, E. Modelling spatial and temporal patterns of fire due to human activity. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 May 2022. EGU22-2462. [Google Scholar]
- Fisher, R.A.; Koven, C.D.; Anderegg, W.R.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm, J.A.; Hurtt, G.C.; Knox, R.G.; Lawrence, P.J.; et al. Vegetation demographics in Earth System Models: A review of progress and priorities. Glob. Change Biol. 2018, 24, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Monier, E.; Kicklighter, D.W.; Sokolov, A.P.; Zhuang, Q.; Sokolik, I.N.; Lawford, R.; Kappas, M.; Paltsev, S.V.; Groisman, P.Y. A review of and perspectives on global change modeling for Northern Eurasia. Environ. Res. Lett. 2017, 12, 083001. [Google Scholar] [CrossRef]
- Taylor, S.W.; Alexander, M.E. Science, technology, and human factors in fire danger rating: The Canadian experience. Int. J. Wildland Fire 2006, 15, 121–135. [Google Scholar] [CrossRef]
Country/Region | Fire-Related Culture and Customs |
---|---|
China | Burning papers and firecrackers near cemetery on Qingming |
Lighting a giant torch at the Torch Festival among a few minorities | |
South Korea | Using fire for remembrance rituals |
Britain | Burning Guy Fawkes effigies on Bonfire Night |
Throwing torches towards ships at Up Helly Aa | |
Poland | Lighting candles around graveyards on All Souls’ Day |
Greece and Bulgaria | Firewalking on Fire Festival |
United States of America | Fireworks on Independence Day and New Year’s Day |
South America | Using fire for grazing and agricultural use |
Brazil | The lifestyles of “queimada para limpeza,” which means the cleaning fire |
Indonesia | Using fire to clear farmland |
DGVMs | Human Ignitions | Fire Sup-Pression | Population Density | GDP | LULCC | Peak Month of Agri. Waste Burning |
---|---|---|---|---|---|---|
JSBACH-SPITFIRE | √ | |||||
ORCHIDEE-SPITFIRE | √ | √ | ||||
LPJ-SPITFIRE | √ | |||||
LPJ-GUESS-SIMFIREBLAZE | √ | |||||
CLM-DGVM | √ | √ | √ | √ | √ | √ |
JULESINFERNO | √ | |||||
CTEM | √ | √ | √ | |||
MC2 | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Tang, H.; Fang, K.; Stordal, F.; Bryn, A.; Gao, M.; Liu, X. Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models. Fire 2025, 8, 297. https://doi.org/10.3390/fire8080297
Zhu J, Tang H, Fang K, Stordal F, Bryn A, Gao M, Liu X. Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models. Fire. 2025; 8(8):297. https://doi.org/10.3390/fire8080297
Chicago/Turabian StyleZhu, Jiang, Hui Tang, Keyan Fang, Frode Stordal, Anders Bryn, Min Gao, and Xiaodong Liu. 2025. "Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models" Fire 8, no. 8: 297. https://doi.org/10.3390/fire8080297
APA StyleZhu, J., Tang, H., Fang, K., Stordal, F., Bryn, A., Gao, M., & Liu, X. (2025). Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models. Fire, 8(8), 297. https://doi.org/10.3390/fire8080297