Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (634)

Search Parameters:
Keywords = nanoengineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6541 KB  
Article
Optimization-Driven Evaluation of Multilayer Graphene Concrete: Strength Enhancement and Carbon Reduction Through Experimental and Mathematical Integration
by Kamran Shabbir, Maria Idrees, Rehan Masood and Muhammad Hassan Sammad
J. Compos. Sci. 2025, 9(10), 521; https://doi.org/10.3390/jcs9100521 - 1 Oct 2025
Abstract
The integration of nanoengineered materials into concrete systems has emerged as a promising strategy for enhancing structural performance and sustainability. This study presents a hybrid experimental-analytical investigation into the use of multilayer graphene as a smart admixture in high-performance concrete. The research combines [...] Read more.
The integration of nanoengineered materials into concrete systems has emerged as a promising strategy for enhancing structural performance and sustainability. This study presents a hybrid experimental-analytical investigation into the use of multilayer graphene as a smart admixture in high-performance concrete. The research combines mechanical testing, microstructural characterization, and a multi-objective optimization model to determine the optimal graphene dosage that maximizes strength gains while minimizing carbon emissions. Concrete specimens incorporating multilayer graphene (ranging from 0.01% to 0.10% by weight of cement) were tested over 7 to 90 days for compressive, tensile, and flexural strengths. Simultaneously, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analyses revealed crystallinity enhancement, pore densification, and favorable elemental redistribution due to graphene inclusion. A normalized composite objective function was formulated to balance three maximization targets—compressive, tensile, and flexural strength—and one minimization goal—carbon emission. The highest objective score (Z = 1.047) was achieved at 0.10% graphene dosage, indicating the optimal balance of strength performance and environmental efficiency. This dual-framework study not only confirms graphene’s reinforcing effects experimentally but also validates the 0.10% dosage through mathematical scoring. The outcomes position of multilayer graphene as a powerful additive for high-strength, low-carbon concrete, especially suited for infrastructure in hot and arid environments. The proposed optimization approach provides a scalable pathway for performance-based graphene dosing in future innovative concrete formulations. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Figure 1

27 pages, 8301 KB  
Review
Recent Advances in Nano-Engineered Thermochemical Energy Storage Materials: Morphologies, Characteristics, and Performance
by Zhu Jiang, Wenye Li, Bohao Peng, Shifang Huang and Xiaosong Zhang
Nanomaterials 2025, 15(19), 1476; https://doi.org/10.3390/nano15191476 - 26 Sep 2025
Abstract
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their [...] Read more.
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their ability to overcome intrinsic limitations of conventional systems. Sorption-based TCMs, especially salt hydrates, benefit from nano-engineering through carbon-based additives like CNTs and graphene, which enhance thermal conductivity and reaction kinetics while achieving volumetric energy densities exceeding 200 kWh/m3. For reversible reaction-based systems operating at higher temperatures (250–1000 °C), the strategies include (1) nanoparticle doping (e.g., SiO2, Al2O3, carbonaceous materials) for the mitigation of sintering and agglomeration; (2) flow-improving agents to enhance fluidization; and (3) nanosized structure engineering for an enlarged specific surface area. All these approaches show promising results to address the critical issues of sintering and agglomeration, slow kinetics, and poor cyclic stability for reversible reaction-based TCMs. While laboratory results are promising, challenges still persist in side reactions, scalability, cost reduction, and system integration. In general, while nano-engineered thermochemical materials (TCMs) demonstrate transformative potential for performance enhancement, significant research and development efforts remain imperative to bridge the gap between laboratory-scale achievements and industrial implementation. Full article
Show Figures

Figure 1

15 pages, 2035 KB  
Article
Real-Time Technique for Semiconductor Material Parameter Measurement Under Continuous Neutron Irradiation with High Integral Fluence
by Ivan S. Vasil’evskii, Aleksey N. Klochkov, Pavel V. Nekrasov, Aleksander N. Vinichenko, Nikolay I. Kargin, Almas Yskakov, Maksim V. Bulavin, Aleksey V. Galushko, Askhat Bekbayev, Bagdaulet Mukhametuly, Elmira Myrzabekova, Nurdaulet Shegebayev, Dana Kulikbayeva, Rassim Nurulin, Aru Nurkasova and Ruslan Baitugulov
Electronics 2025, 14(19), 3802; https://doi.org/10.3390/electronics14193802 - 25 Sep 2025
Abstract
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of [...] Read more.
The degradation of the electronic properties of semiconductor materials and electronic devices under neutron irradiation is a critical issue for the development of electronic systems intended for use in nuclear and thermonuclear energy facilities. This study presents a methodology for real-time measurement of the electrical parameters of semiconductor structures during neutron irradiation in a high-flux reactor environment. A specially designed irradiation fixture with an electrical measurement system was developed and implemented at the WWR-K research reactor. The system enables simultaneous measurement of electrical conductivity and the Hall effect, with automatic temperature control and remote data acquisition. The sealed fixture, equipped with radiation-resistant wiring and a temperature control, allows for continuous measurement of remote material properties at neutron fluences exceeding 1018 cm−2, eliminating the limitations associated with post-irradiation handling of radioactive samples. The technique was successfully applied to the two different InGaAs-based heterostructures, revealing distinct mechanisms of radiation-induced modification: degradation of mobility and carrier concentration in the InGaAs quantum well structure on GaAs substrate, and transmutation-induced doping effects in the heterostructure on InP substrate. The developed methodology provides a reliable platform for evaluating radiation resistance and optimizing materials for magnetic sensors and electronic components designed for high-radiation environments. Full article
(This article belongs to the Special Issue Radiation Effects on Advanced Electronic Devices and Circuits)
Show Figures

Figure 1

44 pages, 1527 KB  
Review
Targeting the Oral Mucosa: Emerging Drug Delivery Platforms and the Therapeutic Potential of Glycosaminoglycans
by Bruno Špiljak, Maja Somogyi Škoc, Iva Rezić Meštrović, Krešimir Bašić, Iva Bando and Ivana Šutej
Pharmaceutics 2025, 17(9), 1212; https://doi.org/10.3390/pharmaceutics17091212 - 17 Sep 2025
Viewed by 605
Abstract
Research into oral mucosa-targeted drug delivery systems (DDS) is rapidly evolving, with growing emphasis on enhancing bioavailability and precision targeting while overcoming the unique anatomical and physiological barriers of the oral environment. Despite considerable progress, challenges such as enzymatic degradation, limited mucosal penetration, [...] Read more.
Research into oral mucosa-targeted drug delivery systems (DDS) is rapidly evolving, with growing emphasis on enhancing bioavailability and precision targeting while overcoming the unique anatomical and physiological barriers of the oral environment. Despite considerable progress, challenges such as enzymatic degradation, limited mucosal penetration, and solubility issues continue to hinder therapeutic success. Recent advancements have focused on innovative formulation strategies—including nanoparticulate and biomimetic systems—to improve delivery efficiency and systemic absorption. Simultaneously, smart and stimuli-responsive materials are emerging, offering dynamic, environment-sensitive drug release profiles. One particularly promising area involves the application of glycosaminoglycans, a class of naturally derived polysaccharides with excellent biocompatibility, mucoadhesive properties, and hydrogel-forming capacity. These materials not only enhance drug residence time at the mucosal site but also enable controlled release kinetics, thereby improving therapeutic outcomes. However, critical research gaps remain: standardized, clinically meaningful mucoadhesion/permeation assays and robust in vitro–in vivo correlations are still lacking; long-term stability, batch consistency of GAGs, and clear regulatory classification (drug, device, or combination) continue to impede scale-up and translation. Patient-centric performance—palatability, mouthfeel, discreet wearability—and head-to-head trials versus standard care also require systematic evaluation to guide adoption. Overall, converging advances in GAG-based films, hydrogels, and nanoengineered carriers position oral mucosal delivery as a realistic near-term option for precision local and selected systemic therapies—provided the field resolves standardization, stability, regulatory, and usability hurdles. Full article
Show Figures

Figure 1

19 pages, 3633 KB  
Article
pH-Sensitive Naproxen Delivery via ZIF and Kaolin@ZIF Nanocarriers in 3D-Printed PLA–Gelatin Hydrogels
by Reyhan Çetin, Berna Ates, Ozgul Gok and Birgül Benli
Polymers 2025, 17(18), 2497; https://doi.org/10.3390/polym17182497 - 16 Sep 2025
Viewed by 334
Abstract
This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to [...] Read more.
This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to simulate localized drug release. Kaolin (Kao), a basic mineral in the kaolin group that includes halloysite, was selected as a chemically stable and biocompatible adsorbent to enhance ZIF integrity and system reliability. To address the concerns about the safety and reproducibility of nanoscale materials in biomedical applications, structurally stable ZIF and Kao@ZIF nanocarriers were synthesized and characterized using FT-IR, SEM-EDS, and LC-M/MS, measuring drug loading efficiencies over 90% for ZIF and slightly higher for Kao@ZIF. In vitro release profiles showed strong pH sensitivity, with greater naproxen release at acidic pH (5.4) and more sustained release from Kao@ZIF. Cytotoxicity assays using L929 fibroblasts demonstrated improved biocompatibility, with cell viabilities of approximately 75% for ZIF–naproxen, 82% for Kao@ZIF–naproxen, and 90% for gelatin-coated PLA–Kao@ZIF scaffolds, for 24 h incubation. Incorporating kaolin-stabilized ZIF nanocarriers into 3D-printed biodegradable scaffolds offers a promising and safer approach for pH-sensitive, tissue-targeted drug delivery, while laying the groundwork for future studies involving halloysite-derived nanotubular systems. Full article
Show Figures

Figure 1

26 pages, 1121 KB  
Review
Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology)
by María Jimena Salgueiro and Marcela Zubillaga
Pharmaceutics 2025, 17(9), 1159; https://doi.org/10.3390/pharmaceutics17091159 - 3 Sep 2025
Viewed by 646
Abstract
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many [...] Read more.
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many of these nanoplatforms evolve into multifunctional systems by incorporating additional imaging modalities (e.g., MRI, fluorescence) or non-radioactive therapies (e.g., photodynamic therapy, chemotherapy). These hybrid constructs often emerge from the reformulation, repositioning, or revival of previously approved or abandoned compounds, generating entities with novel pharmacological, pharmacokinetic, and biodistribution profiles. However, their translational potential faces significant regulatory hurdles. Existing frameworks—typically designed for single-modality drugs or devices—struggle to accommodate the combined complexity of nanoengineering, radioactive components, and integrated functionalities. This review examines how these systems challenge current norms in classification, safety assessment, preclinical modeling, and regulatory coordination. It also addresses emerging concerns around digital adjuncts such as AI-assisted dosimetry and software-based therapy planning. Finally, the article outlines international initiatives aimed at closing regulatory gaps and provides future directions for building harmonized, risk-adapted frameworks that support innovation while ensuring safety and efficacy. Full article
Show Figures

Figure 1

19 pages, 2274 KB  
Article
An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia
by Saulo Henrique Silva, Karen Yasmim Pereira dos Santos Avelino, Norma Lucena-Silva, Abdelhamid Errachid, Maria Danielly Lima de Oliveira and César Augusto Souza de Andrade
Sensors 2025, 25(17), 5313; https://doi.org/10.3390/s25175313 - 27 Aug 2025
Viewed by 673
Abstract
Acute lymphoblastic leukemia (ALL) represents the most common type of cancer in the pediatric population. The (1;19)(q23;p13) translocation is a primary chromosomal abnormality present in 3–12% of ALL cases. The current study aims to develop a label-free innovative nanodevice for the ultrasensitive diagnosis [...] Read more.
Acute lymphoblastic leukemia (ALL) represents the most common type of cancer in the pediatric population. The (1;19)(q23;p13) translocation is a primary chromosomal abnormality present in 3–12% of ALL cases. The current study aims to develop a label-free innovative nanodevice for the ultrasensitive diagnosis of the TCF3-PBX1 chimeric oncogene, featuring simplified operation and rapid analysis using minimal sample volumes, which positions it as a superior alternative for clinical diagnostics and early leukemia identification. The biosensor system was engineered on a nanostructured platform composed of polypyrrole (PPy) and a novel chemically functionalized hybrid nanocomposite of platinum nanospheres and titanium dioxide nanoparticles (TiO2@Pt). Single-stranded oligonucleotide sequences were chemically immobilized on the nanoengineered transducer to enable biospecific detection. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM) were used to characterize each stage of the biotechnological device fabrication process. The analytical properties of the sensing tool were explored using recombinant plasmids containing the TCF3-PBX1 oncogenic sequence and clinical specimens from pediatric patients with B-cell ALL. After exposing the molecular monitoring system to the genetic target, significant variations were observed in the voltammetric oxidation current (∆I = 33.08% ± 0.28 to 124.91% ± 17.08) and in the resistance to charge transfer (ΔRCT = 19.73% ± 0.96 to 83.51% ± 0.84). Data analysis revealed high reproducibility, with a relative standard deviation of 3.66%, a response range from 3.58 aM to 357.67 fM, a detection limit of 19.31 aM, and a limit of quantification of 64.39 aM. Therefore, a novel nanosensor for multiparametric electrochemical screening of the TCF3-PBX1 chimeric oncogene was described for the first time, potentially improving the quality of life for leukemic patients. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

21 pages, 2947 KB  
Article
Effect of Fe on Co-Based SiO2Al2O3 Mixed Support Catalyst for Fischer–Tropsch Synthesis in 3D-Printed SS Microchannel Microreactor
by Meric Arslan, Sujoy Bepari, Juvairia Shajahan, Saif Hassan and Debasish Kuila
Molecules 2025, 30(17), 3486; https://doi.org/10.3390/molecules30173486 - 25 Aug 2025
Viewed by 830
Abstract
This research explores the effect of a composite support of SiO2 and Al2O3 with Fe and Co incorporated as catalysts for Fischer–Tropsch synthesis (FTS) using a 3D-printed stainless steel (SS) microchannel microreactor. Two mesoporous catalysts, FeCo/SiO2Al2 [...] Read more.
This research explores the effect of a composite support of SiO2 and Al2O3 with Fe and Co incorporated as catalysts for Fischer–Tropsch synthesis (FTS) using a 3D-printed stainless steel (SS) microchannel microreactor. Two mesoporous catalysts, FeCo/SiO2Al2O3 and Co/SiO2Al2O3, were synthesized via a one-pot (OP) method and extensively characterized using N2 physisorption, XRD, SEM, TEM, H2-TPR, TGA-DSC, FTIR, and XPS. H2-TPR results revealed that the synthesis method significantly affected the reducibility of metal oxides, thereby influencing the formation of active FTS sites. SEM-EDS and TEM further revealed a well-defined hexagonal matrix with a porous surface morphology and uniform metal ion distribution. FTS reactions, carried out in the 200–350 °C temperature range at 20 bar with a H2/CO molar ratio of 2:1, exhibited the highest activity for FeCo/SiO2Al2O3, with up to 80% CO conversion. Long-term stability was evaluated by monitoring the catalyst performance for 30 h on stream at 320 °C under identical reaction conditions. The catalyst was initially active for the methanation reaction for up to 15 h, after which the selectivity for CH4 declined. Correspondingly, the C4+ selectivity increased after 15 h of time-on-stream, indicating a shift in the product distribution toward longer-chain hydrocarbons. This trend suggests that the catalyst undergoes gradual activation or restructuring under reaction conditions, which enhances chain growth over time. The increase in C4+ products may be attributed to the stabilization of the active sites and suppression of methane or light hydrocarbon formation. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

56 pages, 25615 KB  
Review
Recent Progress and Scientific Challenges in Wire-Arc Additive Manufacturing of Metallic Multi-Material Structures
by Sainand Jadhav, Sambhaji Kusekar, Akash Belure, Satyavan Digole, Abhijeet Mali, Muralimohan Cheepu, Manoj Mugale, Suhas Alkunte and Duckbong Kim
J. Manuf. Mater. Process. 2025, 9(8), 284; https://doi.org/10.3390/jmmp9080284 - 21 Aug 2025
Viewed by 1556
Abstract
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing [...] Read more.
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing (WAAM) advanced as a promising additive manufacturing process to realize the fabrication of these structures due to its high deposition rate, cost-effectiveness, and material utilization efficiency. This review presents a comprehensive overview of the recent progress, processing strategies, and scientific challenges in WAAM of multi-material structures. The paper begins with an introduction to multi-material structures, followed by a bibliometric analysis of the current research landscape. Conventional and additive manufacturing fabrication approaches are presented. The review highlights key developments in processing strategies and critically evaluates research studies on WAAM of BS and FGMs. Major scientific challenges, including porosity, lack of fusion, residual stresses, cracking, material compatibility, and brittle intermetallic phase formation, are critically analyzed. Additionally, modeling, simulation, and process automation issues are discussed as barriers to industrial-scale implementation. The paper concludes with an outlook on future research directions to address existing challenges and accelerate the adoption of WAAM for complex multi-material components. Full article
Show Figures

Figure 1

26 pages, 2099 KB  
Review
Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Anna Jelińska and Maciej Stawny
Nanomaterials 2025, 15(16), 1260; https://doi.org/10.3390/nano15161260 - 15 Aug 2025
Viewed by 713
Abstract
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. [...] Read more.
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. Nanoformulation techniques offer a promising approach to address these issues and optimize the therapeutic effectiveness of cannabinoids and other cannabinoid receptor ligands. This comprehensive review explores the advancements in nanoformulation strategies to enhance the therapeutic efficacy and safety of synthetic cannabinoids and related compounds, such as CB13, rimonabant, and HU-211, which have been studied in a range of preclinical models addressing conditions such as neuropathic pain, depression, and cancer. The review discusses various nanocarriers employed in this field, including lipid-based, polymeric, and hybrid nanoparticles, micelles, emulsions, and other nanoengineered carriers. In addition to formulation approaches, this review provides an in-depth analysis of chemical structures and their effect on compound activity, especially in the context of the affinity for the cannabinoid type 1 receptor in the brain, which is chiefly responsible for the psychoactive effects. The provided summary of research concerning either chemical modifications of existing cannabinoids or the creation of new compounds that interact with cannabinoid receptors, followed by the development of nanoformulations for these agents, allows for the identification of new research directions and future perspectives for Cannabis-based medicine. In conclusion, the combination of nanotechnology and cannabinoid pharmacology holds promise for delivering more effective and safer therapeutic solutions for a broad spectrum of medical conditions, making this an exciting area of research with profound implications for the healthcare and pharmaceutical industries. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

24 pages, 9717 KB  
Article
Core Monitoring of Thermoset Polymer Composites’ Curing with Embedded Nanocomposite Sensors: A Key Step Towards Process 4.0
by Antoine Lemartinel, Mickaël Castro and Jean-Francois Feller
J. Compos. Sci. 2025, 9(8), 435; https://doi.org/10.3390/jcs9080435 - 13 Aug 2025
Viewed by 1257
Abstract
Structural composite materials are being used more than ever in aeronautics, automotive and naval, or in renewable energies fields. To reconcile the contradictory needs for higher performances and lower costs, it is crucial to ensure the real-time monitoring of as many features as [...] Read more.
Structural composite materials are being used more than ever in aeronautics, automotive and naval, or in renewable energies fields. To reconcile the contradictory needs for higher performances and lower costs, it is crucial to ensure the real-time monitoring of as many features as possible during the manufacturing process to feed a digital twin able to minimise post-fabrication controls. For thermoset composites, little information is available regarding the evolution of the polymer’s core properties during infusion and curing. The local kinetics of reticulation, in several areas of interest across the thickness of a structural composite part, are valuable data to record and analyse to guarantee the materials’ performances. This paper investigates a novel strategy curing in the core of an epoxy matrix with crosslinkable quantum-resistive nanocomposite sensors (xQRS). First, the electrical behaviour of the sensor during isothermal curing is considered. Then, the influence of the dynamic percolation and the epoxy crosslinking reaction on the resistance is examined. The evidence of a relationship between the curing state of the resin and the evolution of the xQRS resistance makes its use in the process monitoring of thermoset composites promising, especially in cases involving large and thick parts. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

27 pages, 2225 KB  
Review
Ionic Liquids and Poly (Ionic Liquids) for CO2 Capture: A Comprehensive Review
by Jui Kharade and Karen Lozano
Energies 2025, 18(16), 4257; https://doi.org/10.3390/en18164257 - 11 Aug 2025
Viewed by 896
Abstract
The rising concentration of atmospheric carbon dioxide (CO2), driven largely by fossil fuel combustion, is a major contributor to global climate change and ocean acidification. As conventional CO2 capture technologies, primarily amine-based solvents, face challenges such as high energy requirements, [...] Read more.
The rising concentration of atmospheric carbon dioxide (CO2), driven largely by fossil fuel combustion, is a major contributor to global climate change and ocean acidification. As conventional CO2 capture technologies, primarily amine-based solvents, face challenges such as high energy requirements, volatility, and degradation, there is an urgent need for alternative materials that are both efficient and sustainable. Ionic liquids (ILs) and poly (ionic liquids) (PILs) have emerged as promising candidates due to their unique physicochemical properties, including negligible vapor pressure, high thermal and chemical stability, structural tunability, and strong CO2 affinity. This review provides a comprehensive overview of recent advancements in the design, synthesis, and application of ILs and PILs for CO2 capture. We examine the mechanisms of CO2 absorption in IL and PIL systems, analyze the structure-property relationships influencing capture performance, and compare their advantages and limitations relative to conventional solvents. Special attention is given to the role of functional groups, anion/cation selection, and polymeric architectures in enhancing CO2 uptake and reducing regeneration energy. Finally, the review highlights current challenges and future research directions for scaling up IL and PIL-based technologies in industrial carbon capture and sequestration systems. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

31 pages, 5529 KB  
Review
Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review
by Yanjie Wang, Zhiqiang Lan, Jie Wang, Kun Zhu, Jian He, Xiujian Chou and Yong Zhou
Sensors 2025, 25(16), 4896; https://doi.org/10.3390/s25164896 - 8 Aug 2025
Viewed by 725
Abstract
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, [...] Read more.
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, and nice stability, with bright application prospects in advanced gas sensors. Meanwhile, the increasingly expanding applications of gas sensors, such as the Internet of Things (IoT), the food industry, disease diagnosis, etc., have raised higher sensor performance requirements. To further enhance the gas-sensing performance of nanofibers, the scheme of functionalized nanofiber strategies, either in electrospinning or post-treatment, has been proposed and verified. This review systematically summarized the nanostructures, gas-sensing properties, and functional mechanisms of modified nanofibers. Additionally, the perspectives and challenges regarding electrospun nanofibers for gas sensing were discussed. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Graphical abstract

19 pages, 3100 KB  
Review
Casein-Based Biomaterials: Fabrication and Wound Healing Applications
by Nikolay Estiven Gomez Mesa, Krasimir Vasilev and Youhong Tang
Molecules 2025, 30(15), 3278; https://doi.org/10.3390/molecules30153278 - 5 Aug 2025
Cited by 1 | Viewed by 902
Abstract
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and [...] Read more.
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and hydrophilic nature, calcium phosphate nanocluster structure, and its response to different pH, temperature, and ionic conditions. These characteristics have direct implications for its colloidal stability, including features such as gelation, swelling capacity, and usability as a biomaterial in tissue engineering. This review also discusses industrial derivatives and recent advances in casein biomaterials based on different fabrication types such as hydrogels, electrospun fibres, films, and advanced systems. Furthermore, casein dressings’ functional and biological attributes have shown remarkable exudate absorption, retention of moisture, biocompatibility, and antimicrobial and anti-inflammatory activity in both in vivo and in vitro studies. The gathered evidence highlights casein’s versatile bioactivity and dynamic molecular properties, positioning it as a promising platform to address advanced wound dressing challenges. Full article
Show Figures

Graphical abstract

22 pages, 5497 KB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Cited by 1 | Viewed by 571
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop