Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance
Abstract
1. Introduction
2. Modification of Cannabinoid Structure
3. Cannabinoids’ Nanoformulations
3.1. Δ9-Tetrahydrocannabinol-Valine-Hemisuccinate
3.2. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone
3.3. WIN55,212-2
3.4. JWH133
3.5. Rimonabant
3.6. URB597
3.7. AM251
3.8. MDA7
3.9. Arachidonoylcyclopropylamide
3.10. HU-308
3.11. HU-211
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McPartland, J.M. Cannabis Systematics at the Levels of Family, Genus, and Species. Cannabis Cannabinoid Res. 2018, 3, 203–212. [Google Scholar] [CrossRef]
- Zuardi, A.W. History of Cannabis as a Medicine: A Review. Braz. J. Psychiatry 2006, 28, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Grotenhermen, F.; Müller-Vahl, K. Medicinal Uses of Marijuana and Cannabinoids. Crit. Rev. Plant Sci. 2016, 35, 378–405. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Wang, W.; Zhou, N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr. Mol. Pharmacol. 2019, 12, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef]
- Pagano, C.; Navarra, G.; Coppola, L.; Avilia, G.; Bifulco, M.; Laezza, C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 3344. [Google Scholar] [CrossRef]
- Patel, A.D. Cannabinoids in Neurologic Illnesses. Neurol. Clin. 2021, 39, 231–241. [Google Scholar] [CrossRef]
- Ammendolia, I.; Mannucci, C.; Cardia, L.; Calapai, G.; Gangemi, S.; Esposito, E.; Calapai, F. Pharmacovigilance on Cannabidiol as an Antiepileptic Agent. Front. Pharmacol. 2023, 14, 1091978. [Google Scholar] [CrossRef]
- Abrams, D.I.; Guzman, M. Cannabis in Cancer Care. Clin. Pharmacol. Ther. 2015, 97, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Turgeman, I.; Bar-Sela, G. Cannabis for Cancer—Illusion or the Tip of an Iceberg: A Review of the Evidence for the Use of Cannabis and Synthetic Cannabinoids in Oncology. Expert Opin. Investig. Drugs 2019, 28, 285–296. [Google Scholar] [CrossRef]
- Banerjee, A.; Hayward, J.J.; Trant, J.F. “Breaking Bud”: The Effect of Direct Chemical Modifications of Phytocannabinoids on Their Bioavailability, Physiological Effects, and Therapeutic Potential. Org. Biomol. Chem. 2023, 21, 3715–3732. [Google Scholar] [CrossRef]
- Wdowiak, K.; Walkowiak, J.; Pietrzak, R.; Bazan-Woźniak, A.; Cielecka-Piontek, J. Bioavailability of Hesperidin and Its Aglycone Hesperetin-Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022, 14, 2647. [Google Scholar] [CrossRef]
- Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-Technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–36. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Vesely, O.; Baldovska, S.; Kolesarova, A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13, 3095. [Google Scholar] [CrossRef]
- Tan, O.J.; Loo, H.L.; Thiagarajah, G.; Palanisamy, U.D.; Sundralingam, U. Improving Oral Bioavailability of Medicinal Herbal Compounds through Lipid-Based Formulations—A Scoping Review. Phytomedicine 2021, 90, 153651. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.M.; Evans, F.J. Cannabinoids in Clinical Practice. Drugs 2000, 60, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Gressler, S.; Hipfinger, C.; Part, F.; Pavlicek, A.; Zafiu, C.; Giese, B. A Systematic Review of Nanocarriers Used in Medicine and beyond—Definition and Categorization Framework. J. Nanobiotechnol. 2025, 23, 90. [Google Scholar] [CrossRef]
- Hassan, A.A.A.; Ramadan, E.; Kristó, K.; Regdon, G.; Sovány, T. Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery. Pharmaceutics 2025, 17, 797. [Google Scholar] [CrossRef]
- Assadpour, E.; Rezaei, A.; Das, S.S.; Krishna Rao, B.V.; Singh, S.K.; Kharazmi, M.S.; Jha, N.K.; Jha, S.K.; Prieto, M.A.; Jafari, S.M. Cannabidiol-Loaded Nanocarriers and Their Therapeutic Applications. Pharmaceuticals 2023, 16, 487. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Duman, H.; Akdaşçi, E.; Bolat, E.; Sarıtaş, S.; Karav, S.; Witkowska, A.M. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024, 29, 3482. [Google Scholar] [CrossRef] [PubMed]
- Mahardhika, A.B.; Ressemann, A.; Kremers, S.E.; Gregório Castanheira, M.S.; Schoeder, C.T.; Müller, C.E.; Pillaiyar, T. Design, Synthesis, and Structure-Activity Relationships of Diindolylmethane Derivatives as Cannabinoid CB2 Receptor Agonists. Arch. Pharm. 2023, 356, e2200493. [Google Scholar] [CrossRef] [PubMed]
- Prandi, C.; Blangetti, M.; Namdar, D.; Koltai, H. Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases. Molecules 2018, 23, 1526. [Google Scholar] [CrossRef]
- Thakur, G.A.; Duclos, R.I.; Makriyannis, A. Natural Cannabinoids: Templates for Drug Discovery. Life Sci. 2005, 78, 454–466. [Google Scholar] [CrossRef]
- Bisogno, T. Endogenous Cannabinoids: Structure and Metabolism. J. Neuroendocrinol. 2008, 20, 1–9. [Google Scholar] [CrossRef]
- Bernal-Chico, A.; Tepavcevic, V.; Manterola, A.; Utrilla, C.; Matute, C.; Mato, S. Endocannabinoid Signaling in Brain Diseases: Emerging Relevance of Glial Cells. Glia 2023, 71, 103–126. [Google Scholar] [CrossRef]
- Tai, S.; Fantegrossi, W.E. Synthetic Cannabinoids: Pharmacology, Behavioral Effects, and Abuse Potential. Curr. Addict. Rep. 2014, 1, 129–136. [Google Scholar] [CrossRef]
- Palrasu, M.; Wright, L.; Patel, M.; Leech, L.; Branch, S.; Harrelson, S.; Khan, S. Perspectives on Challenges in Cannabis Drug Delivery Systems: Where Are We? Med. Cannabis Cannabinoids 2022, 5, 102–119. [Google Scholar] [CrossRef]
- Hossain, K.R.; Alghalayini, A.; Valenzuela, S.M. Current Challenges and Opportunities for Improved Cannabidiol Solubility. Int. J. Mol. Sci. 2023, 24, 14514. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics 2020, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Dziadulewicz, E.K.; Bevan, S.J.; Brain, C.T.; Coote, P.R.; Culshaw, A.J.; Davis, A.J.; Edwards, L.J.; Fisher, A.J.; Fox, A.J.; Gentry, C.; et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: A Potent, Orally Bioavailable Human CB1/CB2 Dual Agonist with Antihyperalgesic Properties and Restricted Central Nervous System Penetration. J. Med. Chem. 2007, 50, 3851–3856. [Google Scholar] [CrossRef]
- Reddy, T.S.; Zomer, R.; Mantri, N. Nanoformulations as a Strategy to Overcome the Delivery Limitations of Cannabinoids. Phytother. Res. 2023, 37, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Light, K.; Karboune, S. Emulsion, Hydrogel and Emulgel Systems and Novel Applications in Cannabinoid Delivery: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8199–8229. [Google Scholar] [CrossRef]
- Hernán Pérez de la Ossa, D.; Ligresti, A.; Gil-Alegre, M.E.; Aberturas, M.R.; Molpeceres, J.; Di Marzo, V.; Torres Suárez, A.I. Poly-ε-Caprolactone Microspheres as a Drug Delivery System for Cannabinoid Administration: Development, Characterization and In Vitro Evaluation of Their Antitumoral Efficacy. J. Control. Release 2012, 161, 927–932. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Du, Y.; Yu, X.; Zhu, R.; Zhang, M.; Chen, W.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Devel. Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef]
- Cheng, H.; Liao, J.; Ma, Y.; Sarwar, M.T.; Yang, H. Advances in Targeted Therapy for Tumor with Nanocarriers: A Review. Mater. Today Bio 2025, 31, 101583. [Google Scholar] [CrossRef]
- Doessegger, L.; Mahler, H.-C.; Szczesny, P.; Rockstroh, H.; Kallmeyer, G.; Langenkamp, A.; Herrmann, J.; Famulare, J. The Potential Clinical Relevance of Visible Particles in Parenteral Drugs. J. Pharm. Sci. 2012, 101, 2635–2644. [Google Scholar] [CrossRef]
- Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal Nanomedicines: Recent Advancements, Challenges, Opportunities and Regulatory Overview. Phytomedicine 2022, 96, 153890. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Hai, T.; Wan, X.; Yu, D.-G.; Wang, K.; Yang, Y.; Liu, Z.-P. Electrospun Lipid-Coated Medicated Nanocomposites for an Improved Drug Sustained-Release Profile. Mater. Des. 2019, 162, 70–79. [Google Scholar] [CrossRef]
- Su, S.; Kang, P.M. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials 2020, 10, 656. [Google Scholar] [CrossRef]
- Martín-Banderas, L.; Muñoz-Rubio, I.; Prados, J.; Álvarez-Fuentes, J.; Calderón-Montaño, J.M.; López-Lázaro, M.; Arias, J.L.; Leiva, M.C.; Holgado, M.A.; Fernández-Arévalo, M. In Vitro and In Vivo Evaluation of Δ9-Tetrahidrocannabinol/PLGA Nanoparticles for Cancer Chemotherapy. Int. J. Pharm. 2015, 487, 205–212. [Google Scholar] [CrossRef]
- Martín-Banderas, L.; Muñoz-Rubio, I.; Álvarez-Fuentes, J.; Durán-Lobato, M.; Arias, J.L.; Holgado, M.Á.; Fernández-Arévalo, M. Engineering of Δ9-Tetrahydrocannabinol Delivery Systems Based on Surface Modified-PLGA Nanoplatforms. Colloids Surf. B Biointerfaces 2014, 123, 114–122. [Google Scholar] [CrossRef]
- Hommoss, G.; Pyo, S.M.; Müller, R.H. Mucoadhesive Tetrahydrocannabinol-Loaded NLC—Formulation Optimization and Long-Term Physicochemical Stability. Eur. J. Pharm. Biopharm. 2017, 117, 408–417. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.I.; Torres-Suárez, A.I.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment. Pharmaceutics 2020, 12, 439. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Deng, C.; Zheng, W.; Li, S.; Liu, Y.; Zhang, T.; Zhang, C.; Fu, Y.; Miao, H.; Ren, F.; et al. Cannabidiol Effectively Promoted Cell Death in Bladder Cancer and the Improved Intravesical Adhesion Drugs Delivery Strategy Could Be Better Used for Treatment. Pharmaceutics 2021, 13, 1415. [Google Scholar] [CrossRef]
- Monou, P.K.; Mamaligka, A.M.; Tzimtzimis, E.K.; Tzetzis, D.; Vergkizi-Nikolakaki, S.; Vizirianakis, I.S.; Andriotis, E.G.; Eleftheriadis, G.K.; Fatouros, D.G. Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2022, 14, 1637. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Sierakowska, A.; Szajna, E.; Matýsek, D.; Bogdał, D. Development of Stimuli-Responsive Chitosan/ZnO NPs Transdermal Systems for Controlled Cannabidiol Delivery. Polymers 2021, 13, 211. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Sun, Y.; Freeman, K.; Mchenry, M.A.; Wang, C.; Guo, M. Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022, 11, 376. [Google Scholar] [CrossRef]
- Aparicio-Blanco, J.; Sebastián, V.; Benoit, J.P.; Torres-Suárez, A.I. Lipid Nanocapsules Decorated and Loaded with Cannabidiol as Targeted Prolonged Release Carriers for Glioma Therapy: In Vitro Screening of Critical Parameters. Eur. J. Pharm. Biopharm. 2019, 134, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Momekova, D.; Ivanov, E.; Konstantinov, S.; Ublekov, F.; Petrov, P.D. Nanocomposite Cryogel Carriers from 2-Hydroxyethyl Cellulose Network and Cannabidiol-Loaded Polymeric Micelles for Sustained Topical Delivery. Polymers 2020, 12, 1172. [Google Scholar] [CrossRef] [PubMed]
- Sosnik, A.; Shabo, R.B.; Halamish, H.M. Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021, 13, 2142. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Binder, J.; Salama, R.; Trant, J.F. Synthesis, Characterization and Stress-Testing of a Robust Quillaja Saponin Stabilized Oil-in-Water Phytocannabinoid Nanoemulsion. J. Cannabis Res. 2021, 3, 43. [Google Scholar] [CrossRef]
- Nakano, Y.; Tajima, M.; Sugiyama, E.; Sato, V.H.; Sato, H. Development of a Novel Nano-Emulsion Formulation to Improve Intestinal Absorption of Cannabidiol. Med. Cannabis Cannabinoids 2019, 2, 35–42. [Google Scholar] [CrossRef]
- Mihailova, L.; Tchekalarova, J.; Shalabalija, D.; Geskovski, N.; Stoilkovska Gjorgievska, V.; Stefkov, G.; Krasteva, P.; Simonoska Crcarevska, M.; Glavas Dodov, M. Lipid Nano-Carriers Loaded with Cannabis Sativa Extract for Epilepsy Treatment—In Vitro Characterization and In Vivo Efficacy Studies. J. Pharm. Sci. 2022, 111, 3384–3396. [Google Scholar] [CrossRef]
- Vanti, G.; Grifoni, L.; Bergonzi, M.C.; Antiga, E.; Montefusco, F.; Caproni, M.; Bilia, A.R. Development and Optimisation of Biopharmaceutical Properties of a New Microemulgel of Cannabidiol for Locally-Acting Dermatological Delivery. Int. J. Pharm. 2021, 607, 121036. [Google Scholar] [CrossRef]
- Izgelov, D.; Regev, A.; Domb, A.J.; Hoffman, A. Using the Absorption Cocktail Approach to Assess Differential Absorption Kinetics of Cannabidiol Administered in Lipid-Based Vehicles in Rats. Mol. Pharm. 2020, 17, 1979–1986. [Google Scholar] [CrossRef]
- Knaub, K.; Sartorius, T.; Dharsono, T.; Wacker, R.; Wilhelm, M.; Schön, C. A Novel Self-Emulsifying Drug Delivery System (SEDDS) Based on VESIsorb® Formulation Technology Improving the Oral Bioavailability of Cannabidiol in Healthy Subjects. Molecules 2019, 24, 2967. [Google Scholar] [CrossRef]
- Kok, L.Y.; Bannigan, P.; Sanaee, F.; Evans, J.C.; Dunne, M.; Regenold, M.; Ahmed, L.; Dubins, D.; Allen, C. Development and Pharmacokinetic Evaluation of a Self-Nanoemulsifying Drug Delivery System for the Oral Delivery of Cannabidiol. Eur. J. Pharm. Sci. 2022, 168, 106058. [Google Scholar] [CrossRef]
- Cherniakov, I.; Izgelov, D.; Barasch, D.; Davidson, E.; Domb, A.J.; Hoffman, A. Piperine-pro-Nanolipospheres as a Novel Oral Delivery System of Cannabinoids: Pharmacokinetic Evaluation in Healthy Volunteers in Comparison to Buccal Spray Administration. J. Control. Release 2017, 266, 1–7. [Google Scholar] [CrossRef]
- Cherniakov, I.; Izgelov, D.; Domb, A.J.; Hoffman, A. The Effect of Pro NanoLipospheres (PNL) Formulation Containing Natural Absorption Enhancers on the Oral Bioavailability of Delta-9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) in a Rat Model. Eur. J. Pharm. Sci. 2017, 109, 21–30. [Google Scholar] [CrossRef]
- Izgelov, D.; Shmoeli, E.; Domb, A.J.; Hoffman, A. The Effect of Medium Chain and Long Chain Triglycerides Incorporated in Self-Nano Emulsifying Drug Delivery Systems on Oral Absorption of Cannabinoids in Rats. Int. J. Pharm. 2020, 580, 119201. [Google Scholar] [CrossRef]
- Atsmon, J.; Cherniakov, I.; Izgelov, D.; Hoffman, A.; Domb, A.J.; Deutsch, L.; Deutsch, F.; Heffetz, D.; Sacks, H. PTL401, a New Formulation Based on Pro-Nano Dispersion Technology, Improves Oral Cannabinoids Bioavailability in Healthy Volunteers. J. Pharm. Sci. 2018, 107, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Taskar, P.S.; Patil, A.; Lakhani, P.; Ashour, E.; Gul, W.; ElSohly, M.A.; Murphy, B.; Majumdar, S. Δ9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits. Transl. Vis. Sci. Technol. 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Dudhipala, N.; Thakkar, R.; Mehraj, T.; Marathe, S.; Gul, W.; ElSohly, M.A.; Murphy, B.; Majumdar, S. Effect of Surfactant Concentration and Sterilization Process on Intraocular Pressure-Lowering Activity of Δ9-Tetrahydrocannabinol-Valine-Hemisuccinate (NB1111) Nanoemulsions. Drug Deliv. Transl. Res. 2021, 11, 2096–2107. [Google Scholar] [CrossRef]
- Hingorani, T.; Adelli, G.R.; Punyamurthula, N.; Gul, W.; Elsohly, M.A.; Repka, M.A.; Majumdar, S. Ocular Disposition of the Hemiglutarate Ester Prodrug of ∆9-Tetrahydrocannabinol from Various Ophthalmic Formulations. Pharm. Res. 2013, 30, 2146–2156. [Google Scholar] [CrossRef]
- Taskar, P.; Adelli, G.; Patil, A.; Lakhani, P.; Ashour, E.; Gul, W.; ElSohly, M.; Majumdar, S. Analog Derivatization of Cannabidiol for Improved Ocular Permeation. J. Ocul. Pharmacol. Ther. 2019, 35, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Martín-Banderas, L.; Alvarez-Fuentes, J.; Durán-Lobato, M.; Prados, J.; Melguizo, C.; Fernández-Arévalo, M.; Holgado, M.Á. Cannabinoid Derivate-Loaded PLGA Nanocarriers for Oral Administration: Formulation, Characterization, and Cytotoxicity Studies. Int. J. Nanomed. 2012, 7, 5793–5806. [Google Scholar] [CrossRef]
- Durán-Lobato, M.; Muñoz-Rubio, I.; Holgado, M.A.; Alvarez-Fuentes, J.; Fernández-Arévalo, M.; Martín-Banderas, L. Enhanced Cellular Uptake and Biodistribution of a Synthetic Cannabinoid Loaded in Surface-Modified Poly(Lactic-Co-Glycolic Acid) Nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 1068–1079. [Google Scholar] [CrossRef]
- Berrocoso, E.; Rey-Brea, R.; Fernández-Arévalo, M.; Micó, J.A.; Martín-Banderas, L. Single Oral Dose of Cannabinoid Derivate Loaded PLGA Nanocarriers Relieves Neuropathic Pain for Eleven Days. Nanomedicine 2017, 13, 2623–2632. [Google Scholar] [CrossRef]
- Comparative Study of Chitosan-and PEG-Coated Lipid and PLGA Nanoparticles as Oral Delivery Systems for Cannabinoids. Available online: https://www.researchgate.net/publication/272822967_Comparative_study_of_chitosan-and_PEG-coated_lipid_and_PLGA_nanoparticles_as_oral_delivery_systems_for_cannabinoids (accessed on 1 August 2025).
- Durán-Lobato, M.; Martín-Banderas, L.; Lopes, R.; Gonçalves, L.M.D.; Fernández-Arévalo, M.; Almeida, A.J. Lipid Nanoparticles as an Emerging Platform for Cannabinoid Delivery: Physicochemical Optimization and Biocompatibility. Drug Dev. Ind. Pharm. 2016, 42, 190–198. [Google Scholar] [CrossRef]
- Linsell, O.; Brownjohn, P.W.; Nehoff, H.; Greish, K.; Ashton, J.C. Effect of Styrene Maleic Acid WIN55,212-2 Micelles on Neuropathic Pain in a Rat Model. J. Drug Target. 2015, 23, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Xian, S.; Parayath, N.N.; Nehoff, H.; Giles, N.M.; Greish, K. The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55,212-2 for the Treatment of Cancer. Anticancer Res. 2015, 35, 4707–4712. [Google Scholar]
- Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalà, V.; Taurin, S. Synthetic Cannabinoids Nano-Micelles for the Management of Triple Negative Breast Cancer. J. Control. Release 2018, 291, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Wu, X.; Geng, D.; Pan, W.; Li, Z.; Wang, G.; Li, D.; Li, C.; Feng, S.; Zhu, L.; et al. H2O2/NIR-Sensitive “Two-Step” Nano Theranostic System Based Hollow Mesoporous Copper Sulfide/Hyaluronic Acid/JWH133 as an Optimally Designed Delivery System for Multidimensional Treatment of RA. Int. J. Biol. Macromol. 2023, 225, 298–309. [Google Scholar] [CrossRef]
- Hirsch, S.; Hinden, L.; Naim, M.B.-D.; Baraghithy, S.; Permyakova, A.; Azar, S.; Nasser, T.; Portnoy, E.; Agbaria, M.; Nemirovski, A.; et al. Hepatic Targeting of the Centrally Active Cannabinoid 1 Receptor (CB1R) Blocker Rimonabant via PLGA Nanoparticles for Treating Fatty Liver Disease and Diabetes. J. Control. Release 2023, 353, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Ravani, L.; Drechsler, M.; Mariani, P.; Contado, C.; Ruokolainen, J.; Ratano, P.; Campolongo, P.; Trezza, V.; Nastruzzi, C.; et al. Cannabinoid Antagonist in Nanostructured Lipid Carriers (NLCs): Design, Characterization and In Vivo Study. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 328–336. [Google Scholar] [CrossRef]
- Esposito, E.; Drechsler, M.; Cortesi, R.; Nastruzzi, C. Encapsulation of Cannabinoid Drugs in Nanostructured Lipid Carriers. Eur. J. Pharm. Biopharm. 2016, 102, 87–91. [Google Scholar] [CrossRef]
- Esposito, E.; Drechsler, M.; Mariani, P.; Carducci, F.; Servadio, M.; Melancia, F.; Ratano, P.; Campolongo, P.; Trezza, V.; Cortesi, R.; et al. Lipid Nanoparticles for Administration of Poorly Water Soluble Neuroactive Drugs. Biomed. Microdevices 2017, 19, 44. [Google Scholar] [CrossRef]
- Astruc-Diaz, F.; McDaniel, S.W.; Xu, J.J.; Parola, S.; Brown, D.L.; Naguib, M.; Diaz, P. In Vivo Efficacy of Enabling Formulations Based on Hydroxypropyl-β-Cyclodextrins, Micellar Preparation, and Liposomes for the Lipophilic Cannabinoid CB2 Agonist, MDA7. J. Pharm. Sci. 2013, 102, 352–364. [Google Scholar] [CrossRef]
- Boyacıoğlu, Ö.; Bilgiç, E.; Varan, C.; Bilensoy, E.; Nemutlu, E.; Sevim, D.; Kocaefe, Ç.; Korkusuz, P. ACPA Decreases Non-Small Cell Lung Cancer Line Growth through Akt/PI3K and JNK Pathways In Vitro. Cell Death Dis. 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- te Boekhorst, B.C.M.; Bovens, S.M.; Rodrigues-Feo, J.; Sanders, H.M.H.F.; van de Kolk, C.W.A.; de Kroon, A.I.P.M.; Cramer, M.-J.M.; Doevendans, P.A.F.M.; ten Hove, M.; Pasterkamp, G.; et al. Characterization and In Vitro and In Vivo Testing of CB2-Receptor- and NGAL-Targeted Paramagnetic Micelles for Molecular MRI of Vulnerable Atherosclerotic Plaque. Mol. Imaging Biol. 2010, 12, 635–651. [Google Scholar] [CrossRef]
- Naveh, N.; Weissman, C.; Muchtar, S.; Benita, S.; Mechoulam, R. A Submicron Emulsion of HU-211, a Synthetic Cannabinoid, Reduces Intraocular Pressure in Rabbits. Graefe’s Arch. Clin. Exp. Ophthalmol. 2000, 238, 334–338. [Google Scholar] [CrossRef]
- He, X.; Yang, L.; Wang, M.; Zhuang, X.; Huang, R.; Zhu, R.; Wang, S. Targeting the Endocannabinoid/CB1 Receptor System for Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles. Cell Physiol. Biochem. 2017, 42, 2281–2294. [Google Scholar] [CrossRef]
- He, X.; Zhu, Y.; Wang, M.; Jing, G.; Zhu, R.; Wang, S. Antidepressant Effects of Curcumin and HU-211 Coencapsulated Solid Lipid Nanoparticles against Corticosterone-Induced Cellular and Animal Models of Major Depression. Int. J. Nanomed. 2016, 11, 4975–4990. [Google Scholar] [CrossRef]
- He, X.-L.; Yang, L.; Wang, Z.-J.; Huang, R.-Q.; Zhu, R.-R.; Cheng, L.-M. Solid Lipid Nanoparticles Loading with Curcumin and Dexanabinol to Treat Major Depressive Disorder. Neural Regen. Res. 2021, 16, 537–542. [Google Scholar] [CrossRef]
- Hingorani, T.; Gul, W.; Elsohly, M.; Repka, M.A.; Majumdar, S. Effect of Ion Pairing on In Vitro Transcorneal Permeability of a Δ9-Tetrahydrocannabinol Prodrug: Potential in Glaucoma Therapy. J. Pharm. Sci. 2012, 101, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Upadhye, S.B.; Kulkarni, S.J.; Majumdar, S.; Avery, M.A.; Gul, W.; ElSohly, M.A.; Repka, M.A. Preparation and Characterization of Inclusion Complexes of a Hemisuccinate Ester Prodrug of Δ9-Tetrahydrocannabinol with Modified Beta-Cyclodextrins. AAPS PharmSciTech 2010, 11, 509–517. [Google Scholar] [CrossRef]
- Adelli, G.R.; Bhagav, P.; Taskar, P.; Hingorani, T.; Pettaway, S.; Gul, W.; ElSohly, M.A.; Repka, M.A.; Majumdar, S. Development of a Δ9-Tetrahydrocannabinol Amino Acid-Dicarboxylate Prodrug with Improved Ocular Bioavailability. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2167–2179. [Google Scholar] [CrossRef]
- Gardin, A.; Kucher, K.; Kiese, B.; Appel-Dingemanse, S. Cannabinoid Receptor Agonist 13, a Novel Cannabinoid Agonist: First in Human Pharmacokinetics and Safety. Drug Metab. Dispos. 2009, 37, 827–833. [Google Scholar] [CrossRef]
- Bridges, D.; Ahmad, K.; Rice, A.S. The Synthetic Cannabinoid WIN55,212-2 Attenuates Hyperalgesia and Allodynia in a Rat Model of Neuropathic Pain. Br. J. Pharmacol. 2001, 133, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, U.; Eliav, E.; Bennett, G.J.; Kopin, I.J. The Analgesic Effects of R(+)-WIN 55,212-2 Mesylate, a High Affinity Cannabinoid Agonist, in a Rat Model of Neuropathic Pain. Neurosci. Lett. 1997, 221, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Hashiesh, H.M.; Sharma, C.; Goyal, S.N.; Jha, N.K.; Ojha, S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front. Pharmacol. 2021, 12, 702675. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. RIO-Europe Study Group Effects of the Cannabinoid-1 Receptor Blocker Rimonabant on Weight Reduction and Cardiovascular Risk Factors in Overweight Patients: 1-Year Experience from the RIO-Europe Study. Lancet 2005, 365, 1389–1397. [Google Scholar] [CrossRef]
- Després, J.-P.; Golay, A.; Sjöström, L. Rimonabant in Obesity-Lipids Study Group Effects of Rimonabant on Metabolic Risk Factors in Overweight Patients with Dyslipidemia. N. Engl. J. Med. 2005, 353, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, A.S.; Pendleton, S.; McMahon, Z.; Dar, A.; Oben, J.; Crook, M.A.; Botha, A.J. Rimonabant Improves Cholesterol, Insulin Resistance and Markers of Non-Alcoholic Fatty Liver in Morbidly Obese Patients: A Retrospective Cohort Study. Int. J. Clin. Pract. 2011, 65, 713–715. [Google Scholar] [CrossRef]
- Randall, M.D.; Kendall, D.A.; Bennett, A.J.; O’Sullivan, S.E. Rimonabant in Obese Patients with Type 2 Diabetes. Lancet 2007, 369, 555. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, J.; Rosenstock, J. RIO-North America Study Group Effect of Rimonabant, a Cannabinoid-1 Receptor Blocker, on Weight and Cardiometabolic Risk Factors in Overweight or Obese Patients: RIO-North America: A Randomized Controlled Trial. JAMA 2006, 295, 761–775. [Google Scholar] [CrossRef]
- Jayamanne, A.; Greenwood, R.; Mitchell, V.A.; Aslan, S.; Piomelli, D.; Vaughan, C.W. Actions of the FAAH Inhibitor URB597 in Neuropathic and Inflammatory Chronic Pain Models. Br. J. Pharmacol. 2005, 147, 281. [Google Scholar] [CrossRef]
- Xie, S.; Furjanic, M.A.; Ferrara, J.J.; McAndrew, N.R.; Ardino, E.L.; Ngondara, A.; Bernstein, Y.; Thomas, K.J.; Kim, E.; Walker, J.M.; et al. The Endocannabinoid System and Rimonabant: A New Drug with a Novel Mechanism of Action Involving Cannabinoid CB1 Receptor Antagonism—Or Inverse Agonism—As Potential Obesity Treatment and Other Therapeutic Use. J. Clin. Pharm. Ther. 2007, 32, 209–231. [Google Scholar] [CrossRef]
- Chambers, A.P.; Koopmans, H.S.; Pittman, Q.J.; Sharkey, K.A. AM 251 Produces Sustained Reductions in Food Intake and Body Weight That Are Resistant to Tolerance and Conditioned Taste Aversion. Br. J. Pharmacol. 2006, 147, 109–116. [Google Scholar] [CrossRef]
- Fiori, J.L.; Sanghvi, M.; O’Connell, M.P.; Krzysik-Walker, S.M.; Moaddel, R.; Bernier, M. The Cannabinoid Receptor Inverse Agonist AM251 Regulates the Expression of the EGF Receptor and Its Ligands via Destabilization of Oestrogen-Related Receptor α Protein. Br. J. Pharmacol. 2011, 164, 1026–1040. [Google Scholar] [CrossRef]
- Seely, K.A.; Brents, L.K.; Franks, L.N.; Rajasekaran, M.; Zimmerman, S.M.; Fantegrossi, W.E.; Prather, P.L. AM-251 and Rimonabant Act as Direct Antagonists at Mu-Opioid Receptors: Implications for Opioid/Cannabinoid Interaction Studies. Neuropharmacology 2012, 63, 905–915. [Google Scholar] [CrossRef]
- Naguib, M.; Diaz, P.; Xu, J.J.; Astruc-Diaz, F.; Craig, S.; Vivas-Mejia, P.; Brown, D.L. MDA7: A Novel Selective Agonist for CB2 Receptors That Prevents Allodynia in Rat Neuropathic Pain Models. Br. J. Pharmacol. 2008, 155, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Diaz, P.; Bie, B.; Astruc-Diaz, F.; Wu, J.; Yang, H.; Brown, D.L.; Naguib, M. Spinal Gene Expression Profiling and Pathways Analysis of a CB2 Agonist (MDA7)-Targeted Prevention of Paclitaxel-Induced Neuropathy. Neuroscience 2014, 260, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hocevar, M.; Bie, B.; Foss, J.F.; Naguib, M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. J. Pain 2019, 20, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tang, Y.; Xie, M.; Bie, B.; Wu, J.; Yang, H.; Foss, J.F.; Yang, B.; Rosenquist, R.W.; Naguib, M. Activation of Cannabinoid Receptor 2 Attenuates Mechanical Allodynia and Neuroinflammatory Responses in a Chronic Post-Ischemic Pain Model of Complex Regional Pain Syndrome Type I in Rats. Eur. J. Neurosci. 2016, 44, 3046–3055. [Google Scholar] [CrossRef]
- Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.; Horowitz, M.; Pertwee, R.G.; Ross, R.A.; Mechoulam, R.; Fride, E. HU-308: A Specific Agonist for CB2, a Peripheral Cannabinoid Receptor. Proc. Natl. Acad. Sci. USA 1999, 96, 14228–14233. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Mester, A.; Benea, H.; Oltean-Dan, D.; Onisor, F.; Baciut, M.; Bran, S. Cannabinoids and Bone Regeneration. Drug Metab. Rev. 2019, 51, 65–75. [Google Scholar] [CrossRef]
- Rzeczycki, P.; Rasner, C.; Lammlin, L.; Junginger, L.; Goldman, S.; Bergman, R.; Redding, S.; Knights, A.J.; Elliott, M.; Maerz, T. Cannabinoid Receptor Type 2 Is Upregulated in Synovium Following Joint Injury and Mediates Anti-Inflammatory Effects in Synovial Fibroblasts and Macrophages. Osteoarthr. Cartil. 2021, 29, 1720–1731. [Google Scholar] [CrossRef]
- Thapa, D.; Cairns, E.A.; Szczesniak, A.-M.; Toguri, J.T.; Caldwell, M.D.; Kelly, M.E.M. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation. Cannabis Cannabinoid Res. 2018, 3, 11–20. [Google Scholar] [CrossRef]
- Durmaz, R.; Ozden, H.; Kanbak, G.; Aral, E.; Arslan, O.C.; Kartkaya, K.; Uzuner, K. The Protective Effect of Dexanabinol (HU-211) on Nitric Oxide and Cysteine Protease-Mediated Neuronal Death in Focal Cerebral Ischemia. Neurochem. Res. 2008, 33, 1683–1691. [Google Scholar] [CrossRef]
- Darlington, C.L. Dexanabinol: A Novel Cannabinoid with Neuroprotective Properties. IDrugs Investig. Drugs J. 2003, 6, 976–979. [Google Scholar]
- Jüttler, E.; Potrovita, I.; Tarabin, V.; Prinz, S.; Dong-Si, T.; Fink, G.; Schwaninger, M. The Cannabinoid Dexanabinol Is an Inhibitor of the Nuclear Factor-Kappa B (NF-κB). Neuropharmacology 2004, 47, 580–592. [Google Scholar] [CrossRef]
- Shohami, E.; Novikov, M.; Mechoulam, R. A Nonpsychotropic Cannabinoid, HU-211, Has Cerebroprotective Effects after Closed Head Injury in the Rat. J. Neurotrauma 1993, 10, 109–119. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Murray, G.; Henney, H.; Kassem, N.; Legrand, V.; Mangelus, M.; Muizelaar, J.-P.; Stocchetti, N.; Knoller, N. Pharmos TBI investigators Efficacy and Safety of Dexanabinol in Severe Traumatic Brain Injury: Results of a Phase III Randomised, Placebo-Controlled, Clinical Trial. Lancet Neurol. 2006, 5, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Gawne, P.J.; Ferreira, M.; Papaluca, M.; Grimm, J.; Decuzzi, P. New Opportunities and Old Challenges in the Clinical Translation of Nanotheranostics. Nat. Rev. Mater. 2023, 8, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Liz-Marzán, L.M.; Nel, A.E.; Brinker, C.J.; Chan, W.C.W.; Chen, C.; Chen, X.; Ho, D.; Hu, T.; Kataoka, K.; Kotov, N.A.; et al. What Do We Mean When We Say Nanomedicine? ACS Nano 2022, 16, 13257–13259. [Google Scholar] [CrossRef]
- Caplan, M.J.; Baldwin, R.; Yin, X.; Grishin, A.; Eisenbarth, S.; Sampson, H.A.; Bottomly, K.; Prud’homme, R.K. Scaleable Production of Highly Loaded Protein Nanoparticles for Immune Modulation. Commun. Mater. 2024, 5, 191. [Google Scholar] [CrossRef]
- Ma, X.; Tian, Y.; Yang, R.; Wang, H.; Allahou, L.W.; Chang, J.; Williams, G.; Knowles, J.C.; Poma, A. Nanotechnology in Healthcare, and Its Safety and Environmental Risks. J. Nanobiotechnol. 2024, 22, 715. [Google Scholar] [CrossRef] [PubMed]
Cannabinoid Type | Compound Name and Structure | Delivery System | Key Findings | Ref. |
---|---|---|---|---|
Prodrug of THC | Δ9-Tetrahydrocannabinol-valine-hemisuccinate (THC-VHS) | SLNs, NE | THC-VHS-loaded SLNs more effectively and for longer reduced intraocular pressure in rabbits vs. NE and standard treatments; increased drug levels in eye tissues. | [66] |
NE | THC-VHS-loaded NE reduced intraocular pressure more effectively and for longer vs. timolol, latanoprost, and other tested formulations. | [67] | ||
Hemiglutarate ester prodrug of THC (THC-HG) | MCs | MCs enhanced THC-HG delivery to the anterior ocular chamber, but further research is needed to improve penetration to the posterior eye tissues. | [68] | |
CBD analogue | CBD–monovalinate–monohemisuccinate (CBD-Mono-VHS), CBD-divalinate-dihemisuccinate (CBD-Di-VHS) | NE | CBD analogs penetrated ocular tissues better than CBD; CBD-Di-VHS and CBD-Mono-VHS showed improved permeation, likely due to enhanced stability and optimized physicochemical properties. | [69] |
CB1 and CB2 peripheral receptor agonists | 1-Naphthalenyl [4-(pentyloxy)-1-naphthalenyl]methanone) (CB13) | PLGA NPs | More hydrophobic polymers led to smaller size; smaller particles released drug faster; polymers with lower molecular weight and lactide content increased water absorption and erosion; non-cytotoxic. | [70] |
Lecithin and vitamin E modifications increased release rate; chitosan and Eudragit RS enhanced mucoadhesion; chitosan-PLGA showed highest Caco-2 uptake; accumulation mainly in liver and spleen. | [71] | |||
PLGA-PEG NPs | Animal pain-behavior studies, using paw pressure and acetone tests, demonstrated that compared to free CB13, CB13-PLGA-PEG NPs provided significantly enhanced analgesic effects, sustaining pain relief for up to eleven days after a single oral dose. | [72] | ||
PLGA-PEG NPs, PLGA-PEG-CS | Formulations were blood-compatible and non-cytotoxic to Caco-2 cells; CS coating increased interaction with Caco-2 cells and limited uptake by THP-1 cells; PEG coating reduced uptake by Caco-2 cells and prevented uptake by THP-1 cells. | [73] | ||
LNPs | CB13-loaded LNPs showed high encapsulation efficiency and drug loading when lecithin was included; stable in simulated intestinal conditions; non-cytotoxic to NIH 3T3 and HEK 293T cells. | [74] | ||
R-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN) | SMA | SMA-WIN provided longer-lasting neuropathic pain relief than standard WIN (up to 8 h); in the rotarod test, motor impairment resolved faster than with WIN; may reduce CNS-related side effects. | [75] | |
SMA-WIN showed cytotoxic effects comparable to free WIN in triple-negative breast cancer, hormone receptor-positive breast cancer, and castration-resistant prostate cancer cell lines. | [76] | |||
SMA-WIN showed strong cytotoxicity against triple-negative breast cancer cells; in animal models, markedly reduced tumor growth compared to free WIN; low doses of SMA-WIN combined with doxorubicin enhanced anticancer effect without increasing toxicity. | [77] | |||
CB2 receptor agonist | (6AR,10AR)-3-(1,1-Dimethylbutyl)-6A,7,10,10A-tetrahydro-6,6,9-trimethyl-6H-dibenzo[B,D]pyran (JWH133) | Mesoporous copper sulfide (CuS) with HA cover | JWH133 targeted CB2 receptors on macrophages, synovial cells, and osteoblasts; inhibited inflammatory factor secretion and enhanced osteoblast activity; CuS-JWH133@HA reduced inflammation levels in vivo and improved condition of inflamed and swollen joints in mice. | [78] |
CB1 receptor antagonist | 5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (rimonabant) | PLGA NPs | PLGA nanoparticles enabled liver-targeted delivery of rimonabant, reducing liver fat and improving metabolic parameters in animals while avoiding significant central nervous system side effects. | [79] |
NLCs | In vivo, intranasal rimonabant-NLC increased brain drug concentration compared to conventional delivery; enabled targeted CNS delivery with reduced peripheral side effects. | [80] | ||
Fatty acid amide hydrolase inhibitor | (3′-(aminocarbonyl)[1,1′-biphenyl]-3-yl)-cyclohexylcarbamate (URB597) | NLCs | NLCs showed consistent size and stability with high encapsulation efficiency for URB597, AM251, and rimonabant; effective for delivering high cannabinoid concentrations, supporting clinical potential. | [81] |
Inverse agonist of CB1 receptor | 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM251) | |||
Inverse agonist of CB1 receptor | 5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (rimonabant) | |||
(3′-(aminocarbonyl)[1,1′-biphenyl]-3-yl)-cyclohexylcarbamate (URB597) | SLNs, NLCs | SLNs and NLCs enhanced URB597 solubility and brain delivery; polysorbate 80-modified SLNs improved biodistribution and extended circulation time; intranasal URB597-loaded SLNs promoted prosocial behavior in animals. | [82] | |
CB2 receptor agonist | (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine) (MDA7) | HPβCD, MCs, and liposomes | In a rat model of neuropathic pain, HPβCD-MDA7 provided the greatest pain relief compared to MCs and liposomes; improved solubility and reduced immune recognition of HPβCD support its potential for pain management. | [83] |
CB1 receptor agonist | N-(Cyclopropyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (ACPA) | PCL NPs | ACPA-loaded PCL NPs improved stability, bioavailability, and sustained release; inhibited cancer cell growth and promoted apoptosis in NSCLC cells; sustained CB1 activation enabled more effective inhibition of the Akt/PI3K pathway and activation of the JNK pathway. | [84] |
CB2 receptor agonist | [(1R,4R,5R)-4-[2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl]-6,6-dimethyl-2-bicyclo [3.1.1]hept-2-enyl]methanol (HU-308) | Paramagnetic MCs | MCs were designed to target CB2 receptors and neutrophil gelatinase-associated lipocalin on macrophages in atherosclerotic plaques; specific binding was confirmed in vitro; in vivo studies confirmed their ability to identify vulnerable plaque areas via MRI and fluorescence microscopy. | [85] |
NMDA antagonist | (6aS,10aS)-9-(Hydroxymethyl)-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol (HU-211; dexanabinol) | Submicron emulsion | In normotensive rabbits, HU-211, applied as an eye drop formulation, reduced intraocular pressure by 5.3 mmHg (24% of baseline) at 1.5 h post-application, with effects lasting over 6 h; minor intraocular pressure reduction in the untreated eye indicated possible systemic absorption. | [86] |
SLNs | SLNs co-loaded with curcumin and HU-211 increased dopamine and serotonin release and reduced corticosterone-induced apoptosis in vitro; in vivo, improved depressive behaviors in mice, enhanced CB1 expression, and activated MEK1/ERK1/2 pathway; HU-211 SLNs also preserved brain-derived neurotrophic factor and neuronal nuclei expression. | [87] | ||
Curcumin/SLNs-HU-211 enhanced PC12 cell viability and reduced immobility time in mice with depressive symptoms; activated MEK1/ERK1/2 pathways and CB1 receptors, reducing apoptosis and improving neuronal function. | [88] | |||
Curcumin/SLNs-HU-211 increased dopamine and norepinephrine expression and activated MEK1/ERK1/2 pathways in CBR1+/+ mice, indicating antidepressant and neuroprotective effects; no effects were observed in CBR1−/− mice, confirming CB1 receptor dependency. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żółnowska, I.; Gostyńska-Stawna, A.; Jelińska, A.; Stawny, M. Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance. Nanomaterials 2025, 15, 1260. https://doi.org/10.3390/nano15161260
Żółnowska I, Gostyńska-Stawna A, Jelińska A, Stawny M. Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance. Nanomaterials. 2025; 15(16):1260. https://doi.org/10.3390/nano15161260
Chicago/Turabian StyleŻółnowska, Izabela, Aleksandra Gostyńska-Stawna, Anna Jelińska, and Maciej Stawny. 2025. "Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance" Nanomaterials 15, no. 16: 1260. https://doi.org/10.3390/nano15161260
APA StyleŻółnowska, I., Gostyńska-Stawna, A., Jelińska, A., & Stawny, M. (2025). Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance. Nanomaterials, 15(16), 1260. https://doi.org/10.3390/nano15161260