An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Oligonucleotide Probes and Real Samples
2.3. Synthesis of the TiO2@Pt Nanocomposite
2.4. Conception of the Biosensing Platform
2.5. Studies of Genetic Detection
2.6. Electrochemical Measurements
2.7. AFM and UV-Vis Spectroscopic Analyses
3. Results and Discussion
3.1. Topographic Analysis
3.2. UV-Vis Characterization
3.3. Electrochemical Measurements of the Biosensing Platform
3.3.1. Voltammetry Experiments
3.3.2. Impedance Examinations
3.4. Optimization of Experimental Variables
3.4.1. Electrodeposition of PPy Films
3.4.2. Study of Chemical Conjugation of the TiO2@Pt Nanocomposite
3.4.3. Chemical Conjugation of the Oligonucleotide Sequences
3.5. Analytical Performance of the Sensing Platform
3.6. Electrochemical Screening in Biological Samples
3.7. Biological Interferent Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Wan, Y.; Wang, H.; Cai, J.; Yu, J.; Hu, S.; Fang, Y.; Gao, J.; Jiang, H.; Yang, M. Prognostic factors of childhood acute lymphoblastic leukemia with TCF3::PBX1 in CCCG-ALL-2015: A multicenter study. Cancer 2023, 129, 1691–1703. [Google Scholar] [CrossRef]
- Organista-Nava, J.; Gómez-Gómez, Y.; Illades-Aguiar, B.; Leyva-Vázquez, M.A. Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic leukemia. Oncol. Rep. 2016, 36, 1226–1232. [Google Scholar] [CrossRef]
- Chiaretti, S.; Vitale, A.; Cazzaniga, G.; Orlando, S.M.; Silvestri, D.; Fazi, P.; Valsecchi, M.G.; Elia, L.; Testi, A.M.; Mancini, F. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica 2013, 98, 1702. [Google Scholar] [CrossRef]
- Rack, K.; De Bie, J.; Ameye, G.; Gielen, O.; Demeyer, S.; Cools, J.; De Keersmaecker, K.; Vermeesch, J.R.; Maertens, J.; Segers, H. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am. J. Hematol. 2022, 97, 548–561. [Google Scholar] [CrossRef]
- Eldfors, S.; Kuusanmäki, H.; Kontro, M.; Majumder, M.; Parsons, A.; Edgren, H.; Pemovska, T.; Kallioniemi, O.; Wennerberg, K.; Gökbuget, N. Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia 2017, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, T.; Gröger, D.; Gökbuget, N.; Spriewald, B.; Starck, M.; Elmaagacli, A.; Hoelzer, D.; Keller, U.; Schwartz, S. Molecular characterization of TCF3::PBX1 chromosomal breakpoints in acute lymphoblastic leukemia and their use for measurable residual disease assessment. Sci. Rep. 2023, 13, 15167. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, T.; Bacher, U.; Kern, W.; Schnittger, S.; Haferlach, C. Diagnostic pathways in acute leukemias: A proposal for a multimodal approach. Ann. Hematol. 2007, 86, 311–327. [Google Scholar] [CrossRef]
- Short, N.J.; Jabbour, E.; Albitar, M.; de Lima, M.; Gore, L.; Jorgensen, J.; Logan, A.C.; Park, J.; Ravandi, F.; Shah, B. Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: A consensus of North American experts. Am. J. Hematol. 2019, 94, 257–265. [Google Scholar] [CrossRef]
- Serratì, S.; De Summa, S.; Pilato, B.; Petriella, D.; Lacalamita, R.; Tommasi, S.; Pinto, R. Next-generation sequencing: Advances and applications in cancer diagnosis. OncoTargets Ther. 2016, 9, 7355–7365. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Zhang, Y.; Ji, C.; Zhang, Y.; Yuan, Q.; Tan, J. DNA nanomaterial-based electrochemical biosensors for clinical diagnosis. ACS Nano 2024, 18, 31713–31736. [Google Scholar] [CrossRef]
- Shahdeo, D.; Gandhi, S. Next generation biosensors as a cancer diagnostic tool. In Biosensor Based Advanced Cancer Diagnostics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 179–196. [Google Scholar]
- Ye, D.; Zuo, X.; Fan, C. DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu. Rev. Anal. Chem. 2018, 11, 171–195. [Google Scholar] [CrossRef]
- Kannan, P.; Maduraiveeran, G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors 2023, 13, 542. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces 2019, 178, 385–394. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Qiu, H.; Ma, X.; Sun, C.; Zhao, B.; Chen, F. Surface oxygen vacancies enriched Pt/TiO2 synthesized with a defect migration strategy for superior photocatalytic activity. Appl. Surf. Sci. 2020, 506, 145021. [Google Scholar] [CrossRef]
- Shobana, B.; Renugadevi, K.; Prakash, P. Transformative microbe (E. coli O157:H7) detection: Advancing microbial surveillance in food matrices with a photosensor of silver doped titanium dioxide/MXene nanocomposite. Microchem. J. 2024, 206, 111461. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Xie, M.; Zhao, F.; Han, S. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on AuNPs/MWCNTs@ TiO2 Nanocomposites. Int. J. Mol. Sci. 2023, 24, 10594. [Google Scholar] [CrossRef]
- Shawky, A.M.; El-Tohamy, M. Signal amplification strategy of label-free ultrasenstive electrochemical immunosensor based ternary Ag/TiO2/rGO nanocomposites for detecting breast cancer biomarker CA 15-3. Mater. Chem. Phys. 2021, 272, 124983. [Google Scholar] [CrossRef]
- Nadzirah, S.; Gopinath, S.C.; Parmin, N.; Hamzah, A.A.; Mohamed, M.A.; Chang, E.Y.; Dee, C.F. State-of-the-art on functional titanium dioxide-integrated nano-hybrids in electrical biosensors. Crit. Rev. Anal. Chem. 2022, 52, 637–648. [Google Scholar] [CrossRef]
- Yu, M.; Wu, L.; Miao, J.; Wei, W.; Liu, A.; Liu, S. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal. Chim. Acta 2019, 1080, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Du, H.; Zhang, M.; Mori, J.; Ren, X.; Wang, H.; Zhang, X. One-step synthesis of tunable zinc-based nanohybrids as an ultrasensitive DNA signal amplification platform. ACS Appl. Mater. Interfaces 2019, 12, 2983–2990. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TrAC Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; García-García, D.M.; Cifre-Herrando, M.; García-Antón, J. Electropolymerization of PPy, PEDOT, and PANi on WO3 nanostructures for high-performance anodes in Li-ion batteries. Heliyon 2024, 10, e41075. [Google Scholar] [CrossRef]
- Schultheiss, A.; Gueye, M.; Carella, A.; Benayad, A.; Pouget, S.; Faure-Vincent, J.; Demadrille, R.; Revaux, A.; Simonato, J.-P. Insight into the degradation mechanisms of highly conductive poly (3,4-ethylenedioxythiophene) thin films. ACS Appl. Polym. Mater. 2020, 2, 2686–2695. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Wu, X.; Chai, Y.; Zhang, P.; Yuan, R. An electrochemical biosensor for sensitive detection of microRNA-155: Combining target recycling with cascade catalysis for signal amplification. ACS Appl. Mater. Interfaces 2015, 7, 713–720. [Google Scholar] [CrossRef]
- Zhu, Q.; Liang, B.; Liang, Y.; Ji, L.; Cai, Y.; Wu, K.; Tu, T.; Ren, H.; Huang, B.; Wei, J. 3D bimetallic Au/Pt nanoflowers decorated needle-type microelectrode for direct in situ monitoring of ATP secreted from living cells. Biosens. Bioelectron. 2020, 153, 112019. [Google Scholar] [CrossRef]
- Patois, T.; Lakard, B.; Monney, S.; Roizard, X.; Fievet, P. Characterization of the surface properties of polypyrrole films: Influence of electrodeposition parameters. Synth. Met. 2011, 161, 2498–2505. [Google Scholar] [CrossRef]
- Haghighi, F.H.; Mercurio, M.; Cerra, S.; Salamone, T.A.; Bianymotlagh, R.; Palocci, C.; Spica, V.R.; Fratoddi, I. Surface modification of TiO2 nanoparticles with organic molecules and their biological applications. J. Mater. Chem. B 2023, 11, 2334–2366. [Google Scholar] [CrossRef]
- Liu, L.; Miao, P.; Xu, Y.; Tian, Z.; Zou, Z.; Li, G. Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J. Photochem. Photobiol. B Biol. 2010, 98, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Dao, A.T.N.; Mott, D.M.; Higashimine, K.; Maenosono, S. Enhanced electronic properties of Pt@Ag heterostructured nanoparticles. Sensors 2013, 13, 7813–7826. [Google Scholar] [CrossRef]
- Kavitha, N.; Elavarasan, M.; Ramachandran, R.; Uthayakumar, S.; Chandramohan, A.; Dinakaran, K. Polymer nanohybrid composites as conductive platform for the electrochemical sensing of pathogens. Curr. Res. Green Sustain. Chem. 2022, 5, 100316. [Google Scholar] [CrossRef]
- Lekshmi, I.; Rudra, I.; Pillai, R.; Sarika, C.; Shivakumar, M.; Shivakumara, C.; Konwar, S.; Narasimhamurthy, B. Enhanced catechol biosensing on metal oxide nanocrystal sensitized graphite nanoelectrodes through preferential molecular adsorption. J. Electroanal. Chem. 2020, 867, 114190. [Google Scholar] [CrossRef]
- Avelino, K.Y.; Oliveira, L.S.; Lucena-Silva, N.; Andrade, C.A.; Oliveira, M.D. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta 2021, 226, 122118. [Google Scholar] [CrossRef] [PubMed]
- Van Hao, P.; Xuan, C.T.; Thanh, P.D.; Thuat, N.-T.; Hai, N.H.; Tuan, M.A. Detection analysis limit of nonlinear characteristics of DNA sensors with the surface modified by polypyrrole nanowires and gold nanoparticles. J. Sci. Adv. Mater. Devices 2018, 3, 129–138. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Sun, Y.; Wang, Q.; Kang, Q.; Shen, D. A differential strategy to enhance the anti-interference ability of molecularly imprinted electrochemiluminescence sensor with a semi-logarithmic calibration curve. Anal. Chim. Acta 2023, 1280, 341875. [Google Scholar] [CrossRef]
- Gegenschatz, S.A.; Chiappini, F.A.; Teglia, C.M.; de la Peña, A.M.; Goicoechea, H.C. Binding the gap between experiments, statistics, and method comparison: A tutorial for computing limits of detection and quantification in univariate calibration for complex samples. Anal. Chim. Acta 2022, 1209, 339342. [Google Scholar] [CrossRef]
- Burgués, J.; Jiménez-Soto, J.M.; Marco, S. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models. Anal. Chim. Acta 2018, 1013, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.S.; Avelino, K.Y.; Oliveira, S.R.; Lucena-Silva, N.; de Oliveira, H.P.; Andrade, C.A.; Oliveira, M.D. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J. Pharm. Biomed. Anal. 2023, 235, 115606. [Google Scholar] [CrossRef] [PubMed]
- Avelino, K.Y.; Oliveira, L.S.; Santos, M.R.; Lucena-Silva, N.; Andrade, C.A.; Oliveira, M.D. Electrochemical DNA biosensor for chronic myelocytic leukemia based on hybrid nanostructure. Bioelectrochemistry 2022, 147, 108176. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Samandari, L.; Farzin, L.; Molaabasi, F.; Mousazadeh, M.H. Dual-modal label-free genosensor based on hemoglobin@ gold nanocluster stabilized graphene nanosheets for the electrochemical detection of BCR/ABL fusion gene. Talanta 2020, 217, 121093. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-Y.; Huang, J.-L.; Lin, Y.; Cai, Q.-Q.; Zheng, Y.-J.; Wu, Y.; Chen, J.-Y.; Lin, X.-H. A split-type electrochemical biosensor using enzyme-linked DNA magnetic beads realizes the detection of BCR/ABLp210 fusion gene in clinical samples: Duplex ligation chain reaction coupled with OR logic gate design. Chem. Eng. J. 2024, 479, 147683. [Google Scholar] [CrossRef]
- Mohammadnejad, J.; Basirhaghighi, N.; Yazdian, F.; Pourmadadi, M.; Omidi, M.; Mirshafiei, M.; Rahdar, A.; Díez-Pascual, A.M. Electrochemical nanobiosensor based on reduced graphene oxide and gold nanoparticles for ultrasensitive detection of microRNA-128. Int. Immunopharmacol. 2023, 117, 109960. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Dervisevic, E.; Senel, M.; Cevik, E.; Yildiz, H.B.; Camurlu, P. Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzym. Microb. Technol. 2017, 102, 53–59. [Google Scholar] [CrossRef]
Sensing Strategy | Molecular Target | Analytical Technique | Hybridization Marker | Detection Time | Detection Range | Limit of Detection | Limit of Quantification | Sensitivity | Reference |
---|---|---|---|---|---|---|---|---|---|
Gold transducer/PPy/TiO2@Pt/Probe/BSA | TCF3-PBX1 chimeric oncogene | CV and EIS | Label-free | 15 min | 3.58 aM to 357.67 fM | 19.31 aM | 64.39 aM | 20.37 kΩ/aM cm2 | This work |
Indium Tin Oxide/PPy/Graphene quantum dots/ProbeAPLB Indium Tin Oxide/PPy/Graphene quantum dots/ProbeM7 | PML/RARα fusion gene | CV and EIS | Label-free | 15 min | 1 pM to 100 pM | 0.214 pM for APLB sequence 0.677 pM for M7 sequence | 0.648 pM for APLB sequence 2.05 pM for M7 sequence | -- | [40] |
Gold transducer/PPy/Nanocomposite of chitosan and zinc oxide nanoparticles/Probe/BSA | BCR/ABL fusion gene | CV and EIS | Label-free | 15 min | 138.80 aM to 13.88 pM | 1.34 fM | 4.08 fM | 34.03 μA/fM cm2 | [41] |
Glassy carbon electrode/Gold nanoparticles/Hemoglobin-capped gold nanoclusters stabilized graphene nanosheets/Probe | BCR/ABL fusion gene | CV, EIS and differential pulse voltammetry (DPV) | Methylene blue | 30 min | 0.1 aM to 10 pM | 0.03 fM | -- | -- | [42] |
Magnetic glass carbon electrode/Enzyme-linked DNA magnetic beads | BCR/ABLp210 fusion gene | Amperometry | Horseradish peroxidase | -- | Two linear relationships: 1 aM to 50 fM 1 fM to 1 pM | 1 aM | -- | -- | [43] |
Glassy carbon electrode/Reduced graphene oxide/Gold nanoparticles | MicroRNA-128 | CV, EIS and square wave voltammetry (SWV) | Methylene blue | 40 min | 0.01 fM to 0.09 fM | 0.00956 fM | -- | -- | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.H.; Avelino, K.Y.P.d.S.; Lucena-Silva, N.; Errachid, A.; de Oliveira, M.D.L.; de Andrade, C.A.S. An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia. Sensors 2025, 25, 5313. https://doi.org/10.3390/s25175313
Silva SH, Avelino KYPdS, Lucena-Silva N, Errachid A, de Oliveira MDL, de Andrade CAS. An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia. Sensors. 2025; 25(17):5313. https://doi.org/10.3390/s25175313
Chicago/Turabian StyleSilva, Saulo Henrique, Karen Yasmim Pereira dos Santos Avelino, Norma Lucena-Silva, Abdelhamid Errachid, Maria Danielly Lima de Oliveira, and César Augusto Souza de Andrade. 2025. "An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia" Sensors 25, no. 17: 5313. https://doi.org/10.3390/s25175313
APA StyleSilva, S. H., Avelino, K. Y. P. d. S., Lucena-Silva, N., Errachid, A., de Oliveira, M. D. L., & de Andrade, C. A. S. (2025). An Attomolar-Level Biosensor Based on Polypyrrole and TiO2@Pt Nanocomposite for Electrochemical Detection of TCF3-PBX1 Oncogene in Acute Lymphoblastic Leukemia. Sensors, 25(17), 5313. https://doi.org/10.3390/s25175313