Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology)
Abstract
1. Introduction
2. Methods
- Were published in peer-reviewed journals in English or Spanish.
- Addressed nanotechnology-based strategies for radiopharmaceutical repurposing, with or without direct clinical application.
- Focused on non-oncological indications, or provided conceptual/methodological frameworks applicable beyond oncology.
- Were conference abstracts without full text.
- Were duplicates or secondary reports of the same data.
- Lacked sufficient methodological detail or direct relevance to the topic.
- Title and abstract screening to exclude clearly irrelevant records.
- Full-text review to confirm eligibility according to the predefined criteria.
3. Current Challenges in Radiopharmacy
3.1. Manufacturing and Production Difficulties
3.2. Regulatory and Reimbursement Barriers
3.3. Access and Availability of Radionuclides
3.4. Integration into Clinical Practice
3.5. Interdisciplinary Collaboration and Workforce Training
3.6. Scientific and Technological Innovation
- Improve production efficiency and formulation robustness, enhancing stability, scalability, and handling of radioconjugates and nano-radiocarriers.
- Optimize biodistribution and targeting, reducing off-target effects and increasing the signal-to-background ratio for imaging and therapeutic efficacy.
- Enhance radiolabeling stability and chelation (especially for emerging radionuclides), reducing radionuclide leaching or recoil effects.
- Enable multimodal platforms and improved dosimetry by integrating both imaging and therapeutic components within the same nanocarrier, allowing real-time monitoring and precise quantification.
- Overcome biological barriers (e.g., tumor microenvironment, blood-brain barrier), which have historically limited uniform tumor uptake and led to the abandonment of otherwise promising agents.
Subsection | Challenge | Key Points | Representative References |
---|---|---|---|
Section 3.1 | Manufacturing and Production Difficulties | Scale-up of radiolabeled nanocarriers remains complex; alpha and Auger emitters require robust, cost-effective workflows under cGRPP/GMP. | [44,46,48] |
Section 3.2 | Regulatory and Reimbursement Barriers | Heterogeneity of regulatory frameworks and lack of harmonized reimbursement schemes slow clinical translation. | [27,46,48] |
Section 3.3 | Access and Availability of Radionuclides | Global dependence on limited infrastructure; recurrent shortages of 99Mo/99mTc linked to aging reactors and uneven cyclotron capacity. | [41,43,52,53,54,55,56,57,58,59,60] |
Section 3.4 | Integration into Clinical Practice | Difficulties in conducting large-scale trials due to supply constraints, radiation protection, and costs; the transition from preclinical to clinical is slow. | [42,46,48] |
Section 3.5 | Interdisciplinary Collaboration and Workforce Training | Implementation requires collaboration among chemists, clinicians, and regulators; workforce training gaps persist, especially in LMICs. | [33,41,48] |
Section 3.6 | Scientific and Technological Innovation | Progress depends on novel chelators, improved dosimetry, and safer delivery systems; critical nanodesign variables include size, stability, charge, and clearance. | [85,86,87,88,89,90,91] |
- High diagnostic sensitivity is critical (e.g., for amyloid plaques, infections, or microthrombi).
- Targeting specificity reduces false positives and off-target toxicity.
- Radiobiological safety margins are especially important (e.g., pediatric or vulnerable populations).
- Multimodal imaging can accelerate clinical decision-making.
- Despite its promise, nanotechnology cannot independently solve:
- Fragmented regulatory and reimbursement frameworks
- Insufficient radionuclide production infrastructure,
- Gaps in workforce training and multidisciplinary collaboration.
4. Functional Objectives of Nanotechnology-Enabled Drug Repurposing in Radiopharmacy
4.1. Alleviating the Medical Isotope Shortage
4.2. Reducing Costs Without Infrastructure Investment
4.3. Enabling ALARA Compliance Through Dose Minimization
4.4. Facilitating Theragnostic Design and Implementation
4.5. Designing Multimodal Imaging Probes
5. Challenges in the Clinical Translation of Nanotechnology-Enabled Drug Repurposing in Radiopharmacy
5.1. Limited Clinical Translation Despite Extensive Preclinical Promise
5.2. Technical and Biological Constraints of Radiopharmaceutical Nanocarriers
5.3. Regulatory and Translational Outlook
5.4. Current Limitations and Research Priorities
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALARA | As Low As Reasonably Achievable |
CT | Computed Tomography |
DOTA | 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid |
EMA | European Medicines Agency |
EPR | Enhanced Permeability and Retention |
EUNCL | European Nanomedicine Characterisation Laboratory |
FDA | Food and Drug Administration |
GMP | Good Manufacturing Practices |
MRI | Magnetic Resonance Imaging |
NCL | Nanomedicine Characterization Laboratory |
NOTA | 1,4,7-Triazacyclononane-1,4,7-triacetic acid |
PD | Pharmacodynamics |
PEG | Polyethylene glycol |
PET | Positron Emission Tomography |
PK | Pharmacokinetics |
SaMD | Software-as-a-medical-device |
SPECT | Single Photon Emission Tomography |
References
- Cañellas, C.O.; Salgueiro, M.J.; Zubillaga, M. Radiofármacos: Del Laboratorio al Paciente, 1st ed.; CJP Ediciones: Buenos Aires, Argentina, 2017. Available online: http://hdl.handle.net/11336/107953 (accessed on 18 June 2025).
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. NETTER-1 Trial Investigators. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. VISION Investigators. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 16, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Miederer, M. Alpha emitting nuclides in nuclear medicine theranostics. Nuklearmedizin 2022, 61, 273–279. (In English) [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. Alpha-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J. Nucl. Med. 2018, 59, 878–884. [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 2. J. Nucl. Med. 2018, 59, 1020–1027. [Google Scholar] [CrossRef]
- Borgna, F.; Haller, S.; Rodriguez, J.M.M.; Ginj, M.; Grundler, P.V.; Zeevaart, J.R.; Köster, U.; Schibli, R.; van der Meulen, N.P.; Müller, C. Combination of terbium-161 with somatostatin receptor antagonists-a potential paradigm shift for the treatment of neuroendocrine neoplasms. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1113–1126. [Google Scholar] [CrossRef]
- Funkhouser, J. Reinventing pharma: The theranostic revolution. Curr. Drug Discov. 2002, 2, 17–19. [Google Scholar]
- Kuge, Y.; Shiga, T.; Tamaki, N. Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy; Springer Nature: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Scott, A.M.; Zeglis, B.M.; Lapi, S.E.; Scott, P.J.H.; Windhorst, A.D.; Abdel-Wahab, M.; Giammarile, F.; Paez, D.; Jalilian, A.; Knoll, P.; et al. Trends in nuclear medicine and the radiopharmaceutical sciences in oncology: Workforce challenges and training in the age of theranostics. Lancet Oncol. 2024, 25, e250–e259. [Google Scholar] [CrossRef]
- McGuireWoods. Radiopharmaceutical Industry Update: Q4 2024–Q1 2025. Available online: https://www.mcguirewoods.com/client-resources/alerts/2025/4/radiopharmaceutical-industry-update-q4-q1-2024-2025 (accessed on 19 June 2025).
- Lapi, S.E.; Scott, P.J.H.; Scott, A.M.; Windhorst, A.D.; Zeglis, B.M.; Abdel-Wahab, M.; Baum, R.P.; Buatti, J.M.; Giammarile, F.; Kiess, A.P.; et al. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology. Lancet Oncol. 2024, 25, e236–e249. [Google Scholar] [CrossRef]
- Jalilian, A.R.; Ocampo-García, B.; Pasanphan, W.; Sakr, T.M.; Melendez-Alafort, L.; Grasselli, M.; Lugao, A.B.; Yousefnia, H.; Dispenza, C.; Janib, S.M.; et al. IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery. Pharmaceutics 2022, 14, 1060. [Google Scholar] [CrossRef]
- Trujillo-Nolasco, M.; Morales-Avila, E.; Cruz-Nova, P.; Katti, K.V.; Ocampo-García, B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Klain, M.; Zampella, E.; Nappi, C.; Nicolai, E.; Ambrosio, R.; Califaretti, E.; Lamartina, L.; Schlumberger, M.; Deandreis, D.; Salvatore, D. Advances in Functional Imaging of Differentiated Thyroid Cancer. Cancers 2021, 13, 4748. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Krishnan, S.; Kabashin, A.V.; Zavestovskaya, I.N.; Prasad, P.N. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS Nano 2022, 16, 5036–5061. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Tan, H.; Cheng, L.; Liu, G.; Yang, Y.; Zhao, Y.; Zhang, Y.; Li, Y.; Zhang, C.; et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 2016, 108, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Wang, Y.B.; Han, D.; Wang, J.; Qi, S.; Gao, L.; Shao, Y.H.; Qiao, H.Y.; Chen, J.W.; Liang, S.H.; et al. Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles. Theranostics 2017, 7, 4791–4804. [Google Scholar] [CrossRef]
- Pérez-Medina, C.; Binderup, T.; Lobatto, M.E.; Tang, J.; Calcagno, C.; Giesen, L.; Wessel, C.H.; Witjes, J.; Ishino, S.; Baxter, S.; et al. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models. JACC Cardiovasc. Imaging 2016, 9, 950–961. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Hoyer, F.F.; Meerwaldt, A.E.; van Leent, M.M.T.; Senders, M.L.; Calcagno, C.; Robson, P.M.; Soultanidis, G.; Pérez-Medina, C.; Teunissen, A.J.P.; et al. Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor 64Cu-Macrin in Mice, Rabbits, and Pigs. Circ. Cardiovasc. Imaging 2020, 13, e010586. [Google Scholar] [CrossRef]
- Ahmadi, A.; Thorn, S.L.; Alarcon, E.I.; Kordos, M.; Padavan, D.T.; Hadizad, T.; Cron, G.O.; Beanlands, R.S.; DaSilva, J.N.; Ruel, M.; et al. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials 2015, 49, 18–26. [Google Scholar] [CrossRef]
- Gomes-da-Silva, N.C.; Xavier-de-Britto, I.; Soares, M.A.G.; Yoshihara, N.M.A.; Ilem Özdemir, D.; Ricci-Junior, E.; Fechine, P.B.A.; Alencar, L.M.R.; Henriques, M.d.G.M.d.O.; Barja-Fidalgo, T.C.; et al. Nanostructured Lipoxin A4: Understanding Its Biological Behavior and Impact on Alzheimer’s Disease (Proof of Concept). Pharmaceutics 2025, 17, 649. [Google Scholar] [CrossRef]
- Underwood, C.; van Eps, A.W.; Ross, M.W.; Laverman, P.; van Bloois, L.; Storm, G.; Schaer, T.P. Intravenous technetium-99m labelled PEG-liposomes in horses: A safety and biodistribution study. Equine Vet. J. 2012, 44, 196–202. [Google Scholar] [CrossRef]
- de Assis, D.N.; Mosqueira, V.C.; Vilela, J.M.; Andrade, M.S.; Cardoso, V.N. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int. J. Pharm. 2008, 349, 152–160. [Google Scholar] [CrossRef]
- de Assis, D.N.; Araújo, R.S.; Fuscaldi, L.L.; Fernandes, S.O.A.; Mosqueira, V.C.F.; Cardoso, V.N. Biodistribution of free and encapsulated 99mTc-fluconazole in an infection model induced by Candida albicans. Biomed. Pharmacother. 2018, 99, 438–444. [Google Scholar] [CrossRef]
- Bodei, L.; Herrmann, K.; Schöder, H.; Scott, A.M.; Lewis, J.S. Radiotheranostics in oncology: Current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 534–550. [Google Scholar] [CrossRef]
- Schwenck, J.; Sonanini, D.; Cotton, J.M.; Rammensee, H.G.; la Fougere, C.; Zenber, L.; Pichler, B.J. Advances in PET imaging of Cancer. Nat. Rev. Cancer 2023, 23, 474–490. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 1, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.S.M.; Lewis, J.S.; Solomon, S.B.; McNeil, B.J.; Baumann, M.; Gambhir, S.S.; Hricak, H.; Weissleder, R. Radiotheranostics: A roadmap for future development. Lancet Oncol. 2020, 21, e146–e156. [Google Scholar] [CrossRef]
- Weber, W.A.; Anderson, G.; Badawi, R.D.; Barthel, H.; Bengel, F.; Bodei, L.; Buvat, I.; DiCarli, M.; Graham, M.M.; Grimm, J.; et al. The future of nuclear medicine, molecular imaging, and theranostics. J. Nucl. Med. 2020, 61 (Suppl. S2), 263S–272S. [Google Scholar] [CrossRef]
- Radvanyi, P.; Villain, J. The discovery of radioactivity. Comptes Rendus Phys. 2017, 18, 544–550. [Google Scholar] [CrossRef]
- Hevesy, G. The absorption and translocation of lead by plants: A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 1923, 17, 439–445. [Google Scholar] [CrossRef]
- Myers, W.G. Georg Charles de Hevesy: The father of nuclear medicine. J. Nucl. Med. Technol. 1996, 24, 291–294. [Google Scholar]
- Lawrence, J.; Tuttle, L.; Scott, K.; Connor, C. Studies on neoplasms with the aid of radioactive phosphorus. I. The total phosphorus metabolism of normal and leukemic mice. J. Clin. Investig. 1940, 19, 267–271. [Google Scholar] [CrossRef]
- Tuttle, L.W.; Erf, L.A.; Lawrence, J.H. Studies on neoplasms with the aid of radioactive phosphorus. II. The phosphorus metabolism of the nucleoprotein, phospholipid and acid soluble fractions of normal and leukemic mice. J. Clin. Investig. 1941, 20, 57–61. [Google Scholar] [CrossRef]
- Chamberlain, R.H.; Low-Beer, B.V.A.; Thomas, C.C. The clinical use of radioactive isotopes. Science 1950, 112, 794. [Google Scholar] [CrossRef]
- Beierwaltes, W.H.; Johnson, P.C.; Solari, A.J. Clinical Use of Radioisotopes; W.B. Saunders Company: Philadelphia, PA, USA, 1957. [Google Scholar]
- Czernin, J.; Calais, J. How many theranostics centers will we need in the united states? J. Nucl. Med. 2022, 63, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Jadvar, H.; Chen, X.; Cai, W.; Mahmood, U. Radiotheranostics in cancer diagnosis and management. Radiology 2018, 286, 388–400. [Google Scholar] [CrossRef]
- Cutler, C.S.; Bailey, E.; Kumar, V.; Schwarz, S.W.; Bom, H.S.; Hatazawa, J.; Paez, D.; Orellana, P.; Louw, L.; Mut, F.; et al. Global Issues of Radiopharmaceutical Access and Availability: A Nuclear Medicine Global Initiative Project. J. Nucl. Med. 2021, 62, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Gillings, N.; Hjelstuen, O.; Ballinger, J.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; et al. Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021, 6, 8. [Google Scholar] [CrossRef]
- Baum, R.P.; Kulkarni, H.R. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy—The Bad Berka Experience. Theranostics 2012, 2, 437–447. [Google Scholar] [CrossRef]
- Turner, J.H. Recent advances in theranostics and challenges for the future. Br. J. Radiol. 2018, 91, 20170893. [Google Scholar] [CrossRef]
- Poot, A.J.; Lam, M.G.E.H.; van Noesel, M.M. The Current Status and Future Potential of Theranostics to Diagnose and Treat Childhood Cancer. Front. Oncol. 2020, 10, 578286. [Google Scholar] [CrossRef]
- Herrmann, K.; Giovanella, L.; Santos, A.; Gear, J.; Kiratli, P.O.; Kurth, J.; Denis-Bacelar, A.M.; Hustinx, R.; Patt, M.; Wahl, R.L.; et al. Joint EANM, SNMMI and IAEA enabling guide: How to set up a theranostics centre. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2300–2309. [Google Scholar] [CrossRef]
- Urbain, J.L.; Scott, A.M.; Lee, S.T.; Buscombe, J.; Weston, C.; Hatazawa, J.; Kinuya, S.; Singh, B.; Haidar, M.; Ross, A.; et al. Theranostics Radiopharmaceuticals: A Universal Challenging Educational Paradigm in Nuclear Medicine. J. Nucl. Med. 2023, 64, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Fahey, F.H.; Goodkind, A.; MacDougall, R.D.; Oberg, L.; Ziniel, S.I.; Cappock, R.; Callahan, M.J.; Kwatra, N.; Treves, S.T.; Voss, S.D. Operational and Dosimetric Aspects of Pediatric PET/CT. J. Nucl. Med. 2017, 58, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Hendrikse, H.; Kiss, O.; Kunikowska, J.; Wadsak, W.; Decristoforo, C.; Patt, M. EANM position on the in-house preparation of radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1095–1098. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Database of Cyclotrons for Radionuclide Production. Available online: https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx (accessed on 3 July 2025).
- International Atomic Energy Agency. Disposal of radioactive waste. IAEA Safety Standards Series No. SSR-5, Vienna. 2011. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1449_web.pdf (accessed on 3 July 2025).
- Hricak, H.; Abdel-Wahab, M.; Atun, R.; Lette, M.M.; Paez, D.; Brink, J.A.; Donoso-Bach, L.; Frija, G.; Hierath, M.; Holmberg, O.; et al. Medical imaging and nuclear medicine: A Lancet Oncology Commission. Lancet Oncol. 2021, 22, e136–e172. [Google Scholar] [CrossRef]
- Giammarile, F.; Delgado Bolton, R.C.; El-Haj, N.; Freudenberg, L.S.; Herrmann, K.; Mikhail, M.; Morozova, O.; Orellana, P.; Pellet, O.; Estrada, L.E.; et al. Changes in the global impact of COVID-19 on nuclear medicine departments during 2020: An international follow-up survey. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4318–4330. [Google Scholar] [CrossRef]
- Delgado Bolton, R.C.; Calapaquí Terán, A.K.; Erba, P.A.; Giammarile, F. Medical imaging in times of pandemic: Focus on the cornerstones of successful imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1724–1725. [Google Scholar] [CrossRef] [PubMed]
- Paez, D.; Mikhail-Lette, M.; Gnanasegaran, G.; Dondi, M.; Estrada-Lobato, E.; Bomanji, J.; Vinjamuri, S.; El-Haj, N.; Morozova, O.; Alonso, O.; et al. Nuclear Medicine Departments in the Era of COVID-19. Semin. Nucl. Med. 2022, 52, 41–47. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Research Reactor Database (RRDB). Available online: https://nucleus.iaea.org/rrdb/#/home (accessed on 3 July 2025).
- International Atomic Energy Agency. Manual for Reactor Produced Radioisotopes, IAEA-TECDOC-1340, Vienna. 2003. Available online: https://www-pub.iaea.org/MTCD/publications/PDF/te_1340_web.pdf (accessed on 3 July 2025).
- International Atomic Energy Agency. Predisposal Management of Radioactive Waste from the Use of Radioactive Material in Medicine, Industry, Agriculture, Research and Education. IAEA Safety Standards Series No. SSG-45, Vienna. 2019. Available online: https://www.iaea.org/publications/11087/predisposal-management-of-radioactive-waste-from-the-use-of-radioactive-material-in-medicine-industry-agriculture-research-and-education (accessed on 3 July 2025).
- International Atomic Energy Agency. Management of Radioactive Waste from the Use of Radionuclides in Medicine, IAEA-TECDOC-1805, Vienna. 2017. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1183_prn.pdf (accessed on 3 July 2025).
- International Atomic Energy Agency. Radiation Protection and Safety in Medical Uses of Ionizing Radiation, IAEA Safety Standards Series No. SSG-46, Vienna 2018. Available online: https://www.iaea.org/publications/11102/radiation-protection-and-safety-in-medical-uses-of-ionizing-radiation (accessed on 3 July 2025).
- Kleynhans, J.; Grobler, A.F.; Ebenhan, T.; Sathekge, M.M.; Zeevaart, J.R. Radiopharmaceutical enhancement by drug delivery systems: A review. J. Control Release 2018, 287, 177–193. [Google Scholar] [CrossRef]
- Filzen, L.M.; Ellingson, L.R.; Paulsen, A.M.; Hung, J.C. Potential Ways to Address Shortage Situations of 99Mo/99mTc. J. Nucl. Med. Technol. 2017, 45, 1–5. [Google Scholar] [CrossRef][Green Version]
- Skliarova, H.; Cisternino, S.; Cicoria, G.; Marengo, M.; Palmieri, V. Innovative Target for Production of Technetium-99m by Biomedical Cyclotron. Molecules 2018, 24, 25. [Google Scholar] [CrossRef]
- Chess, R. Economics of drug delivery. Pharm. Res. 1998, 15, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Pant, P.; Porwal, A.; Jaiswal, J.; Samad, M.A.; Tiwari, S. Targeted drug delivery: A review. Am. J. Pharmatech. Res. 2016, 6, 1–24. [Google Scholar]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef]
- Batista, C.A.; Larson, R.G.; Kotov, N.A. Nonadditivity of nanoparticle interaction. Science 2015, 350, 1242477. [Google Scholar] [CrossRef]
- Sahil, K.; Akanksha, M.; Premjeet, S.; Bilandi, A. Kapoor BMicrosphere: A review. Int. J. Res. Pharm. Chem. 2011, 1, 1184–1189. [Google Scholar]
- Valliant, J.F. A bridge not too far: Linking disciplines through molecular imaging probes. J. Nucl. Med. Tech. 2016, 44, 176–183. [Google Scholar] [CrossRef]
- Duvall, W.L.; Croft, L.B.; Ginsberg, E.S.; Einstein, A.J.; Guma, K.A.; George, T.; Henzlova, M.J. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J. Nucl. Cardiol. 2011, 18, 847–857. [Google Scholar] [CrossRef]
- Galea, R.; Ross, C.; Wells, R.G. Reduce, reuse and recycle: A green solution to Canada’s medical isotope shortage. Appl. Radiat. Isot. 2014, 87, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Hoedl, S.A.; Updegraff, W.D. The production of medical isotopes without nuclear reactors or uranium enrichment. Sci. Glob. Secur. 2015, 23, 121–125. [Google Scholar] [CrossRef]
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem. 2011, 22, 1879–1903. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, S.; Chen, X. Nanotheranostics for personalized medicine. Expert. Rev. Mol. Diagn. 2013, 13, 257–269. [Google Scholar] [CrossRef]
- Kaul, A.; Chaturvedi, S.; Attri, A.; Kalra, M.; Mishra, A.K. Targeted theranostic liposomes: Rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 2016, 6, 28919–28926. [Google Scholar] [CrossRef]
- Wang, S.J.; Lin, W.J.; Chen, M.N.; Chi, C.S.; Chen, J.T.; Ho, W.L.; Hsieh, B.T.; Shen, L.H.; Tsai, Z.T.; Ting, G.; et al. Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma. J. Nucl. Med. 1998, 39, 1752–1757. [Google Scholar]
- Wunderlich, G.; Pinkert, J.; Stintz, M.; Kotzerke, J. Labelling and biodistribution of different particle materials for radioembolization therapy with 188Re. Appl. Radiat. Isot. 2005, 62, 745–750. [Google Scholar] [CrossRef]
- Blankespoor, S.C.; Wu, X.; Kalki, J.K.; Brown, H.R.; Tang, H.R.; Cann, C.E.; Hasegawa, B.H. Attenuation correction of SPECT using x-ray CT on an Emission-Transmission CT System: Myocardial perfusion assessment. IEEE Trans. Nucl. Sci. 1996, 43, 2263–2274. [Google Scholar] [CrossRef]
- Shao, Y.; Cherry, S.R.; Farahani, K.; Meadors, K.; Siegel, S.B.; Silwerman, R.W.; Marsden, P.K. Simultaneous PET and MR imaging. Phys. Med. Biol. 1997, 42, 1965–1970. [Google Scholar] [CrossRef]
- Beyer, T.; Townsend, W.D.; Burn, T.; Kinahan, P.E.; Charron, M.; Roddy, R.; Jerin, J.; Young, J.; Byars, L.; Nutt, R. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 2000, 41, 1369–1379. [Google Scholar]
- Townsend, W.D. Dual-modality imaging: Combining anatomy and function. J. Nucl. Med. 2008, 49, 938–955. [Google Scholar] [CrossRef]
- Czernin, J.; Allen-Auerbach, M.; Schelbert, H.R. Improvements in cancer staging with PET/CT: Literature-based evidence as of September 2006. J. Nucl. Med. 2007, 48, 78S–88S. [Google Scholar]
- Judenhofer, M.S.; Wehrl, H.F.; Newport, D.F.; Catana, C.; Siegel, S.B.; Becker, M.; Thielscher, A.; Kneilling, M.; Lichy, M.P.; Eichner, M.; et al. Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat. Med. 2008, 14, 459–465. [Google Scholar] [CrossRef]
- Cheon, J.; Lee, J.H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. ACC. Chem. Res. 2008, 41, 1630–1640. [Google Scholar] [CrossRef]
- Wehrl, H.F.; Sauter, A.W.; Judenhofer, M.S.; Pichler, B.J. Combined PET/MR imaging—Technology and applications. Technol. Cancer Res. Treat. 2010, 9, 5–20. [Google Scholar] [CrossRef]
- Delso, G.; Fust, S.; Jakoby, B.; Ladebeck, R.; Ganter, C.; Nekolla, S.G.; Schwaiger, M.; Ziegler, S.I. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 2011, 52, 1914–1922. [Google Scholar] [CrossRef]
- Tan, I.C.; Darne, C.; Lu, Y.; Yan, S.; Smith, A.; Rasmussen, J.; Azhdarinia, A.; Sevick, E. Hybrid fluorescence, PET, and CT for small animal imaging. J. Nucl. Med. 2012, 53 (Suppl. S1), 493. [Google Scholar]
- Committee on State of Molybdenum-99 Production and Utilization and Progress Toward Eliminating Use of Highly Enriched Uranium; Nuclear and Radiation Studies Board; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Molybdenum-99 for Medical Imaging; National Academies Press: Washington, DC, USA, 2016. [CrossRef]
- Man, F.; Gawne, P.J.; de Rosales, R.T.M. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 134–160. [Google Scholar] [CrossRef]
- Mushtaq, S.; Bibi, A.; Park, J.E.; Jeon, J. Recent Progress in Technetium-99m-Labeled Nanoparticles for Molecular Imaging and Cancer Therapy. Nanomaterials 2021, 11, 3022. [Google Scholar] [CrossRef]
- Toro-González, M.; Akingbesote, N.; Bible, A.; Pal, D.; Sanders, B.; Ivanov, A.S.; Jansone-Popova, S.; Popovs, I.; Benny, P.; Perry, R.; et al. Development of 225Ac-doped biocompatible nanoparticles for targeted alpha therapy. J. Nanobiotechnol. 2024, 22, 306. [Google Scholar] [CrossRef]
- Toro-González, M.; Dame, A.N.; Mirzadeh, S.; Rojas, J.V. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochim. Acta 2020, 108, 967–977. [Google Scholar] [CrossRef]
- Woodward, J.; Kennel, S.J.; Stuckey, A.; Osborne, D.; Wall, J.; Rondinone, A.J.; Standaert, R.F.; Mirzadeh, S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug. Chem. 2011, 22, 766–776. [Google Scholar] [CrossRef]
- Trusova, V.; Karnaukhov, I.; Zelinsky, A.; Borts, B.; Ushakov, I.; Sidenko, L.; Gorbenko, G. Radiolabeling of bionanomaterials with technetium 99m: Current state and future prospects. Nanomedicine 2024, 19, 1569–1580. [Google Scholar] [CrossRef]
- Engström, A.; Isaksson, M.; Javid, R.; Lundh, C.; Båth, M. A case study of cost-benefit analysis in occupational radiological protection within the healthcare system of Sweden. J. Appl. Clin. Med. Phys. 2021, 22, 295–304. [Google Scholar] [CrossRef]
- Pellico, J.; Gawne, P.J.; de Rosales, R.T.M. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 2021, 50, 3355–3423. [Google Scholar] [CrossRef]
- Pomykala, K.L.; Würker, M.; Herrmann, K. Tackling the Last Mile: A Major Component to Successfully Establish Radioligand Therapy. J. Nucl. Med. 2023, 64, 347–348. [Google Scholar] [CrossRef]
- Aerts, A.; Eberlein, U.; Holm, S.; Hustinx, R.; Konijnenberg, M.; Strigari, L.; van Leeuwen, F.W.B.; Glatting, G.; Lassmann, M. EANM position paper on the role of radiobiology in nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3365–3377. [Google Scholar] [CrossRef]
- Blanc-Béguin, F.; Damien, P.; Floch, R.; Kerleguer, K.; Hennebicq, S.; Robin, P.; Salaün, P.Y.; Le Roux, P.Y. Radiation exposure to nuclear medicine technologists performing a V/Q PET: Comparison with conventional V/Q scintigraphy, [18F]FDG PET and [68Ga]Ga DOTATOC PET procedures. Front. Med. 2022, 9, 1051249. [Google Scholar] [CrossRef]
- Aboagye, E.O.; Barwick, T.D.; Haberkorn, U. Radiotheranostics in oncology: Making precision medicine possible. CA Cancer J. Clin. 2023, 73, 255–274. [Google Scholar] [CrossRef]
- Thakral, P.; Sen, I.; Simecek, J.; Marx, S.; Kumari, J.; Kumar, S.; Tandon, P.; Dureja, S.; Pant, V. Radiation Exposure to the Nuclear Medicine Personnel During Preparation and Handling of 213Bi-Radiopharmaceuticals. J. Nucl. Med. Technol. 2020, 48, 68–72. [Google Scholar] [CrossRef]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef]
- Ehlerding, E.B.; Grodzinski, P.; Cai, W.; Liu, C.H. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018, 12, 2106–2121. [Google Scholar] [CrossRef]
- Aminolroayaei, F.; Shahbazi-Gahrouei, D.; Shahbazi-Gahrouei, S.; Rasouli, N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol. 2021, 15, 247–256. [Google Scholar] [CrossRef]
- Gupta, D.; Roy, P.; Sharma, R.; Kasana, R.; Rathore, P.; Gupta, T.K. Recent nanotheranostic approaches in cancer research. Clin. Exp. Med. 2024, 24, 8. [Google Scholar] [CrossRef]
- Goins, B.; Bao, A.; Phillips, W.T. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into preformed liposomes for diagnostic imaging and radionuclide therapy. Methods Mol. Biol. 2017, 1522, 155–178. [Google Scholar]
- Belhaj-Tayeb, H.; Briane, D.; Vergote, J.; Kothan, S.; Leger, G.; Bendada, S.E.; Tofighi, M.; Tamgac, F.; Cao, A.; Moretti, J.L. In vitro and in vivo study of 99mTc-MIBI encapsulated in PEG-liposomes: A promising radiotracer for tumour imaging. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 502–509. [Google Scholar] [CrossRef]
- Goins, B.; Klipper, R.; Rudolph, A.S.; Phillips, W.T. Use of technetium-99m-liposomes in tumour imaging. J. Nucl. Med. 1994, 35, 1491–1498. [Google Scholar]
- Dams, E.T.; Oyen, W.J.; Boerman, O.C.; Storm, G.; Laverman, P.; Kok, P.J.; Buijs, W.C.; Bakker, H.; van der Meer, J.W.; Corsten, F.H. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: Clinical evaluation. J. Nucl. Med. 2000, 41, 622–630. [Google Scholar]
- 115 Dagar, S.; Krishnadas, A.; Rubinstein, I.; Blend, M.J.; Onyuksel, H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: In Vivo studies. J. Control. Release 2003, 91, 123–133. [Google Scholar] [CrossRef]
- Kleiter, M.M.; Yu, D.; Mohammadian, L.A.; Niehaus, N.; Spasojevic, I.; Sanders, L.; Viglianti, B.L.; Yarmolenko, P.S.; Hauck, M.; Petry, N.A.; et al. A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin. Cancer Res. 2006, 15, 6800–6807. [Google Scholar] [CrossRef]
- Chen, M.H.; Chang, C.H.; Chang, Y.J.; Chen, L.C.; Yu, C.Y.; Wu, Y.H.; Lee, W.C.; Yeh, C.H.; Lin, F.H.; Lee, T.W.; et al. MicroSPECT/CT imaging and pharmacokinetics of 188Re-(DXR)-liposome n human colorectal adenocarcinoma-bearing mice. Anticancer Res. 2010, 30, 65–72. [Google Scholar]
- Tsai, C.C.; Chang, C.H.; Chen, L.C.; Chang, Y.J.; Lan, K.L.; Wu, Y.H.; Hsu, C.W.; Liu, I.H.; Ho, C.L.; Lee, W.C.; et al. Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in a C26 colonic peritoneal carcinomatosis mice. Int. J. Nanomed. 2011, 6, 2607–2619. [Google Scholar] [CrossRef][Green Version]
- Liu, C.M.; Chang, C.H.; Chang, Y.J.; Hsu, C.W.; Chen, L.C.; Chen, H.L.; Ho, C.L.; Yu, C.Y.; Chang, T.J.; Chiang, T.C.; et al. Preliminary evaluation of acute toxicity of 188Re-BMEDA-liposome in rats. J. Appl. Toxicol. 2010, 30, 680–687. [Google Scholar] [CrossRef]
- Chi-Mou, L.; Chia-Che, T.; Chia-Yu, Y.; Wan-Chi, L.; Chung-Li, H.; Tsui-Jung, C.; Chih-Hsien, C.; Te-Wei, L. Extended acute toxicity study of 188Re-liposome in rats. J. Appl. Toxicol. 2013, 33, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Liu, S.Y.; Chang, Y.J.; Chang, C.H.; Ting, G.; Lee, T.W. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumour mode. Nucl. Med. Biol. 2014, 41, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Liu, S.Y.; Chi, C.W.; Yu, H.L.; Chang, T.J.; Tsai, T.H.; Lee, T.W.; Chen, Y.J. External beam radiotherapy synergizes 188Re-liposome against human oesophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics. Int. J. Nanomed. 2015, 10, 3641–3649. [Google Scholar]
- Allard, E.; Hindre, F.; Passirani, C.; Lemaire, L.; Lepareur, N.; Noiret, N.; Menei, P.; Benoit, J.P. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1838–1846. [Google Scholar] [CrossRef]
- Wang, S.X.; Bao, A.; Herrera, S.J.; Phillips, W.T.; Goins, B.; Santoyo, C.; Miller, F.R.; Otto, R.A. Intraoperative 186Re-liposome radionuclide therapy in a head and neck squamous cell carcinoma xenograft positive surgical margin model. Clin. Cancer Res. 2008, 14, 3975–3983. [Google Scholar] [CrossRef][Green Version]
- Zavaleta, C.L.; Goins, B.A.; Bao, A.; McManus, L.M.; McMahan, C.A.; Phillips, W.T. Imaging of 186Re-liposome therapy in ovarian cancer xenograft model of peritoneal carcinomatosis. J. Drug Target. 2008, 16, 626–637. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yu, C.Y.; Hsu, C.W.; Lee, W.C.; Chen, S.J.; Chang, C.H.; Lee, T.W. Molecular imaging and therapeutic efficacy of 188Re-(DXR)-liposome-BNN in AR42J pancreatic tumour-bearing mice. Oncol. Rep. 2012, 28, 1736–1742. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, L.C.; Wu, Y.H.; Liu, I.H.; Ho, C.L.; Lee, W.C.; Chang, C.H.; Lan, K.L.; Ting, G.; Lee, T.W.; Shien, J.H. Pharmacokinetics, dosimetry and comparative efficacy of 188Re-liposome and 5-Fu in a CT26-luc lung-metastatic mice model. Nucl. Med. Biol. 2012, 39, 35–43. [Google Scholar] [CrossRef]
- Phillips, W.T.; Goins, B.; Bao, A.; Vargas, D.; Guttierez, J.E.; Trevino, A.; Miller, J.R.; Henry, J.; Zuniga, R.; Vecil, G.; et al. Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro Oncol. 2012, 14, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Lee, W.C.; Yu, C.Y.; Lan, K.L.; Chang, C.H.; Ting, G.; Lee, T.W. Comparison of the therapeutic efficacy of 188Rhenium-liposomes and liposomal doxurbicin in a 4T1 murine orthotopic breast cancer model. Oncol. Rep. 2012, 5, 678–684. [Google Scholar]
- Shen, Y.A.; Lan, K.L.; Chang, C.H.; Lin, L.T.; He, C.L.; Chen, P.H.; Lee, T.W.; Lee, Y.J.; Chuang, C.M. Intraperitoneal (188)Re-liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice. Radiother. Oncol. 2016, 119, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, Y.; Yu, J.; Xia, J.; Zang, C.; Yin, D.; Häfeli, U.O. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J. Magn. Magn. Mater. 2004, 277, 165–174. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Y.; Zang, C.; Liu, X. Synthesis of amino-modified magnetite nanoparticles coated with Hepama-1 and radiolabeled with 188Re for bio-magnetically targeted radiotherapy. J. Radioanal. Nucl. Chem. 2006, 269, 3–7. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2, 17024. [Google Scholar] [CrossRef]
- Kashyap, B.K.; Singh, V.V.; Solanki, M.K.; Kumar, A.; Ruokolainen, J.; Kesari, K.K. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS Omega 2023, 8, 14290–14320. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.; Teng, Y.; Chen, J.; Wang, H.; Xu, Y.; Wang, K.; Xu, J.; Cheng, Y.; Gao, X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024, 9, 200. [Google Scholar] [CrossRef]
- Azimizonuzi, H.; Ghayourvahdat, A.; Ahmed, M.H.; Kareem, R.A.; Zrzor, A.J.; Mansoor, A.S.; Athab, Z.H.; Kalavi, S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int. 2025, 25, 26. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, M.A.; Bouziotis, P.; Stiliaris, E.; Stamopoulos, D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. Nanomaterials 2023, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Abou, D.S.; Thorek, D.L.; Ramos, N.N.; Pinkse, M.W.; Wolterbeek, H.T.; Carlin, S.D.; Beattie, B.J.; Lewis, J.S. 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm. Res. 2013, 30, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Pellico, J.; Ruiz-Cabello, J.; Herranz, F. Radiolabeled iron oxide nanomaterials for multimodal nuclear imaging and positive contrast MRI. ACS Appl. Nano Mater. 2023, 6, 20523–20538. [Google Scholar] [CrossRef]
- Shi, X.; Sun, Y.; Shen, L. Preparation and in vivo imaging of a novel potential αvβ3 targeting PET/MRI dual-modal imaging agent. J. Radioanal. Nucl. Chem. 2022, 331, 3485–3494. [Google Scholar] [CrossRef]
- Glaus, C.; Rossin, R.; Welch, M.J.; Bao, G. In Vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug. Chem. 2010, 21, 715–722. [Google Scholar] [CrossRef]
- Li, S.; Goins, B.; Zhang, L.; Bao, A. A novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, Near-infrared fluorescent and nuclear imaging. Bioconjug. Chem. 2012, 23, 1322–1332. [Google Scholar] [CrossRef]
- Zielhuis, S.W.; Seppenwoolde, J.H.; Mateus, V.A.; Bakker, C.J.; Krijger, G.C.; Storm, G.; Zonnenberg, B.A.; van het Schip, A.D.; Koning, G.A.; Nijsen, J.F. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 2006, 21, 520–527. [Google Scholar] [CrossRef]
- Zang, J.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharm. Therap. 2008, 83, 761–769. [Google Scholar] [CrossRef]
- Sawant, R.R.; Torchillin, V.P. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012, 14, 303–315. [Google Scholar] [CrossRef]
- Litzinger, D.C.; Buiting, A.M.J.; Van Rooijen, N.; Huang, L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta 1994, 1190, 99–107. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Couvreur, P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 2013, 65, 21–23. [Google Scholar] [CrossRef]
- Theek, B.; Baues, M.; Ojha, T.; Möckel, D.; Veettil, S.K.; Steitz, J.; van Bloois, L.; Storm, G.; Kiessling, F.; Lammers, T. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Release 2016, 231, 77–85. [Google Scholar] [CrossRef]
- Petrak, K. Essential properties of drug-targeting delivery systems. Drug Discov. Today 2006, 10, 1667–1673. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical application. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Meada, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Uriely, B.; Jeffers, S.; Isacson, R.; Kutch, K.; Wei-Tsao, D.; Yehoshua, Z.; Libson, E.; Muggia, F.M.; Lasic, D.D. Liposomal doxorubicin: Antitumor activity and unique toxicities during two complementarty phase I studies. J. Clin. Oncol. 1995, 13, 1777–1785. [Google Scholar]
- Yamashita, F.; Hashida, M. Pharmacokinetic considerations for targeted drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 139–147. [Google Scholar] [CrossRef]
- Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Giammarile, F.; Paez, D.; Zimmermann, R.; Cutler, C.S.; Jalilian, A.; Korde, A.; Knoll, P.; Ayati, N.; Lewis, J.S.; Lapi, S.E.; et al. Production and regulatory issues for theranostics. Lancet Oncol. 2024, 25, e260–e269. [Google Scholar] [CrossRef]
- Gawne, P.J.; Ferreira, M.; Papaluca, M.; Grimm, J.; Decuzzi, P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. Nat. Rev. Mater. 2023, 8, 783–798. [Google Scholar] [CrossRef]
- Kostevšek, N.; Cheung, C.C.L.; Serša, I.; Kreft, M.E.; Monaco, I.; Comes Franchini, M.; Vidmar, J.; Al-Jamal, W.T. Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. Nanomaterials 2020, 10, 889. [Google Scholar] [CrossRef]
- Di Gregorio, E.; Rosa, E.; Ferrauto, G.; Diaferia, C.; Gallo, E.; Accardo, A.; Terreno, E. Development of cationic peptide-based hydrogels loaded with iopamidol for CEST-MRI detection. J. Mater. Chem. B 2023, 11, 7435–7441. [Google Scholar] [CrossRef]
- Bijoch, Ł.; Włodkowska, U.; Kasztelanic, R.; Pawłowska, M.; Pysz, D.; Kaczmarek, L.; Lapkiewicz, R.; Buczyński, R.; Czajkowski, R. Novel Design and Application of High-NA Fiber Imaging Bundles for In Vivo Brain Imaging with Two-Photon Scanning Fluorescence Microscopy. ACS Appl. Mater. Interfaces 2023, 15, 12831–12841. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Balasco, N.; Sibillano, T.; Roviello, V.; Giannini, C.; Vitagliano, L.; Morelli, G.; Accardo, A. Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Sci. Rep. 2021, 11, 2470. [Google Scholar] [CrossRef]
- Khalid, A.; Tomljenovic-Hanic, S. Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging. Molecules 2024, 29, 5594. [Google Scholar] [CrossRef]
- EMA-Innovation Task Force Briefing Meetings. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/innovation-task-force-briefing-meetings (accessed on 3 July 2025).
- Bartlett, J.A.; Brewster, M.; Brown, P.; Cabral-Lilly, D.; Cruz, C.N.; David, R.; Eickhoff, W.M.; Haubenreisser, S.; Jacobs, A.; Malinoski, F.; et al. Summary report of PQRI Workshop on Nanomaterial in Drug Products: Current experience and management of potential risks. AAPS J. 2015, 17, 44–64. [Google Scholar] [CrossRef]
- FDA 2021 NCTR Research Highlights and Accomplishments. Available online: https://www.fda.gov/about-fda/nctr-publications/2021-nctr-research-highlights (accessed on 3 July 2025).
- Chang, C.H.; Chang, M.C.; Chang, Y.J.; Chen, L.C.; Lee, T.W.; Ting, G. Translating Research for the Radiotheranostics of Nanotargeted 188Re-Liposome. Int. J. Mol. Sci. 2021, 22, 3868. [Google Scholar] [CrossRef]
Reference | Primary Focus | Scope Beyond Oncology | Methodological Approach | Regulatory/Translational Emphasis | Unique Contribution |
---|---|---|---|---|---|
Jalilian et al., 2022 [14] | Overview of nanosized targeted radiopharmaceuticals | Limited | Descriptive listing of nanoformulations | Low | Frames nanotechnology as a strategic tool for radiopharmaceutical repurposing, cross-mapping with macro-level challenges |
Trujillo-Nolasco et al., 2021 [15] | Alpha-emitter nanoradiopharmaceuticals | No | Focused on alpha emitters | Moderate | Broader radionuclide coverage (β-, α-, Auger), functional objectives beyond oncology |
Klain et al., 2021 [16] | Functional imaging in thyroid cancer | No | Disease-specific | Low | Multi-disease scope, including neurology, cardiology, infectious and inflammatory disorders |
Bodei et al., 2022 [27] | Radiotheranostics in oncology | No | Clinical translation focus | High | Integration of theranostic strategies with nano-enabled repurposing objectives |
This review | Strategic objectives for nanotechnology-enabled drug repurposing in radiopharmacy | Yes | Conceptual framework + functional mapping | High | Novel cross-walk between nano-enabled objectives and macro-challenges; regulatory + translational focus; multi-specialty audience |
Reference | Material/Technique Type | Regulatory Relevance |
---|---|---|
[155]. Giammarile et al., Lancet Oncol. (2024) | Theranostics (general) | Production and regulatory issues: Discusses the challenges of production and the regulatory issues of theranostics. This is a direct and crucial reference on the topic. |
[156]. Gawne et al., Nat Rev Mater. (2023) | Nanotheranostics (general) | Clinical translation and challenges: Analyzes the obstacles in the clinical translation of nanotheranostics, addressing regulatory and development challenges. |
[162]. EMA-Innovation Task Force (ITF) | Regulatory framework (EMA) | EMA regulatory guidance: A document describing meetings with the European Medicines Agency’s (EMA) Innovation Task Force. This is a direct reference to an official regulatory framework. |
[163]. Bartlett et al., AAPS J. (2015) | Nanomaterials in drug products | PQRI Workshop on Nanomaterials: A report summarizing risk management and experience with nanomaterials in drug products. This is a crucial reference on safety and regulatory evaluation. |
[164]. FDA NCTR Research Highlights | Regulatory framework (FDA) | FDA research advancements: An FDA report that may include studies on the characterization and toxicity of nanomaterials, which supports regulatory decisions. This is a direct reference to a regulatory body. |
[165]. Chang et al., Int. J. Mol. Sci. (2021) | Nanotargeted 188Re-Liposomes | Translation of research: A specific case study of the clinical translation of a nanoradiopharmaceutical. Highlights the need for a regulatory approach for these types of products. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgueiro, M.J.; Zubillaga, M. Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology). Pharmaceutics 2025, 17, 1159. https://doi.org/10.3390/pharmaceutics17091159
Salgueiro MJ, Zubillaga M. Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology). Pharmaceutics. 2025; 17(9):1159. https://doi.org/10.3390/pharmaceutics17091159
Chicago/Turabian StyleSalgueiro, María Jimena, and Marcela Zubillaga. 2025. "Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology)" Pharmaceutics 17, no. 9: 1159. https://doi.org/10.3390/pharmaceutics17091159
APA StyleSalgueiro, M. J., & Zubillaga, M. (2025). Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology). Pharmaceutics, 17(9), 1159. https://doi.org/10.3390/pharmaceutics17091159