Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review
Abstract
1. Introduction
2. Overview of the Technology of Electrospinning Nanofibers
3. Preparation and Sensing Mechanism of Electrospun Nanofiber Gas Sensors
3.1. Synthesis of Gas-Sensing Materials Using Electrospinning
3.2. Electrospinning Parameters
3.3. Gas-Sensing Mechanism of Pristine Electrospinning Nanofibers
4. Gas Sensors Based on Metal Oxide (MO) Nanofibers
4.1. Gas Sensors Based on Noble Metal-Doped Metal Oxides
4.2. Gas Sensor Based on MO-MO Heterojunctions
4.3. Gas Sensors Based on the Heterojunction of Metal Oxides-2D Materials
4.4. Gas Sensors Based on Metal-Ion-Doped Metal Oxides
Material | Gas | S | OT | tres/trec | LOD | SF/SN | Ref. | |
---|---|---|---|---|---|---|---|---|
Noble meta-doped | Pt-SnO2 | acetone (2 ppm) | 31.2 a | 150 °C | 13/25 s | 100 ppb | 10 | [74] |
Pd-WO3 | H2 (500 ppm) | 17.6 a | 450 °C | 25 s/- | 10 ppm | 3.6 | [77] | |
Pt-PS-SnO2 | Acetone (5 ppm) | 192 a | 350 °C | 10 ppb | 37 | [76] | ||
Au-ZnO/SnO2 | H2S (1ppm) | 73.3 a | 350 °C | 36/786 s | 0.1 ppm | 7 | [78] | |
Au-In2O3 | H2S (1 ppm) | 13.6 a | 300 °C | 35/108 s | 50 ppb | 3.5 | [79] | |
Ag-In2O3 | HCHO (1 ppm) | 12.6 a | 300 °C | 19/24 s | 8 ppb | 4.1 | [79] | |
Pt-In2O3 | acetone (1 ppm) | 17.9 a | 300 °C | 22/28 s | 20 ppb | 4.0 | [79] | |
Pt-In2O3 | NO2 (1 ppm) | 23.9 a | RT | -/- | 20 ppb | 2 | [75] | |
AuPt-In2O3 | acetone (50 ppm) | 7.1 a | 240 °C | -/- | 10 ppm | 3.1 | [81] | |
Pd-Co3O4/ZnO | ethanol (200 ppm) | 59 a | 240 °C | 6/12 s | 1 ppm | 2 | [100] | |
Ag-SnO2 | acetone (50 ppm) | 40 a | 160 °C | 6/10 s | 5 ppm | - | [101] | |
AuPt-ZnFe2O4 | acetone (0.5 ppm) | 3.32 a | 188 °C | 33/28 s | 30 ppb | 1.8 | [82] | |
MO-MO heterojunction | Co3O4-TiO2 | acetone (50 ppm) | 20.7 a | 300 °C | 68/18 s | 500 ppb | 7 | [88] |
NiO-ZnO | TMA (100 ppm) | 892 a | 260 °C | 18/20 s | 0.5 ppm | 9 | [86] | |
CuO-CdO | NO (33 ppm) | 22.6 a | 215 °C | 35/630 s | 1.2 ppm | 2.4 | [87] | |
SnO2-CuO | H2S (5 ppm) | 1395 a | 150 °C | 5.27 s/- | 2 ppm | - | [85] | |
ZnO-SnO2 | NH3 (100 ppm) | 60.41% b | RT | 70/23 s | 10 ppm | - | [102] | |
ZnO-In2O3 | ethanol (100 ppm) | 31.9 a | 225 °C | 3/21 s | 0.2 ppm | 2 | [103] | |
ZnO-CuO | H2S (10 ppm) | 4489.9 a | 150 °C | -/- | 1 ppm | - | [104] | |
NiO-SnO2 | toluene (50 ppm) | 11 a | 330 °C | 11.2/4 s | 50 ppm | 10 | [105] | |
GO-SnO2 | HCHO (100 ppm) | 32 a | 120 °C | 66/10 s | 0.5 ppm | 4 | [91] | |
MoS2-SnO2 | xylene (100 ppm) | 23.5 a | 220 °C | 21.5/60.4 s | 0.5 ppm | 4.7 | [92] | |
MO-2D material heterojunciton | GO-WO3 | acetone (100 ppm) | 35.9 a | 375 | 4/10 s | 20 ppm | 4.3 | [90] |
WS2-In2O3 | HCHO (100 ppm) | 12.6 a | 140 | 30 s/43 s | 1 ppm | 2.0 | [93] | |
rGO-ZnO | H2 (0.1 ppm) | 866 a | 400 | 210/234 s | 0.1 ppm | - | [106] | |
rGO-In2O3 | NH3 (15 ppm) | 23.37 a | RT | 17/241s | 44 ppb | 10 | [107] | |
rGO-ZnFe2O4 | H2S (1 ppm) | 147 a | 350 | 10 s/- | 0.14 ppb | 1.5 | [108] | |
Ions-doping | Rh-SnO2 | acetone (50 ppm) | 60.6 a | 200 | 2/64 s | 1 ppm | 9.6 | [98] |
Ni-ZnO | C2H2 (2000 ppm) | 16.9 a | 250 | 5/10 s | 100 ppm | 6.5 | [96] | |
Cu-Fe2O3 | NO2 (50 ppm) | 2.0 a | 300 | 118/258 s | 5 ppm | - | [95] | |
Al-SnO2 | H2 (100 ppm) | 7.7 a | 340 | 3/2 s | 10 ppm | 2.5 | [109] | |
Al-SnO2 | formaldehyde (1000 ppb) | 7.82 a | 240 | -/- | 100 ppb | 1.33 | [97] | |
Ni-ZnO | H2S (50 ppm) | 474 a | 215 | 50/124 s | 1 ppm | 23.7 | [110] | |
Ce-ZnO | acetone (100 ppm) | 20.3 a | 300 | 10/9 s | 10 ppm | 2 | [111] |
5. Gas Sensors Based on Carbon Nanofibers (CNFs)
Material | Gas | S | OT | tres/trec | LOD | SF/SN | Ref. | |
---|---|---|---|---|---|---|---|---|
Metal doped | Au/Pt-CNFs | H2 (4%) | 47% b | RT | 6.6/18 s | 100 ppm | - | [115] |
Fe-CNFs | H2 (500 ppm) | 0.35% b | RT | 193/97 s | 50 ppm | - | [127] | |
Ni/Pt-CNFs | H2 (100 ppm) | 13% b | RT | 32/72 s | 100 ppm | - | [116] | |
Heterojunction | ZnO-CNFs | NH3 (50 ppm) | 12.3% b | RT | 5/18 s | 10 ppm | 10 | [120] |
WO3-CNFs | NO2 (20 ppm) | 7.5% b | RT | -/600 s | 1 ppm | - | [119] | |
WS2-CNFs | NO2 (1 ppm) | 15% b | RT | 223.8 s/- | 0.2 ppm | 1.5 | [117] | |
MoS2-CNFs | CH4 (250 ppm) | 5.82% b | RT | -/- | 10 ppm | 16 | [118] | |
CB -CNFs | NO (50 ppm) | 10% b | RT | -/- | - | 5 | [55] | |
fluorinated MWCNTs-CNFs | NO (50 ppm) | 8% b | RT | -/- | - | 8 | [128] |
6. Gas Sensors Based on Conductive Polymer (CP) Nanofibers
Material | Gas | S | OT | tres/trec | LOD | SF/SN | Ref. | |
---|---|---|---|---|---|---|---|---|
Heterojunction | SnO2-PPy | NH3 (0.1 ppm) | 57% b | RT | 18/30 s | 0.1 ppm | - | [132] |
SnO2-PANI | H2 (5000 ppm) | 1.35 a | RT | 30 s/- | 1000 ppm | - | [131] | |
TiO2-PANI | NH3 (0.2 ppb) | 1.8% b | RT | -/- | 50 ppt | 1000 | [141] | |
TiO2-PANI | NH3 (50 ppb) | 0.52 b | 22 °C | -/- | 25 ppb | - | [142] | |
NiFe2O4-PANI | NH3 (100 ppm) | 30.8 b | RT | 15/21 s | 250 ppb | 3 | [143] | |
N-GQD/In2O3-PANI | NH3 (1 ppm) | 15.6% b | RT | -/- | 0.6 ppm | 4.4 | [133] | |
MoS2/SnO2-PANI | NH3 (100 ppm) | 10.9 a | RT | 21/130 s | 200 ppb | 3.1 | [144] | |
rGO/SnO2-PANI | H2S (0.1 ppm) | 9.1 a | RT | 81/78 s | 50 ppb | 2 | [145] | |
Ag/SnO2-PANI | H2 (1000 ppm) | 2.2 a | 40 °C | 16/24 s | 500 ppm | [146] | ||
Ions-doping | Mg-PEDOT:PSS | DMF (200 ppm) | 1.12 a | RT | -/- | 50 ppm | - | [135] |
HCSA-doped PANI-PEO | H2S (1 ppm) | 5% b | RT | -/- | 1 ppm | - | [56] | |
Noble metal doped | Ag-PAN-PANI | NH3 (100 ppm) | 15 a | RT | -/- | 0.4 ppm | 4.8 | [136] |
7. Summary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K.; Park, J.K.; Lee, J.; Kwon, Y.J.; Choi, H.; Yang, S.-M.; Lee, J.-H.; Jeong, Y.K. Synergistic approach to simultaneously improve response and humidity-independence of metal-oxide gas sensors. J. Hazard. Mater. 2022, 424, 127524. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Dong, D.; Yao, G.; Wei, G.; He, A.; Wu, H.; Zhu, H.; Huang, Z.; Tang, Z. E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuators B Chem. 2023, 380, 133289. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, C.; Qu, G.; Pan, K.; Qin, J.; Wei, K.; Liang, Y. Modification strategies for semiconductor metal oxide nanomaterials applied to chemiresistive NOx gas sensors: A review. Talanta 2024, 273, 125853. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.-X.; Liu, M.-Y.; Zhu, L.-Y.; Zhang, D.W.; Lu, H.-L. Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, Y.; Liu, H. Room-temperature semiconductor gas sensors: Challenges and opportunities. ACS Sens. 2022, 7, 3582–3597. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Fan, J.; Yu, J. Semiconductor gas sensor for triethylamine detection. Small 2021, 18, 2104984. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro- and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef]
- Singh, A.; Sikarwar, S.; Verma, A.; Chandra Yadav, B. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: A review. Sens. Actuators A Phys. 2021, 332, 113127. [Google Scholar] [CrossRef]
- Xiao, Z.; Kong, L.B.; Ruan, S.; Li, X.; Yu, S.; Li, X.; Jiang, Y.; Yao, Z.; Ye, S.; Wang, C.; et al. Recent development in nanocarbon materials for gas sensor applications. Sens. Actuators B Chem. 2018, 274, 235–267. [Google Scholar] [CrossRef]
- Vajhadin, F.; Mazloum-Ardakani, M.; Amini, A. Metal oxide-based gas sensors for the detection of exhaled breath markers. Med. Devices Sens. 2021, 4, e10161. [Google Scholar] [CrossRef]
- Yang, D.; Gopal, R.A.; Lkhagvaa, T.; Choi, D. Metal-oxide gas sensors for exhaled-breath analysis: A review. Meas. Sci. Technol. 2021, 32, 102004. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Kumar, S.; Yu, Y.; Rubahn, H.-G.; Mishra, Y.K.; Awasthi, K. Functional nanomaterials in flexible gas sensors: Recent progress and future prospects. Mater. Today Chem. 2023, 29, 101428. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Review—Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2019, 167, 037503. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K.; Penza, M. Receptor function and response of semiconductor gas sensor. J. Sens. 2009, 2009, 875704. [Google Scholar] [CrossRef]
- Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Electrospun ceramic nanofibers and hybrid-nanofiber composites for gas sensing. ACS Appl. Nano Mater. 2019, 2, 4026–4042. [Google Scholar] [CrossRef]
- Yang, B.; Myung, N.V.; Tran, T.T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Cho, N.G.; Yang, D.J.; Jin, M.-J.; Kim, H.-G.; Tuller, H.L.; Kim, I.-D. Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens. Actuators B Chem. 2011, 160, 1468–1472. [Google Scholar] [CrossRef]
- Soltani, S.; Khanian, N.; Choong, T.S.Y.; Rashid, U. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: Characterization and potential applications. New J. Chem. 2020, 44, 9581–9606. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Morais, P.V.; Suman, P.H.; Silva, R.A.; Orlandi, M.O. High gas sensor performance of WO3 nanofibers prepared by electrospinning. J. Alloys Compd. 2021, 864, 158745. [Google Scholar] [CrossRef]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. MGas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef]
- Verma, A.; Gupta, R.; Verma, A.S.; Kumar, T. Review—Recent advances and challenges of conducting polymer-metal nanocomposites for the detection of industrial waste gases. ECS J. Solid State Sci. Technol. 2023, 12, 047002. [Google Scholar] [CrossRef]
- Zhang, T.; Mubeen, S.; Myung, N.V.; Deshusses, M.A. Recent progress in carbon nanotube-based gas sensors. Nanotechnology 2008, 19, 332001. [Google Scholar] [CrossRef]
- Bondavalli, P.; Legagneux, P.; Pribat, D. Carbon nanotubes based transistors as gas sensors: State of the art and critical review. Sens. Actuators B Chem. 2009, 140, 304–318. [Google Scholar] [CrossRef]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of Sensitivity Enhancement of a ZnO Nanofilm Gas Sensor by UV Light Illumination. ACS Sens. 2019, 4, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Bannov, A.G.; Jašek, O.; Manakhov, A.; Márik, M.; Nečas, D.; Zajíčková, L. High-performance ammonia gas sensors based on plasma treated carbon nanostructures. IEEE Sens. J. 2017, 17, 1964–1970. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Wang, J.; Zhuang, R.; Mu, P.; Wang, J.; Yan, W. Advances in functional guest materials for resistive gas sensors. RSC Adv. 2022, 12, 24614–24632. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Yang, Z.; Hu, N. Review of recent progress on graphene-based composite gas sensors. Ceram. Int. 2021, 47, 16367–16384. [Google Scholar] [CrossRef]
- Gong, C.; Chen, M.; Song, F.; Yin, P.; Zhao, X.; You, X.; Fu, H.; Yu, S.; Liu, X.; Zhang, K.; et al. A highly sensitive toluene gas sensor based on Pd/PdO decorated SnO2 prepared by electrospinning. ACS Appl. Electron. Mater. 2024, 6, 6036–6048. [Google Scholar] [CrossRef]
- Zhou, L.; Niu, C.; Hu, Y.; Zhang, H.; Shao, X.; Ding, Z.; Zhang, D. High-performance SO2 gas sensor based on MXene/LaFeO3 nanotubes by electrospinning technology. J. Mater. Sci. Mater. Electron. 2024, 35, 1309. [Google Scholar] [CrossRef]
- Lai, T.-Y.; Fang, T.-H.; Hsiao, Y.-J.; Chan, C.-A. Characteristics of Au-doped SnO2–ZnO heteronanostructures for gas sensing applications. Vacuum 2019, 166, 155–161. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Khomarloo, N.; Mohsenzadeh, E.; Gidik, H.; Bagherzadeh, R.; Latifi, M. Overall perspective of electrospun semiconductor metal oxides as high-performance gas sensor materials for NOx detection. RSC Adv. 2024, 14, 7806–7824. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Si, Y.; Shi, S.; Hu, J. Electrospinning and electrospraying synergism: Twins-tech collaboration across dimensions. Matter 2024, 7, 1373–1405. [Google Scholar] [CrossRef]
- Kang, X.; Yu, H.; Ma, X.; Shang, E.; Chen, H.; Zhao, H.; Zhang, J.; Tan, R.; Wang, D.; Fang, H. Fast detection of NO2 by In2O3@ZnO nanofibers synthesized by coaxial electrospinning: Real-time monitoring application of smart mask. Chem. Eng. J. 2025, 504, 158872. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Current state of knowledge on the metal oxide based gas sensing mechanism. Sens. Actuators B Chem. 2022, 358, 131531. [Google Scholar] [CrossRef]
- Akbari, E.; Buntat, Z.; Ahmad, M.; Enzevaee, A.; Yousof, R.; Iqbal, S.; Ahmadi, M.; Sidik, M.; Karimi, H. Analytical calculation of sensing parameters on carbon nanotube based gas sensors. Sensors 2014, 14, 5502–5515. [Google Scholar] [CrossRef]
- Khomarloo, N.; Mohsenzadeh, E.; Bagherzadeh, R.; Latifi, M.; Lahem, D.; Hakgor, A.; Ahmadou, L.; Gidik, H. Development of NOx Gas Sensor Based on Electrospun ZnO Nanofibers for Diagnosing Asthma Disease. Proceedings 2024, 97, 30. [Google Scholar] [CrossRef]
- Lallave, M.; Bedia, J.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T.; Otero, J.C.; Marquez, M.; Barrero, A.; Loscertales, I.G. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 2007, 19, 4292–4296. [Google Scholar] [CrossRef]
- Pawłowska, S.; Rinoldi, C.; Nakielski, P.; Ziai, Y.; Urbanek, O.; Li, X.; Kowalewski, T.A.; Ding, B.; Pierini, F. Ultraviolet light-assisted electrospinning of core–shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation. Adv. Mater. Interfaces 2020, 7, 2000247. [Google Scholar] [CrossRef]
- Li, T.; Qu, M.; Carlos, C.; Gu, L.; Jin, F.; Yuan, T.; Wu, X.; Xiao, J.; Wang, T.; Dong, W.; et al. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 2021, 33, 2006093. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, X.; Xu, C.; Kotov, N.A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 2017, 30, 1703343. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, T.-J.; Zhou, J.-H.; Sui, Z.-J.; Dai, Y.-C.; Yuan, W.-K. Characterization of carbon nanofiber composites synthesized by shaping process. Carbon 2005, 43, 2701–2710. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Gong, C.; Liu, B.; Wei, G. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chem. Eng. J. 2020, 402, 126189. [Google Scholar] [CrossRef]
- Cho, Y.; Beak, J.W.; Sagong, M.; Ahn, S.; Nam, J.S.; Kim, I.D. Electrospinning and nanofiber technology: Fundamentals, innovations, and applications. Adv. Mater. 2025, 37, 2500162. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Shen, Y.; Dong, K.; Shen, L.; Alzalab, A.A.A. Research progress, models and simulation of electrospinning technology: A review. J. Mater. Sci. 2021, 57, 58–104. [Google Scholar] [CrossRef]
- Imash, A.; Smagulova, G.; Kaidar, B.; Keneshbekova, A.; Kazhdanbekov, R.; Velasco, L.F.; Mansurov, Z. Chemoresistive gas sensors based on electrospun 1D nanostructures: Synergizing morphology and performance optimization. Sensors 2024, 24, 6797. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Kim, J.J.; Tuller, H.L.; Rutledge, G.C.; Hashaikeh, R. Gas sensing behavior of electrospun nickel oxide nanofibers: Effect of morphology and microstructure. Sens. Actuators B Chem. 2016, 227, 54–64. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators B Chem. 2008, 132, 67–73. [Google Scholar] [CrossRef]
- Khomarloo, N.; Gidik, H.; Bagherzadeh, R.; Latifi, M.; Debliquy, M.; Ly, A.; Lahem, D.; Mohsenzadeh, E. Enhancing nitric oxide gas detection by tuning the structural dimension of electrospun ZnO nanofibers fibers and polymers. Fibers Polym. 2024, 26, 197–209. [Google Scholar] [CrossRef]
- Im, J.S.; Kang, S.C.; Lee, S.-H.; Lee, Y.-S. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 2010, 48, 2573–2581. [Google Scholar] [CrossRef]
- Mousavi, S.; Kang, K.; Park, J.; Park, I. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv. 2016, 6, 104131–104138. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2022, 5, e12604. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Umar, A.; Nadargi, J.D.; Lokare, S.A.; Akbar, S.; Mulla, I.S.; Suryavanshi, S.S.; Bhandari, N.L.; Chaskar, M.G. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J. Mater. Sci. 2023, 58, 559–582. [Google Scholar] [CrossRef]
- Gao, X.; Li, F.; Wang, R.; Zhang, T. A formaldehyde sensor: Significant role of p-n heterojunction in gas-sensitive core-shell nanofibers. Sens. Actuators B Chem. 2018, 258, 1230–1241. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Aydas, B.; Atılgan, A.; Ajjaq, A.; Acar, S.; Öktem, M.F.; Yildiz, A. Flexible NH3 gas sensors based on ZnO nanostructures deposited on kevlar substrates via hydrothermal method. Ceram. Int. 2024, 50 Pt A, 32477–32489. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Li, J.; Zhao, H.; Zhang, R.; Ou, Y.; Xie, L.; Yang, J.; Zou, C.; Zhou, Y. Black phosphorus nanosheet/tin oxide quantum dot heterostructures for highly sensitive and selective trace hydrogen sulfide sensing. ACS Appl. Nano Mater. 2023, 6, 4034–4045. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Jiang, X.; She, X.; Chen, Y.; Long, Y.; Zhou, Y. Deciphering the humidity resistance and oxygen-content independence of conductometrichydrogen sulfide sensors based on electrospun CeO2/CuO nanotubes. ACS Sens. 2025, 10, 4262–4275. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Li, W.; Zhang, J.; Xie, X. Chemiresistive gas sensor based on electrospun hollow SnO2 nanotubes for detecting NO at the ppb level. Vacuum 2022, 199, 110961. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Choi, J.-K.; Lee, J.-H. Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens. Actuators B Chem. 2012, 161, 570–577. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive gas sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef]
- Chai, H.; Zheng, Z.; Liu, K.; Xu, J.; Wu, K.; Luo, Y.; Liao, H.; Debliquy, M.; Zhang, C. Stability of metal oxide semiconductor gas sensors: A review. IEEE Sens. J. 2022, 22, 5470–5481. [Google Scholar] [CrossRef]
- Isaac, N.A.; Pikaar, I.; Biskos, G. Metal oxide semiconducting nanomaterials for air quality gas sensors: Operating principles, performance, and synthesis techniques. Microchim. Acta 2022, 189, 196. [Google Scholar] [CrossRef]
- Shooshtari, M.; Vollebregt, S.; Vaseghi, Y.; Rajati, M.; Pahlavan, S. The sensitivity enhancement of TiO2-based VOCs sensor decorated by gold at room temperature. Nanotechnology 2023, 34, 255501. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, C.; Zheng, B.; Geng, X.; Debliquy, M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review. Int. J. Hydrog. Energy 2017, 42, 20386–20397. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Ou, L.-X.; Mao, L.-W.; Wu, X.-Y.; Liu, Y.-P.; Lu, H.-L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Qin, J.; Liu, W. Ultrafine Pt-doped SnO2 mesopore nanofibers-based gas sensor for enhanced acetone sensing. Chin. J. Anal. Chem. 2023, 51, 100188. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, X.; Li, F.; Lu, G.; Zhang, T.; Barsan, N. Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators B Chem. 2018, 260, 927–936. [Google Scholar] [CrossRef]
- Jang, J.S.; Choi, S.J.; Kim, S.J.; Hakim, M.; Kim, I.D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 2016, 26, 4740–4748. [Google Scholar] [CrossRef]
- Choi, S.-J.; Chattopadhyay, S.; Kim, J.J.; Kim, S.-J.; Tuller, H.L.; Rutledge, G.C.; Kim, I.-D. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale 2016, 8, 9159–9166. [Google Scholar] [CrossRef]
- Hung, C.M.; Phuong, H.V.; Van Thinh, V.; Hong, L.T.; Thang, N.T.; Hanh, N.H.; Dich, N.Q.; Van Duy, N.; Van Hieu, N.; Hoa, N.D. Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sens. Actuators A Phys. 2021, 317, 112454. [Google Scholar] [CrossRef]
- Liu, W.; Sun, J.; Xu, L.; Zhu, S.; Zhou, X.; Yang, S.; Dong, B.; Bai, X.; Lu, G.; Song, H. Understanding the noble metal modifying effect on In2O3 nanowires: Highly sensitive and selective gas sensors for potential early screening of multiple diseases. Nanoscale Horiz. 2019, 4, 1361–1371. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Kim, D.-H.; Shin, H.; Cho, H.-J.; Koo, W.-T.; Choi, S.-J.; Park, C.; Ahn, J.; Güntner, A.T.; Penner, R.M.; et al. Selectivity in chemiresistive gas sensors: Strategies and challenges. Chem. Rev. 2025, 125, 4111–4183. [Google Scholar] [CrossRef]
- Sui, N.; Wei, X.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. Nanoscale bimetallic AuPt-functionalized metal oxide chemiresistors: Ppb-level and selective detection for ozone and acetone. ACS Sens. 2022, 7, 2178–2187. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; She, X.; Chen, Y.; Wang, M.; Wang, Y.; Du, A.; Tang, C.; Zou, C.; Zhou, Y. Oxygen vacancy-rich bimetallic Au@Pt core–shell nanosphere-functionalized electrospun ZnFe2O4 nanofibers for chemiresistive breath acetone detection. ACS Sens. 2024, 9, 2183–2193. [Google Scholar] [CrossRef]
- Ma, S.; Xu, J. Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 2023, 11, 23742–23771. [Google Scholar] [CrossRef]
- Dharanya, C.; Dharmalingam, G. Oxygen vacancies in nanostructured hetero-interfacial oxides: A review. J. Nanoparticle Res. 2022, 24, 60. [Google Scholar] [CrossRef]
- Park, K.-R.; Cho, H.-B.; Lee, J.; Song, Y.; Kim, W.-B.; Choa, Y.-H. Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuators B Chem. 2020, 302, 127179. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Qu, F.; Liu, J.; Zhu, L.; Lin, Y.; Wang, Y.; Li, F.; Zhou, J.; Ruan, S. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunction with different NiO content and its influence on trimethylamine sensing properties. Sens. Actuators B Chem. 2015, 207, 90–96. [Google Scholar] [CrossRef]
- Naderi, H.; Hajati, S.; Ghaedi, M.; Espinos, J.P. Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction. Sens. Actuators B Chem. 2019, 297, 126774. [Google Scholar] [CrossRef]
- Fu, L.; Xu, J.; Liu, Q.; Liu, C.; Fan, S.; Ramakrishna, S.; Tang, W. Gas sensors based on Co3O4/TiO2 core-shell nanofibers prepared by coaxial electrospinning for breath marker acetone detection. Ceram. Int. 2024, 50, 3443–3452. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Yan, C.; Yang, Z.; Zhu, G.; Gao, J.; Yin, F.; Wang, C. Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. Sens. Actuators B Chem. 2018, 264, 128–138. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Chen, Z.; Li, H.; Chen, A.; Wang, X.; Yang, J. Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B Chem. 2017, 250, 533–542. [Google Scholar] [CrossRef]
- Yang, G.; Cao, C.; Zhong, H.; Cheng, Y.; Zhang, W.; Wang, D. Construction of SnO2 nanofibers @ MoS2 nanosheets core-shell nanocomposites for high efficiency xylene detection. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130813. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Wang, J.; Liu, J.; Yan, W. Hierarchical heterojunctions of metal sulfide WS2 nanosheets/metal oxide In2O3 nanofibers for an efficient detection of formaldehyde. Nanomaterials 2024, 14, 1702. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef]
- Wu, R.-A.; Wei Lin, C.; Tseng, W.J. Preparation of electrospun Cu-doped α-Fe2O3 semiconductor nanofibers for NO2 gas sensor. Ceram. Int. 2017, 43, S535–S540. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, M.; Liu, F.; Jia, J.; Li, X.; Cao, L. C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceram. Int. 2013, 39, 2883–2887. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Q.; Zeng, D.; Zhang, S.; Yang, L.; Xia, D.; Xiong, Z.; Xie, C. Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning. Sens. Actuators B Chem. 2014, 198, 62–69. [Google Scholar] [CrossRef]
- Kou, X.; Xie, N.; Chen, F.; Wang, T.; Guo, L.; Wang, C.; Wang, Q.; Ma, J.; Sun, Y.; Zhang, H.; et al. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuators B Chem. 2018, 256, 861–869. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Recent progress on anti-humidity strategies of chemiresistive gas sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Z.; Wang, W.; Li, G.; Li, P.; Lian, K.; Zhang, W.; Zhuiykov, S.; Hu, J.; Chen, L. Electrospinning preparation of Pd@Co3O4-ZnO composite nanofibers and their highly enhanced VOC sensing properties. Mater. Res. Bull. 2019, 109, 255–264. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, G.; Ma, S.; Lu, Y.; Bian, H.; Chen, Q. Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloys Compd. 2017, 703, 572–579. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, X.; Shiu, B.-C.; Lou, C.-W.; Lin, J.-H.; Li, T.-T. Wearable smart yarn sensor based on ZnO/SnO2 heterojunction for ammonia detecting. J. Mater. Sci. 2022, 57, 21946–21959. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Z.; Zhao, C.; Cairang, L.; Bai, J.; Zhang, Y.; Mu, X.; Du, J.; Wang, H.; Pan, X.; et al. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sens. Actuators B Chem. 2018, 255, 2248–2257. [Google Scholar] [CrossRef]
- Katoch, A.; Choi, S.-W.; Kim, J.-H.; Lee, J.H.; Lee, J.-S.; Kim, S.S. Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers. Sens. Actuators B Chem. 2015, 214, 111–116. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wang, G.; Li, S.; Wang, L.; Han, Y.; Jiang, X.; Wei, A. High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sens. Actuators B Chem. 2011, 160, 448–454. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Kim, H.W.; Kim, S.S. An ultra-sensitive hydrogen gas sensor using reduced graphene oxide-loaded ZnO nanofibers. Chem. Commun. 2015, 51, 15418–15421. [Google Scholar] [CrossRef]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.M.; Mattoso, L.H.C.; Correa, D.S. Enhanced and selective ammonia detection using In2O3/reduced graphene oxide hybrid nanofibers. Appl. Surf. Sci. 2019, 473, 133–140. [Google Scholar] [CrossRef]
- Van Hoang, N.; Hung, C.M.; Hoa, N.D.; Van Duy, N.; Park, I.; Van Hieu, N. Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens. Actuators B Chem. 2019, 282, 876–884. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Zhang, H.; Wang, Z.; Dong, B.; Jiang, T.; Wang, W.; Li, Z.; Wang, C. Effects of Al doping on SnO2 nanofibers in hydrogen sensor. Sens. Actuators B Chem. 2011, 160, 858–863. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, R.; Liu, S.; Song, J.; Chen, J.; Dong, B.; Song, H. NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg. Chem. 2012, 51, 7733–7740. [Google Scholar] [CrossRef]
- Li, F.M.; Li, X.B.; Ma, S.Y.; Chen, L.; Li, W.Q.; Zhu, C.T.; Xu, X.L.; Chen, Y.; Li, Y.F.; Lawson, G. Influence of Ce doping on microstructure of ZnO nanoparticles and their acetone sensing properties. J. Alloys Compd. 2015, 649, 1136–1144. [Google Scholar] [CrossRef]
- Guo, S.-Y.; Hou, P.-X.; Zhang, F.; Liu, C.; Cheng, H.-M. Gas sensors based on single-wall carbon nanotubes. Molecules 2022, 27, 5381. [Google Scholar] [CrossRef] [PubMed]
- Shooshtari, M. Ammonia gas sensors based on multi-wall carbon nanofiber field effect transistors by using gate modulation. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135563. [Google Scholar] [CrossRef]
- Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH3 gas sensor based on phthalocyanine-optimized non-covalent hybrid of carbon nanotubes with pyrrole. Sens. Actuators B Chem. 2022, 357, 131352. [Google Scholar] [CrossRef]
- Nair, K.G.; Ramakrishnan, V.; Unnathpadi, R.; Karuppanan, K.K.; Pullithadathil, B. Unraveling hydrogen adsorption kinetics of bimetallic Au–Pt nanoisland-functionalized carbon nanofibers for room-temperature gas sensor applications. J. Phys. Chem. C 2020, 124, 7144–7155. [Google Scholar] [CrossRef]
- Nair, K.G.; Vishnuraj, R.; Pullithadathil, B. Highly sensitive, flexible H2 gas sensors based on less platinum bimetallic Ni–Pt nanocatalyst-functionalized carbon nanofibers. ACS Appl. Electron. Mater. 2021, 3, 1621–1633. [Google Scholar] [CrossRef]
- Cha, J.-H.; Choi, S.-J.; Yu, S.; Kim, I.-D. 2D WS2-edge functionalized multi-channel carbon nanofibers: Effect of WS2 edge-abundant structure on room temperature NO2 sensing. J. Mater. Chem. A 2017, 5, 8725–8732. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Yang, J.; Long, Y.; Wang, Y. A 3D MoS2/carbon nanofiber network for room temperature methane sensing. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October 2021–3 November 2021; pp. 1–4. [Google Scholar]
- Lee, J.S.; Kwon, O.S.; Shin, D.H.; Jang, J. WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 2013, 1, 9099. [Google Scholar] [CrossRef]
- Fan, S.X.; Tang, W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators B Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, X.; Liu, X.; Yu, J.; Ding, B. Strategies in precursors and post treatments to strengthen carbon nanofibers. Adv. Fiber Mater. 2020, 2, 46–63. [Google Scholar] [CrossRef]
- Arshad, S.N.; Naraghi, M.; Chasiotis, I. Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 2011, 49, 1710–1719. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.I.; Cho, A.E.; Kumar, S.; Jang, S.S.; Kim, Y.H. Origin and control of polyacrylonitrile alignments on carbon nanotubes and graphene nanoribbons. Adv. Funct. Mater. 2018, 28, 1706970. [Google Scholar] [CrossRef]
- Maitra, T.; Sharma, S.; Srivastava, A.; Cho, Y.-K.; Madou, M.; Sharma, A. Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning. Carbon 2012, 50, 1753–1761. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, T.; McCarthy, S.; Kozbial, A.; Tan, S.; Pekker, D.; Li, L.; Leu, P.W. Parahydrophobicity and stick-slip wetting dynamics of vertically aligned carbon nanotube forests. Carbon 2019, 152, 474–481. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.-S.; Wang, Q.; Yu, Y.; Chen, Z.; Cao, C.-Y.; Song, W.-G. Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases. J. Mater. Chem. 2012, 22, 15342–15347. [Google Scholar] [CrossRef]
- Kang, S.C.; Im, J.S.; Lee, S.-H.; Bae, T.-S.; Lee, Y.-S. High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 297–303. [Google Scholar] [CrossRef]
- Dong, R.; Yang, M.; Zuo, Y.; Liang, L.; Xing, H.; Duan, X.; Chen, S. Conducting polymers-based gas sensors: Principles, materials, and applications. Sensors 2025, 25, 2724. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Wang, Y.; Zhou, Y. Approaches for selectivity improvement of conductometric gas sensors: An overview. Sens. Diagn. 2024, 3, 336–353. [Google Scholar] [CrossRef]
- Sharma, H.J. H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning. Adv. Mater. Proc. 2017, 2, 61–66. [Google Scholar] [CrossRef]
- Beniwal, A.; Sunny. Electrospun SnO2/PPy nanocomposite for ultra-low ammonia concentration detection at room temperature. Sens. Actuators B Chem. 2019, 296, 126660. [Google Scholar] [CrossRef]
- Hong, S.-Z.; Huang, Q.-Y.; Wu, T.-M. The room temperature highly sensitive ammonia gas sensor based on polyaniline and nitrogen-doped graphene quantum dot-coated hollow indium oxide nanofiber composite. Polymers 2021, 13, 3676. [Google Scholar] [CrossRef]
- Han, L.; Andrady, A.L.; Ensor, D.S. Chemical sensing using electrospun polymer/carbon nanotube composite nanofibers with printed-on electrodes. Sens. Actuators B Chem. 2013, 186, 52–55. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lo, T.-Y.; Chen, C.-H.; Wu, K.-H.; Lin, C.-M.; Whang, W.-T. Electrospinning of magnesium-ion linked binder-less PEDOT:PSS nanofibers for sensing organic gases. Sens. Actuators B Chem. 2015, 216, 603–607. [Google Scholar] [CrossRef]
- Pang, Z.; Zhu, Y.; Li, X.; Chen, M.; Ge, M. Room temperature ammonia gas sensor based on polyacrylonitrile/silver@Polyaniline nanofibers. IEEE Sens. J. 2019, 19, 11021–11026. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Bose, J.M.; Yifan, G.; Sarihan, V.; Lee, T. Accelerated life testing for micro-machined chemical sensors. IEEE Trans. Reliab. 1998, 47, 135–141. [Google Scholar] [CrossRef]
- Lee, H.-K.; Yang, W.S.; Choi, N.-J.; Moon, S.E. Encapsulation of semiconductor gas sensors with gas barrier films for USN application. ETRI J. 2012, 34, 713–718. [Google Scholar] [CrossRef]
- Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Hu, Z.; Zhou, Z.; Deng, Y. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 Fibers. J. Phys. Chem. C 2010, 114, 9970–9974. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater. Chem. Phys. 2011, 129, 477–482. [Google Scholar] [CrossRef]
- Sonwane, N.D.; Kondawar, S.B. Electrospun nickel ferrite nanofibers reinforced polyaniline composite for high-performance room temperature ammonia sensing. Synth. Met. 2022, 284, 117004. [Google Scholar] [CrossRef]
- Liu, A.; Lv, S.; Jiang, L.; Liu, F.; Zhao, L.; Wang, J.; Hu, X.; Yang, Z.; He, J.; Wang, C.; et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuators B Chem. 2021, 332, 129444. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B Chem. 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Kondawar, S.B.; More, A.M.; Sharma, H.J.; Dongre, S.P. Ag-SnO2/Polyaniline composite nanofibers for low operating temperature hydrogen gas sensor. Mater. Nanosci. 2017, 4, 13–18. [Google Scholar]
- Kannan, B.; Cha, H.; Hosie, I.C. Electrospinning—Commercial applications, challenges and opportunities. In Nano-Size Polymers: Preparation, Properties, Applications; Fakirov, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 309–342. [Google Scholar]
- Liu, Y.; Hao, M.; Chen, Z.; Liu, L.; Liu, Y.; Yang, W.; Ramakrishna, S. A review on recent advances in application of electrospun nanofiber materials as biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 174–189. [Google Scholar] [CrossRef]
- Mishra, S.; Ghanshyam, C.; Ram, N.; Bajpai, R.P.; Bedi, R.K. Detection mechanism of metal oxide gas sensor under UV radiation. Sens. Actuators B Chem. 2004, 97, 387–390. [Google Scholar] [CrossRef]
- Proença, M.; Rodrigues, M.S.; Borges, J.; Vaz, F. Optimization of Au:CuO nanocomposite thin films for gas sensing with high-resolution localized surface plasmon resonance spectroscopy. Anal. Chem. 2020, 92, 4349–4356. [Google Scholar] [CrossRef]
- Nikfarjam, A.; Salehifar, N. Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation. Sens. Actuators B Chem. 2015, 211, 146–156. [Google Scholar] [CrossRef]
- Gogurla, N.; Sinha, A.K.; Santra, S.; Manna, S.; Ray, S.K. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 2014, 4, 6483. [Google Scholar] [CrossRef]
- Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 5863–5869. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.W.; Kim, J.S.; Kim, T.H.; Hong, Y.J.; Kang, Y.C.; Lee, J.H. A new strategy for humidity independent oxide chemiresistors: Dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 2016, 12, 4229–4240. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, L.; Sheng, K.; Chen, C.; Zhou, X.; Dong, B.; Bai, X.; Zhang, S.; Lu, G.; Song, H. APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 2018, 6, 10976–10989. [Google Scholar] [CrossRef]
- Rathi, K.; Pal, K. Wireless hand-held device based on polylactic acid-protected, highly stable, CTAB-functionalized phosphorene for CO2 gas sensing. ACS Appl. Mater. Interfaces 2020, 12, 38365–38375. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 2020, 12, 2634–2643. [Google Scholar] [CrossRef]
- Yan, M.; Wu, Y.; Hua, Z.; Lu, N.; Sun, W.; Zhang, J.; Fan, S. Humidity compensation based on power-law response for MOS sensors to VOCs. Sens. Actuators B Chem. 2021, 334, 129601. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Distante, C.; Leo, M.; Persaud, K.C. Wavelet transform for electronic nose signal analysis. In Discrete Wavelet Transforms Biomedical Applications; Intech Open: Rijeka, Croatia, 2011; pp. 177–200. [Google Scholar]
- Itoh, T.; Koyama, Y.; Sakumura, Y.; Akamatsu, T.; Tsuruta, A.; Masuda, Y.; Shin, W. Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuators B Chem. 2023, 387, 133803. [Google Scholar] [CrossRef]
- Sears, W.M.; Colbow, K.; Slamka, R.; Consadori, F. Selective thermally cycled gas sensing using fast Fourier-transform techniques. Sens. Actuators B Chem. 1990, 2, 283–289. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Y.; Hu, J.; Sun, Z.; Zhang, T.; Wang, M. Exploration for a BP-ANN model for gas identification and concentration measurement with an ultrasonically radiated catalytic combustion gas sensor. Sens. Actuators B Chem. 2022, 362, 131733. [Google Scholar] [CrossRef]
- Yuan, T.; Xue, Z.; Chen, Y.; Xu, J. Single Pt atom-based gas sensor: Break the detection limit and selectivity of acetone. Sens. Actuators B Chem. 2023, 397, 134139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lan, Z.; Wang, J.; Zhu, K.; He, J.; Chou, X.; Zhou, Y. Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review. Sensors 2025, 25, 4896. https://doi.org/10.3390/s25164896
Wang Y, Lan Z, Wang J, Zhu K, He J, Chou X, Zhou Y. Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review. Sensors. 2025; 25(16):4896. https://doi.org/10.3390/s25164896
Chicago/Turabian StyleWang, Yanjie, Zhiqiang Lan, Jie Wang, Kun Zhu, Jian He, Xiujian Chou, and Yong Zhou. 2025. "Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review" Sensors 25, no. 16: 4896. https://doi.org/10.3390/s25164896
APA StyleWang, Y., Lan, Z., Wang, J., Zhu, K., He, J., Chou, X., & Zhou, Y. (2025). Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review. Sensors, 25(16), 4896. https://doi.org/10.3390/s25164896