Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (791)

Search Parameters:
Keywords = mycotoxin control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3819 KB  
Review
Aflatoxin and Liver Cancer in China: The Evolving Research Landscape
by Jian-Guo Chen, Thomas W. Kensler, Gui-Ju Sun, Jian Zhu, Jian-Hua Lu, Da Pan, Yong-Hui Zhang and John D. Groopman
Toxins 2026, 18(2), 61; https://doi.org/10.3390/toxins18020061 - 25 Jan 2026
Viewed by 191
Abstract
Aflatoxins, particularly aflatoxin B1 (AFB1), are among the most potent naturally occurring carcinogens and remain a major food-borne hazard in parts of Asia and Africa. China has generated a uniquely cohesive body of evidence connecting aflatoxin contamination to hepatocellular carcinoma [...] Read more.
Aflatoxins, particularly aflatoxin B1 (AFB1), are among the most potent naturally occurring carcinogens and remain a major food-borne hazard in parts of Asia and Africa. China has generated a uniquely cohesive body of evidence connecting aflatoxin contamination to hepatocellular carcinoma (HCC), especially in settings where chronic hepatitis B virus (HBV) infection is highly prevalent and acts synergistically with aflatoxin exposure. Over five decades, field investigations and laboratory innovations—exemplified by long-term work in Qidong—have assembled a multi-layered causal chain spanning the following: (i) contamination monitoring in staple foods; (ii) quantification of internal dose and biologically effective dose using validated biomarkers (e.g., urinary AFB1–N7–guanine, AFM1, and serum AFB1–lysine albumin adducts); (iii) a characteristic molecular fingerprint in tumors and circulation (TP53 R249S); (iv) reversibility demonstrated through randomized intervention trials and policy-driven natural experiments. Chemoprevention and dietary interception studies (e.g., oltipraz, chlorophyllin, and broccoli sprout beverages) showed that enhancing detoxication pathways can lower biomarker burdens in exposed populations. At the population level, a sustained dietary transition from maize to rice, together with strengthened food governance, was accompanied by marked decreases in biomarker distributions and subsequent declines in HCC mortality in endemic regions. Nevertheless, regional heterogeneity, multi-mycotoxin co-exposure, and climate variability are expected to increase exposure volatility and complicate surveillance. Here, we translate and synthesize the Chinese evidence base, highlight biomarker-enabled monitoring and policy evaluation, and propose an integrated “5+1” prevention framework spanning source control, process detoxification, tiered governance, short-course interception, precision follow-up of high-risk individuals, and climate-sensitive early warning along the climate–agriculture–storage–processing–population (CAT–CSPP) chain. Full article
Show Figures

Figure 1

19 pages, 2268 KB  
Article
The Efficacy of Multicomponent Preparation for Detoxification of Mycotoxins in the Presence of AFB1 and OTA Added to Broiler Feed
by Jelena Nedeljković Trailović, Branko Petrujkić, Saša Trailović, Dragoljub Jovanović, Milutin Đorđević, Darko Stefanović, Nataša Tolimir, Darko Marinković and Stamen Radulović
Poultry 2026, 5(1), 9; https://doi.org/10.3390/poultry5010009 - 19 Jan 2026
Viewed by 111
Abstract
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, [...] Read more.
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, pathohistological (PH) changes, and residues of these toxins in the tissues of broiler chicks. A total of 88 broilers were divided into eight equal groups: group C, the control group (fed a commercial diet without any additives); group MS, which received the mycotoxin detoxification agent (MS) (supplemented with 0.2%); group E I (0.2 mg AFB1/kg of diet); group E II (0.2 mg AFB1/kg of diet + MS 0.2%); group E III (1.5 mg OTA/kg of diet); group E IV (1.5 mg OTA/kg of diet + 0.2% MS); group E V (combination of 0.2 mg AFB1/kg, 1.5 mg OTA/kg of diet); and group E VI (combination of 0.2 mg AFB1/kg, 1.5 mg OTA toxin + 0.2% MS). Results show that feed containing AFB1 and OTA, individually or in combination, negatively affects health, production results, and PH changes in tissues, as well as the presence of mycotoxin residues in the liver and breast muscles of poultry. The addition of a new multicomponent preparation for the detoxification of MS mycotoxins in feed with AFB1 and OTA individually and in combination had a positive effect on TM (BW), growth (BWG), consumption and FCR conversion coefficient, and microscopic lesions in organs. The concentration of OTA residues in the liver and chest muscles was significantly lower in chickens fed a diet with the addition of 0.2% MS of the mycotoxin detoxification preparation. Full article
Show Figures

Figure 1

15 pages, 2366 KB  
Article
Identification of a Novel Dihydroneopterin Aldolase as a Key Enzyme for Patulin Biodegradation in Lactiplantibacillus plantarum 6076
by Yixiang Shi, Wenli Yang, Aidi Ding, Yuan Wang, Yu Wang and Qianqian Li
Toxins 2026, 18(1), 48; https://doi.org/10.3390/toxins18010048 - 16 Jan 2026
Viewed by 161
Abstract
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency [...] Read more.
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency on PAT was screened out from three lactic acid bacteria (LAB) strains. It was found that the PAT was eliminated through degradation by LP 6076, and the intracellular proteins played a crucial role in PAT degradation with the induction of PAT. The proteomic analysis showed that the response of LP 6076 to PAT was by a concerted effort to repair DNA damage, in parallel to adaptive changes in cell wall biosynthesis and central metabolism. Eleven differentially expressed proteins with high fold changes were picked out and identified as PAT degradation candidate enzymes. The 3D structures of the candidate enzymes were predicted, and molecular docking between the enzymes and PAT was performed. Five enzymes, including Acetoin utilization AcuB protein (AU), GHKL domain-containing protein (GHLK), Dihydroneopterin aldolase (DA), YdeI/OmpD-associated family protein (YDEL), and Transcription regulator protein (TR), could dock with PAT with lower affinity and shorter distance. Through molecular docking analysis, DA was ultimately identified as a potential key degrading enzyme. The choice of DA was substantiated by its superior combination of strong binding affinity and a productive binding pose with PAT. VAL84 and GLN51 residues of DA were likely the active sites, forming four hydrogen bonds with PAT. Our study could accelerate the commercial application of biodegradation toward PAT decontamination. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

27 pages, 12501 KB  
Article
Soil–Plant Microbial Interactions and Their Effects on Silage Quality and Mycotoxin Risk in Lodged Oats
by Yongmei Jiang, Xusheng Guo, Haiping Li, Youjun Chen, Shiyong Chen, Hui Wang, Yanling Huang, Hao Guan and Qingping Zhou
Agronomy 2026, 16(2), 209; https://doi.org/10.3390/agronomy16020209 - 15 Jan 2026
Viewed by 340
Abstract
This study explored the patterns and mechanisms influencing changes in silage quality, mycotoxin accumulation, and microbial community structure in oat silage after lodging. Upright oat forage (control, CK), lodging oat forage (upper layer (UL), lower layer (LL), and mixed layers (MLs) were harvested [...] Read more.
This study explored the patterns and mechanisms influencing changes in silage quality, mycotoxin accumulation, and microbial community structure in oat silage after lodging. Upright oat forage (control, CK), lodging oat forage (upper layer (UL), lower layer (LL), and mixed layers (MLs) were harvested at 0, 7, 25, and 45 days after lodging and ensiled for 60 days. The results showed that the dry matter (DM) and water-soluble carbohydrate (WSC) content decreased significantly (p < 0.05), whereas crude protein (CP) and fiber content increased significantly compared to upright oats (p < 0.05). The WSC and CP content in silage decreased with increasing lodging duration. The fiber content increased in late harvest after lodging. The risk of mycotoxin infection increased after lodging, with aflatoxin levels exceeding EU limits. The mycotoxins in UL silage were the lowest when lodging lasted for seven days. Lodging oat silage was dominated by Lactobacillus, and the Pseudomonas in the lodging group was less than 4%. The fungi in lodging oat silage was lower, and the UL (upper layer) treatment was the lowest when lodging for 7 days. Overall, the transfer of microorganisms, especially Plectosphaerella, Fusarium, Alternaria, Cladosporium, and Botryotrichum, from soil to silage following oat collapse is of interest. The results suggest the soil–plant microbial interactions and their effects on silage fermentation and mycotoxins in lodging oats. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 3601 KB  
Article
Isolation and Characterization of Brevibacillus parabrevis S09T2, a Novel Ochratoxin A-Degrading Strain with Application Potential
by Jinqi Xiao, Qingping Wu, Junhui Wu, Xin Wang, Shixuan Huang, Xiaojuan Yang, Xianhu Wei, Youxiong Zhang, Xiuying Kou, Yuwei Wu and Ling Chen
Foods 2026, 15(2), 295; https://doi.org/10.3390/foods15020295 - 14 Jan 2026
Viewed by 209
Abstract
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, [...] Read more.
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, Brevibacillus parabrevis S09T2, was isolated from soil using OTA as the sole carbon source. The strain exhibited no hemolytic activity and carried no virulence or antibiotic resistance genes, indicating a favorable safety profile. S09T2 efficiently degraded OTA, removing over 93% of 5–8 μg/mL OTA within 24 h at 37 °C, and almost completely degrading OTA concentrations up to 10 μg/mL within 72 h. UPLC-HRMS analysis identified ochratoxin α (OTα) and phenylalanine as the only degradation products, confirming detoxification via amide bond hydrolysis. The intracellular enzyme responsible for this reaction displayed notable thermostability, achieving near-complete degradation of 1 μg/mL OTA at 50 °C within 6 h. Moreover, the cell lysate significantly reduced OTA levels in Plumeria rubra extract, a widely consumed functional food, demonstrating applicability in complex food matrices. Collectively, these findings highlight S09T2 as a promising candidate for OTA detoxification and support its potential use in food and feed safety applications. Full article
Show Figures

Graphical abstract

22 pages, 1609 KB  
Review
An Overview of the Alternaria Genus: Ecology, Pathogenicity and Importance for Agriculture and Human Health
by Stanislava A. Vinogradova, Konstantin V. Kiselev and Andrey R. Suprun
J. Fungi 2026, 12(1), 64; https://doi.org/10.3390/jof12010064 - 13 Jan 2026
Viewed by 468
Abstract
Alternaria is a widespread genus and a diverse taxonomic group of fungi, whose members exhibit a wide range of ecological roles, from endophytes and saprophytes to potent plant pathogens, and in some cases, to opportunistic pathogens or allergens affecting humans. Their high adaptability [...] Read more.
Alternaria is a widespread genus and a diverse taxonomic group of fungi, whose members exhibit a wide range of ecological roles, from endophytes and saprophytes to potent plant pathogens, and in some cases, to opportunistic pathogens or allergens affecting humans. Their high adaptability to various environmental conditions determines their widespread distribution and resilience. A key feature of the genus Alternaria is its substantial species diversity. According to the Species Fungorum database, it currently comprises 792 registered species, which are grouped into 29 sections. It should be noted that this number reflects the current state of taxonomic classification and is subject to ongoing revision. The ecological role of representatives of this genus is particularly relevant in the context of agriculture, as many species are pathogens and causative agents of Alternaria leaf spot in important agricultural plants such as tomatoes, potatoes, apples, wheat, and others. This disease causes significant economic losses. At the same time, some strains demonstrate potential for use in biotechnology due to their ability to produce biologically active metabolites. This review examines the taxonomy, morphological characteristics, ecological role, pathogenicity, and control methods of fungi of the genus Alternaria, as well as their biotechnological potential. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

16 pages, 713 KB  
Article
Adding a Yeast Blend to the Diet of Holstein Females Minimizes the Negative Impacts of Ingesting Feed Naturally Contaminated with Aflatoxin B1
by Mario Augusto Torteli, Andrei Lucas Rebelatto Brunetto, Emeline P. Mello, Guilherme Luiz Deolindo, Luisa Nora, Tainara Letícia dos Santos, Luiz Eduardo Lobo e Silva, Roger Wagner and Aleksandro Schafer da Silva
Animals 2026, 16(2), 219; https://doi.org/10.3390/ani16020219 - 12 Jan 2026
Viewed by 170
Abstract
Although a yeast-based additive was initially employed as a performance enhancer, subsequent analysis revealed high aflatoxin B1 levels in the corn silage. Therefore, the objective of this study is to determine if the use of a yeast blend in the diet of Holstein [...] Read more.
Although a yeast-based additive was initially employed as a performance enhancer, subsequent analysis revealed high aflatoxin B1 levels in the corn silage. Therefore, the objective of this study is to determine if the use of a yeast blend in the diet of Holstein calves that consumed feed naturally contaminated with high levels of aflatoxin can minimize the negative impacts of mycotoxins on animal health, contributing to improved performance. For this, we used 24 Holstein calves (6 months old) divided into two groups: Control (n = 12; no additive) and Treatment (n = 12; 5 g additive/animal/day). During the 100-day experiment, animals were weighed, feed intake was measured, blood samples were collected to assess health, and ruminal fluid was analyzed for ruminal fermentation. We observed greater weight gain and better feed efficiency in cattle that consumed the yeast-based additive compared to the control group. Yeast ingestion increased the concentration of propionic acid in the experimental environment, as well as increasing the protozoan count. Higher lymphocyte counts combined with higher levels of immunoglobulin G in the blood of females that consumed the additive were observed. Lower activity of enzymes that are biomarkers of liver damage, as well as markers of oxidative stress, was observed when animals consumed the yeast blend compared to the control group. Lower levels of ceruloplasmin (positive acute phase protein) and higher levels of transferrin (negative acute phase protein) are indicative of an anti-inflammatory response to the additive. The results preliminarily suggest that the consumption of the yeast blend is a nutritional tool capable of acting as a performance enhancer, even under challenging conditions, such as diets contaminated with aflatoxin at levels exceeding international limits. Full article
Show Figures

Figure 1

23 pages, 12097 KB  
Article
Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40
by Yixuan Wang, Lixia Fan, Guidong Li, Changying Guo, Mingxiao Ning, Bingchun Zhang, Jiangyong Qu and Xianfeng Ren
J. Fungi 2026, 12(1), 46; https://doi.org/10.3390/jof12010046 - 8 Jan 2026
Viewed by 332
Abstract
Mycotoxin contamination in agricultural products poses a serious challenge to food safety, severely threatening human and animal health and causing significant economic losses. This study aimed to investigate the degradation and detoxification capabilities of Trichoderma reesei GG-T40 against two representative mycotoxins—aflatoxin B1 [...] Read more.
Mycotoxin contamination in agricultural products poses a serious challenge to food safety, severely threatening human and animal health and causing significant economic losses. This study aimed to investigate the degradation and detoxification capabilities of Trichoderma reesei GG-T40 against two representative mycotoxins—aflatoxin B1 (AFB1) and zearalenone (ZEN). The results showed that the degradation rates of AFB1 and ZEN by this strain reached 98.6% and 88.4%, respectively. Using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), the degradation products were systematically characterized, leading to the identification of six AFB1 degradation products (C17H14O7, AFD1: C16H14O5, C11H10O4, C14H16O4, C15H10O4, and C17H14O5) and two ZEN degradation products (α-ZOL and β-ZOL). Toxicity evaluation revealed that the key toxic structures of AFB1 were disrupted, significantly reducing or even eliminating the toxicity of its degradation products; ZEN was mainly converted into β-ZOL (accounting for 91.5%), which has lower estrogenic activity. Further toxicological experiments in mice confirmed that the degradation products were non-toxic and non-pathogenic under actual testing conditions, demonstrating systematic verification of their safety. In conclusion, T. reesei GG-T40 can efficiently and safely degrade AFB1 and ZEN, showing great potential for developing green control technologies for mycotoxin contamination in food and feed raw materials, with important application value for ensuring food safety. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

46 pages, 1508 KB  
Review
Mapping Global Research Trends on Aflatoxin M1 in Dairy Products: An Integrative Review of Prevalence, Toxicology, and Control Approaches
by Marybel Abi Rizk, Lea Nehme, Selma P. Snini, Hussein F. Hassan, Florence Mathieu and Youssef El Rayess
Foods 2026, 15(1), 166; https://doi.org/10.3390/foods15010166 - 3 Jan 2026
Viewed by 522
Abstract
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health [...] Read more.
Aflatoxin M1 (AFM1), a hydroxylated metabolite of aflatoxin B1 (AFB1), is a potent hepatotoxic and carcinogenic compound frequently detected in milk and dairy products. Its thermal stability and resistance to processing make it a persistent public health concern, especially in regions prone to fungal contamination of animal feed. This review integrates bibliometric mapping (2015–2025) with toxicological and mitigation perspectives to provide a comprehensive understanding of AFM1. The bibliometric analysis reveals a sharp global rise in research output over the last decade, with Iran, China, and Brazil emerging as leading contributors and Food Control identified as the most prolific journal. Five research clusters were distinguished: feed contamination pathways, analytical detection, toxicological risk, regulatory frameworks, and mitigation strategies. Toxicological evidence highlights AFM1’s mutagenic and hepatocarcinogenic effects, intensified by co-exposure to other mycotoxins or hepatitis B infection. Although regulatory limits range from 0.025 µg/kg in infant formula (EU) to 0.5 µg/kg in milk (FDA), non-compliance remains prevalent in developing regions. Current mitigation approaches—adsorbents (bentonite, zeolite), oxidation (ozone, hydrogen peroxide), and biological detoxification via lactic acid bacteria and yeasts—show promise but require optimization for industrial application. Persistent challenges include climatic variability, inadequate feed monitoring, and heterogeneous regulations. This review emphasizes the need for harmonized surveillance, improved analytical capacity, and sustainable intervention strategies to ensure dairy safety and protect consumer health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

14 pages, 2698 KB  
Article
Alleviation of Aflatoxin B1-Induced Hepatic Damage by Propolis: Effects on Inflammation, Apoptosis, and Cytochrome P450 Enzyme Expression
by Sevtap Kabalı, Neslihan Öner, Ayca Kara, Mehtap Ünlü Söğüt and Zehra Elgün
Curr. Issues Mol. Biol. 2026, 48(1), 56; https://doi.org/10.3390/cimb48010056 - 1 Jan 2026
Viewed by 277
Abstract
AflatoxinB1 (AFB1) is a hepatotoxic mycotoxin whose bioactivation by cytochrome P450 (CYP450) enzymes generates reactive metabolites that drive oxidative stress, inflammation, and apoptosis. Propolis is a bee-derived product with antioxidant and immunomodulatory properties. To investigate whether propolis supplementation attenuates AFB1-induced hepatic injury [...] Read more.
AflatoxinB1 (AFB1) is a hepatotoxic mycotoxin whose bioactivation by cytochrome P450 (CYP450) enzymes generates reactive metabolites that drive oxidative stress, inflammation, and apoptosis. Propolis is a bee-derived product with antioxidant and immunomodulatory properties. To investigate whether propolis supplementation attenuates AFB1-induced hepatic injury by modulating inflammatory mediators, Nrf2–HO-1 signaling, mitochondrial apoptosis, and CYP450 expression in rats, twenty-four male Sprague-Dawley rats were randomly allocated to four groups (n = 6): control, AFB1 (25 µg/kg/day), propolis (250 mg/kg/day), and AFB1 + propolis. Treatments were given by oral gavage for 28 days. Hepatic IL-1β, IL-6, TNF-α, Nrf2 and HO-1 levels were measured by ELISA. Histopathology was assessed on H&E-stained sections. Bax, Bcl-2, caspase-3, CYP1A2, CYP3A4, CYP2C19 and cytochrome P450 reductase expressions were evaluated immunohistochemically and quantified by ImageJ. Data were analyzed using one-way ANOVA with Tukey’s post hoc test. AFB1 significantly increased hepatic IL-1β and IL-6 and reduced Nrf2 levels, while propolis supplementation restored Nrf2, elevated HO-1 and significantly lowered IL-6 compared with AFB1 alone (p < 0.05). AFB1 induced marked hydropic degeneration, sinusoidal congestion, and mononuclear infiltration, alongside increased Bax and caspase-3 and decreased Bcl-2 expression; these changes were largely reversed in propolis-treated groups. AFB1 upregulated CYP1A2, CYP3A4 and cytochrome P450 reductase, whereas propolis co-treatment significantly suppressed their expression without affecting CYP2C19. Propolis supplementation attenuated AFB1-induced liver injury through coordinated anti-inflammatory, antioxidant, anti-apoptotic and metabolic regulatory effects, notably via restoration of Nrf2–HO-1 signaling and down-regulation of key CYP450 isoenzymes. Propolis may represent a promising natural dietary strategy against AFB1-associated hepatotoxicity, warranting further translational research. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

27 pages, 4078 KB  
Article
Role of the osaA Transcription Factor Gene in Development, Secondary Metabolism and Virulence in the Mycotoxigenic Fungus Aspergillus flavus
by Farzana Ehetasum Hossain, Apoorva Dabholkar, Jessica M. Lohmar, Matthew D. Lebar, Brian M. Mack and Ana M. Calvo
Toxins 2026, 18(1), 23; https://doi.org/10.3390/toxins18010023 - 30 Dec 2025
Viewed by 400
Abstract
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus [...] Read more.
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus. Our results revealed that osaA regulates conidiation and sclerotial formation. Importantly, deletion of osaA reduces aflatoxin B1 production, while, unexpectedly, transcriptome analysis indicated upregulation of aflatoxin biosynthetic genes, suggesting post-transcriptional or cofactor-mediated regulation. Cyclopiazonic acid production also decreased in the absence of osaA. In addition, the osaA mutant exhibited upregulation of genes in the imizoquin and aspirochlorine clusters. Moreover, osaA is indispensable for normal seed colonization; deletion of osaA significantly reduced fungal burden in corn kernels. Aflatoxin content in seeds also decreased in the absence of osaA. Furthermore, deletion of osaA caused a reduction in cell-wall chitin content, as well as alterations in oxidative stress sensitivity, which could in part contribute to the observed reduction in pathogenicity. Additionally, promoter analysis of osaA-dependent genes indicated potential interactions with stress-responsive regulators, indicated by an enrichment in Sko1 and Cst6 binding motifs. Understanding the osaA regulatory scope provides insight into fungal biology and identifies potential targets for controlling aflatoxin contamination and pathogenicity. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 4648 KB  
Article
Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation
by Vinícius Menezes Braga, Paulo Henrique Fernandes Pereira, Letícia de Araujo Apolinario, Deisy Mara Silva Longo, Leandra Naira Zambelli Ramalho, Sher Ali, Carlos Augusto Fernandes de Oliveira and Fernando Silva Ramalho
Toxins 2026, 18(1), 14; https://doi.org/10.3390/toxins18010014 - 25 Dec 2025
Viewed by 368
Abstract
Aflatoxins (AFs) are potent hepatotropic mycotoxins—AFB1 being the best-characterized—yet their ability to induce intrahepatic cholangiocarcinoma (iCCA) remains underexplored. Male Wistar rats received vehicle (controls; n = 5) or an AFB1-dominant AF mixture (AFB1 39.46 μg/mL; AFB2 1.13 μg/mL; [...] Read more.
Aflatoxins (AFs) are potent hepatotropic mycotoxins—AFB1 being the best-characterized—yet their ability to induce intrahepatic cholangiocarcinoma (iCCA) remains underexplored. Male Wistar rats received vehicle (controls; n = 5) or an AFB1-dominant AF mixture (AFB1 39.46 μg/mL; AFB2 1.13 μg/mL; AFG1 17.44 μg/mL; AFG2 0.59 μg/mL— n = 10) by daily gavage for 90 days, at a dose equivalent to 400 μg AFB1 per kg of diet. After 12 months, twelve iCCA tumors were resected and analyzed by histology (H&E) and tissue-microarray-based immunohistochemistry (Cytokeratin-19, Hep Par-1, p53, Cyclin D1, Rb, β-catenin, and PCNA). Lesions predominantly showed glandular/tubular architecture consistent with iCCA and were cytokeratin-19-positive and Hep Par-1-negative. Cell proliferation was high (PCNA ≈ 69%). p53 displayed nuclear accumulation in 83% of tumors. G1/S control was perturbed, with cyclin D1 overexpression (67%), and Rb was positive in 58% of iCCA. Aberrant Wnt activation was rare (nuclear β-catenin in 8%). Subchronic exposure to an AFB1-dominant AF mixture in rats was associated with iCCA characterized by high proliferative activity, p53 accumulation, and disruption of G1/S checkpoint components. These findings broaden the oncogenic spectrum of AFs and warrant genomic confirmation of AF mutational signatures. Full article
Show Figures

Figure 1

27 pages, 1607 KB  
Review
Regulatory Mechanisms of Fumonisin Biosynthesis and Applications in Food Safety and Biotechnology
by Lei Fan, Yuqing Lei, Zhihui Qi, Haiyang Zhang, Lin Tian and Fang Tang
Microbiol. Res. 2026, 17(1), 4; https://doi.org/10.3390/microbiolres17010004 - 24 Dec 2025
Viewed by 349
Abstract
Fumonisins, a major class of mycotoxins, pose significant health risks to humans and animals due to their widespread contamination and potent toxicity. Recent advances in molecular biology, biochemistry, and enzymology have greatly enhanced the understanding of fumonisin biosynthesis and its genetic regulation. The [...] Read more.
Fumonisins, a major class of mycotoxins, pose significant health risks to humans and animals due to their widespread contamination and potent toxicity. Recent advances in molecular biology, biochemistry, and enzymology have greatly enhanced the understanding of fumonisin biosynthesis and its genetic regulation. The key biosynthetic genes are typically organized in clusters and regulated by specific transcription factors; increasing evidence also highlights the involvement of complex transcriptional and epigenetic mechanisms. Environmental factors such as nitrogen, carbon, and pH also modulate these regulatory networks. Despite substantial progress, critical gaps remain in fully elucidating the regulatory pathways that control fumonisin production. This review synthesizes current knowledge regarding fumonisin biosynthesis, gene clusters, and multi-level regulatory mechanisms, while emphasizing recent trends, existing challenges, and potential applications in food safety and biotechnology to enhance food security and promote sustainable development. Full article
Show Figures

Figure 1

15 pages, 242 KB  
Review
Exogenous Impurities in Baijiu: Sources, Detection, and Safety Strategies
by Yabin Zhou, Jin Hua and Liping Xu
Beverages 2026, 12(1), 2; https://doi.org/10.3390/beverages12010002 - 24 Dec 2025
Viewed by 586
Abstract
Baijiu, China’s traditional distilled spirit, is produced through solid-state fermentation and distillation of grains, resulting in a highly complex chemical and sensory profile. However, exogenous impurities introduced via raw materials, water, equipment, packaging, or the surrounding environment pose significant challenges to both safety [...] Read more.
Baijiu, China’s traditional distilled spirit, is produced through solid-state fermentation and distillation of grains, resulting in a highly complex chemical and sensory profile. However, exogenous impurities introduced via raw materials, water, equipment, packaging, or the surrounding environment pose significant challenges to both safety and quality. These impurities, including heavy metals, plasticizers, pesticide residues, mycotoxins, environmental pollutants, and un-authorized food additives, are associated with neurotoxicity, carcinogenicity, endocrine disruption, and sensory defects. This narrative review synthesizes current knowledge on their sources, reported concentration ranges in Baijiu (generally at trace µg/kg–mg/kg levels), analytical detection methods with sub-mg/kg sensitivity, and control strategies for these substances. Regulatory frameworks, including China’s standards, are critically assessed, with emphasis on gaps such as the lack of explicit limits for certain classes of impurities. Case studies of contamination incidents are discussed to illustrate practical risks and monitoring gaps. Emerging trends, including low- and zero-alcohol Baijiu, are also considered in relation to changing impurity profiles and detection requirements. Recommendations include tightening regulatory limits, adopting portable and real-time detection technologies, and promoting the development of “pure Baijiu” that meets international safety and quality expectations. Future research priorities center on high-resolution mass spectrometry, advanced real-time monitoring, and eco-friendly analytical solutions, ensuring that Baijiu maintains both cultural heritage and global competitiveness. Full article
19 pages, 1927 KB  
Article
Plasma Metabolomics Reveals Systemic Metabolic Remodeling in Early-Lactation Dairy Cows Fed a Fusarium-Contaminated Diet and Supplemented with a Mycotoxin-Deactivating Product
by Gabriele Rocchetti, Alessandro Catellani, Marco Lapris, Nicole Reisinger, Johannes Faas, Ignacio Artavia, Silvia Labudova, Erminio Trevisi and Antonio Gallo
Toxins 2026, 18(1), 9; https://doi.org/10.3390/toxins18010009 - 22 Dec 2025
Viewed by 396
Abstract
This study investigated the systemic metabolic effects of feeding a Fusarium-contaminated diet to early-lactation Holstein cows, with or without a mycotoxin-deactivating product (MDP; Mycofix® Plus, BIOMIN Holding GmbH, Tulln, Austria). Thirty cows were divided into three dietary groups: a mildly contaminated [...] Read more.
This study investigated the systemic metabolic effects of feeding a Fusarium-contaminated diet to early-lactation Holstein cows, with or without a mycotoxin-deactivating product (MDP; Mycofix® Plus, BIOMIN Holding GmbH, Tulln, Austria). Thirty cows were divided into three dietary groups: a mildly contaminated control (CTR), a moderately contaminated diet containing zearalenone and deoxynivalenol (MTX), and the same contaminated diet supplemented with MDP. Plasma collected at 56 days in milk was analyzed by untargeted ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS), and multivariate models identified discriminant metabolites and pathways. MTX-fed cows showed alterations in sphingolipid metabolism, including accumulation of ceramide (t18:0/16:0), lactosylceramide, and sphinganine 1-phosphate, consistent with ceramide synthase inhibition and lipid remodeling stress. Increases in estradiol, estrone, and cholesterol sulfate suggested endocrine disruption, while elevated 8-oxo-dGMP indicated oxidative DNA damage. MDP supplementation mitigated these alterations, reducing sphingolipid intermediates, modulating tryptophan and glycerophospholipid pathways, and lowering oxidative stress markers. Metabolites such as riboflavin, pipecolic acid, and N-acetylserotonin could be likely associated with an improved mitochondrial function and redox homeostasis, although future studies are required to confirm this hypothesis. Additionally, MDP-fed cows exhibited distinct shifts in pyrimidine and nucleotide metabolism. Overall, MDP effectively counteracted Fusarium-related metabolic disturbances, supporting its protective role in maintaining lipid balance, hormonal stability, oxidative control, and metabolic resilience. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

Back to TopTop