Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Strains
2.2. Simultaneous Degradation of AFB1 and ZEN by Trichoderma Isolates
2.3. The Degradation Products of AFB1 and ZEN by Trichoderma GG-T40
2.3.1. Co-Culture of Trichoderma GG-T40 with AFB1 and ZEN
2.3.2. Pre-Treatment Methods
2.3.3. Operating Conditions for UPLC-Q-TOF MS
2.3.4. Data Processing and Structure Analysis
2.4. Analysis of α-/β-ZOL by HPLC
2.5. Toxicity Analysis of Degradation Products
3. Results and Discussion
3.1. Degradation Rates of AFB1 and ZEN by Trichoderma Isolates
3.2. Molecular Formulas of Degradation Products of AFB1 and ZEN
3.3. Structural Formulas of AFB1 Degradation Products
3.4. Toxicity Analyses of Degradation Products of AFB1
3.5. Structural Formulas of ZEN Degradation Products
3.6. Toxicity Analyses of Degradation Products of ZEN
3.7. In Vivo Toxicity Assessment of Degradation Products
4. Conclusions
5. Application Prospects and Challenges
- Elucidating the Molecular Basis and Regulatory Networks of the Degradation Mechanism: Applying multi-omics technologies to analyze the expression and regulatory networks of key genes involved in T. reesei GG-T40’s degradation of AFB1 and ZEN, clarifying the molecular basis of its efficient and simultaneous degradation, and providing a foundation for genetic improvement of the strain.
- Preparation and Application of Key Degradative Enzyme Systems: Isolating and identifying the key enzymes responsible for degrading AFB1 and ZEN in T. reesei GG-T40, and preparing high-purity enzymes or multi-enzyme complexes via heterologous expression to achieve precise, efficient, and stable detoxification.
- Performance Optimization in Complex Matrices: In simulated or genuinely contaminated feed/food matrices, optimizing the application method of the fungal agent and exploring combined strategies with specific probiotics or physical methods to enhance its degradation efficiency and stability in complex environments.
- Development of Scalable Production Processes: Leveraging the well-established industrial fermentation background of T. reesei to develop processes suitable for the large-scale production of highly active fungal agents or enzyme formulations, and establishing corresponding quality control standards.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Sun, Z.; You, Y.; Xu, H.; You, Y.; He, W.; Wang, Z.; Li, A.; Xia, Y. Food-Grade Expression of Two Laccases in Pichia pastoris and Study on Their Enzymatic Degradation Characteristics for Mycotoxins. J. Agric. Food Chem. 2024, 72, 9365–9375. [Google Scholar] [CrossRef]
- Akinmoladun, O.F.; Fon, F.N.; Nji, Q.; Adeniji, O.O.; Tangni, E.K.; Njobeh, P.B. Multiple Mycotoxin Contamination in Livestock Feed: Implications for Animal Health, Productivity, and Food Safety. Toxins 2025, 17, 365. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Oswald, I.P.; Puel, O.; Aprodu, I.; Tabuc, C.; Nicolau, A.; Marin, D.; Taranu, I.; Tassis, P.; Tzika, E.; Schatzmayr, G.; et al. Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef]
- Ji, J.; Wang, Q.; Wu, H.; Xia, S.; Guo, H.; Blazenovic, I.; Zhang, Y.; Sun, X. Insights into cellular metabolic pathways of the combined toxicity responses of Caco-2 cells exposed to deoxynivalenol, zearalenone and Aflatoxin B1. Food Chem. Toxicol. 2019, 126, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Abdoulie, J.; Huali, X.; Xiaoqian, T.; Zhang, Q.; Peiwu, L. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef]
- Li, M.; Johanna, F.G.; Dagang, L.; Xiong, T.; Jing, T.; Xuemei, N.; Zhongtang, Y.; Weidong, C.; Gang, W. An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows. Anim. Nutr. 2021, 7, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Hao, Z.; Tang, S.; Velkov, T.; Dai, C. Aflatoxin Exposure-Caused Male Reproductive Toxicity: Molecular Mechanisms, Detoxification, and Future Directions. Biomolecules 2024, 14, 1460. [Google Scholar] [CrossRef] [PubMed]
- Abhishek, K.; Hardik, P.; Seema, B.; Jebi, S. Aflatoxin contamination in food crops: Causes, detection, and management: A review. Food Prod. Process. Nutr. 2021, 3, 17. [Google Scholar] [CrossRef]
- Marie, J.L.; Arne, K.; Wulf, A. Mycotoxins in soil and environment. Sci. Total Environ. 2021, 814, 152425. [Google Scholar] [CrossRef]
- Kumar, M.D.; Sheetal, D.; Shikha, P.; Bharti, S.; Kumar, M.K.; Sadhna, M.; Kajal, D.; Raman, S.; Madhu, K.; Kumar, M.A.; et al. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins 2021, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Lei, Z.; Zijian, X.; Xingda, L.; Liyuan, C.; Jiefan, D.; Alexander, K.N.; Lvhui, S. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zhang, N.; Qi, D. In vitro investigation of individual and combined cytotoxic effects of aflatoxin B1 and other selected mycotoxins on the cell line porcine kidney 15. Exp. Toxicol. Pathol. 2013, 65, 1149–1157. [Google Scholar] [CrossRef]
- Victor, A.T.; Bolei, Y.; Xiaoyu, T.; Shuo, Y.; Yuan, G.; Junning, M.; Gang, W.; Peidong, S.; Runyan, L.; Fuguo, X. Simultaneous degradation of aflatoxin B1 and zearalenone by Porin and Peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef]
- Ruiz, J.A. Detoxification of mycotoxins by microorganisms. Adv. Appl. Microbiol. 2025, 131, 21–64. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, J.; Tang, J.; Sun, Y.; Jiang, X.; Zhang, T.; Feng, Y.; Liu, Q.; Wang, L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb. Cell Factories 2023, 22, 97. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef]
- Hackbart, H.C.S.; Machado, A.R.; Christ-Ribeiro, A.; Prietto, L.; Badiale-Furlong, E. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei. Mycotoxin Res. 2014, 30, 141–149. [Google Scholar] [CrossRef]
- Yue, X.; Ren, X.; Fu, J.; Wei, N.; Altomare, C.; Haidukowski, M.; Logrieco, A.F.; Zhang, Q.; Li, P. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front. Microbiol. 2022, 13, 1003039. [Google Scholar] [CrossRef]
- Dini, I.; Alborino, V.; Lanzuise, S.; Lombardi, N.; Marra, R.; Balestrieri, A.; Ritieni, A.; Woo, S.L.; Vinale, F. Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. Molecules 2022, 27, 3959. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.; Yan, Z.; Liao, Y.; Chen, J.; De Boevre, M.; De Saeger, S.; Wu, A. Antagonistic and Detoxification Potentials of Trichoderma Isolates for Control of Zearalenone (ZEN) Producing Fusarium graminearum. Front. Microbiol. 2017, 8, 2710. [Google Scholar] [CrossRef]
- Gao, B.; An, W.; Wu, J.; Wang, X.; Han, B.; Tao, H.; Liu, J.; Wang, Z.; Wang, J. Simultaneous Degradation of AFB1 and ZEN by CotA Laccase from Bacillus subtilis ZJ-2019-1 in the Mediator-Assisted or Immobilization System. Toxins 2024, 16, 445. [Google Scholar] [CrossRef]
- Guo, C.; Fan, L.; Yang, Q.; Ning, M.; Zhang, B.; Ren, X. Characterization and mechanism of simultaneous degradation of aflatoxin B1 and zearalenone by an edible fungus of Agrocybe cylindracea GC-Ac2. Front. Microbiol. 2024, 15, 1292824. [Google Scholar] [CrossRef]
- Romera, D.; Mateo, E.M.; Mateo-Castro, R.; Gómez, J.V.; Gimeno-Adelantado, J.V.; Jiménez, M. Determination of multiple mycotoxins in feedstuffs by combined use of UPLC–MS/MS and UPLC–QTOF–MS. Food Chem. 2018, 267, 140–148. [Google Scholar] [CrossRef]
- Li, M.; Guan, E.; Bian, K. Structure Elucidation and Toxicity Analysis of the Degradation Products of Deoxynivalenol by Gaseous Ozone. Toxins 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, J.; Jin, Y.; Wu, C.; Shen, D.; Zhang, S.; Zhou, R. Aflatoxin B1 degradation by salt tolerant Tetragenococcus halophilus CGMCC 3792. Food Chem. Toxicol. 2018, 121, 430–436. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Jin, Y.; Wu, C.; Shen, D.; Zhang, S.; Zhou, R. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. J. Hazard. Mater. 2018, 359, 382–387. [Google Scholar] [CrossRef]
- Cai, M.; Qian, Y.; Chen, N.; Ling, T.; Wang, J.; Jiang, H.; Wang, X.; Qi, K.; Zhou, Y. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process. Environ. Pollut. 2020, 261, 114178. [Google Scholar] [CrossRef]
- Shu, X.; Wang, Y.; Zhou, Q.; Li, M.; Hu, H.; Ma, Y.; Chen, X.; Ni, J.; Zhao, W.; Huang, S. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins 2018, 10, 330. [Google Scholar] [CrossRef]
- Xu, L.; Eisa Ahmed, M.F.; Sangare, L.; Zhao, Y.; Selvaraj, J.N.; Xing, F.; Wang, Y.; Yang, H.; Liu, Y. Novel aflatoxin-degrading enzyme from Bacillus shackletonii L7. Toxins 2017, 9, 36. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, Y.; Yang, Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J. Hazard. Mater. 2021, 414, 125569. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.; Abrunhosa, L.; Keller, K.; Rosa, C.A.; Cavaglieri, L.; Venâncio, A. Zearalenone and its derivatives α-zearalenol and β-zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage. Toxins 2015, 7, 3297–3308. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Tinyiro, S.E.; Yao, W.; Yu, H.; Guo, Y.; Qian, H.; Xie, Y. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. J. Food Process. Preserv. 2019, 43, e14122. [Google Scholar] [CrossRef]
- Branà, M.T.; Sergio, L.; Haidukowski, M.; Logrieco, A.F.; Altomare, C. Degradation of aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins 2020, 12, 49. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, T.; Zhang, H.; Sun, Z.; Mwabulili, F.; Xie, Y.; Sun, S.; Ma, W.; Li, Q.; Yang, Y. Mining lactonase gene from aflatoxin B1-degrading strain Bacillus megaterium and degrading properties of the recombinant enzyme. J. Agric. Food Chem. 2023, 71, 20762–20771. [Google Scholar] [CrossRef]
- Shcherbakova, L.; Rozhkova, A.; Osipov, D.; Zorov, I.; Mikityuk, O.; Statsyuk, N.; Sinitsyna, O.; Dzhavakhiya, V.; Sinitsyn, A. Effective zearalenone degradation in model solutions and infected wheat grain using a novel heterologous lactonohydrolase secreted by recombinant Penicillium canescens. Toxins 2020, 12, 475. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; An, W.; Gao, B.; Li, C.; Han, B.; Tao, H.; Wang, J.; Wang, X.; Li, H. Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone. Appl. Sci. 2024, 14, 1589. [Google Scholar] [CrossRef]
- Wang, X.; Bai, Y.; Huang, H.; Tu, T.; Wang, Y.; Wang, Y.; Luo, H.; Yao, B.; Su, X. Degradation of Aflatoxin B1 and Zearalenone by Bacterial and Fungal Laccases in Presence of Structurally Defined Chemicals and Complex Natural Mediators. Toxins 2019, 11, 609. [Google Scholar] [CrossRef]
- Shao, H.; Su, X.; Wang, Y.; Zhang, J.; Tu, T.; Wang, X.; Huang, H.; Yao, B.; Luo, H.; Qin, X. Oxidative degradation and detoxification of multiple mycotoxins using a dye-decolorizing peroxidase from the white-rot fungus Bjerkandera adusta. LWT 2024, 206, 116597. [Google Scholar] [CrossRef]
- Dias, D.A.; Jones, O.A.H.; Beale, D.J.; Boughton, B.A.; Benheim, D.; Kouremenos, K.A.; Wolfender, J.-L.; Wishart, D.S.; Meikle, P.; Bruheim, P. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites 2016, 6, 46. [Google Scholar] [CrossRef]
- Queiroz, E.F.; Guillarme, D.; Wolfender, J.L. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: From metabolite profiling to pure chemical entities. Phytochem. Rev. 2024, 23, 1415–1442. [Google Scholar] [CrossRef] [PubMed]
- Martina, L.; Silvana, D.L.; Biancamaria, C.; Costantino, P.; Giuseppina, M.; Miriam, H. Aflatoxin B1 Degradation by Ery4 Laccase: From In Vitro to Contaminated Corn. Toxins 2023, 15, 310. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Y.; Ai, Z.; Pandiselvam, R.; Guo, J.; Kothakota, A.; Liu, Y. Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4030–4052. [Google Scholar] [CrossRef]
- Taylor, M.C.; Lapalikar, G.V.; Warden, A.C.; Scott, C.; Russell, R.J.; Oakeshott, J.G. F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the Actinomycetales. PLoS ONE 2012, 7, e30114. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, J. A Review of Research Progress on the Microbial or Enzymatic Degradation and Mechanism of Aflatoxin B1. J. Microbiol. Biotechnol. 2025, 35, e2504044. [Google Scholar] [CrossRef]
- Ranjith, A. Metabolites and degradation pathways of microbial detoxification of aflatoxins: A review. Mycotoxin Res. 2023, 40, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, X.; Wu, J.; Ji, X.; Xu, Q. Research progress in toxicological effects and mechanism of aflatoxin B1 toxin. PeerJ 2022, 10, e13850. [Google Scholar] [CrossRef]
- Jaruga, P.; Tomar, R.; Kant, M.; Vartanian, V.; Sexton, B.; Rizzo, C.; Turesky, R.; Stone, M.; Lloyd, R.; Dizdaroglu, M. Synthesis and Characterization of 15N5-Labeled Aflatoxin B1-Formamidopyrimidines and Aflatoxin B1-N7-Guanine from a Partial Double-Stranded Oligodeoxynucleotide as Internal Standards for Mass Spectrometric Measurements. ACS Omega 2023, 8, 14841–14854. [Google Scholar] [CrossRef]
- Narkwa, P.; Blackbourn, D.; Mutocheluh, M. Aflatoxin B1 inhibits the type 1 interferon response pathway via STAT1 suggesting another mechanism of hepatocellular carcinoma. Infect. Agents Cancer 2017, 12, 17. [Google Scholar] [CrossRef]
- Tomar, R.; Minko, I.; Kellum, A.; Voehler, M.; Stone, M.; McCullough, A.; Lloyd, R. DNA Sequence Modulates the Efficiency of NEIL1-Catalyzed Excision of the Aflatoxin B1-Induced Formamidopyrimidine Guanine Adduct. Chem. Res. Toxicol. 2021, 34, 901–911. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, H.; Liu, C.; Lou, H.; Zhao, R. Efficient Aflatoxin B1 degradation by a novel isolate, Pseudomonas aeruginosa M-4. Food Control 2023, 149, 109679. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Y.; Si, W.; Yin, J.; Xu, Y.; Yang, J. Rhodococcus turbidus PD630 enables efficient biodegradation of aflatoxin B1. LWT 2023, 186, 115225. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.Y.; Wang, D.; Zhang, Q.; Wang, H.R.; Zhang, T.T.; Zhu, M.J.; Dong, J.; Ling, D.; Feng, P.; et al. Study on the Degradation of Aflatoxin B1 by Myroides odoratimimus 3J2MO. Biology 2025, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, M.; Xu, J.; Liu, W.; Yu, J.; Li, W.; Liu, W.; Liu, Y.; Jing, G.; Xie, W.; et al. Zearalenone: Contamination, Biological Characterization, and Mechanism of Enzymatic Degradation in Food. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70233. [Google Scholar] [CrossRef]
- Cai, P.; Liu, S.; Tu, Y.; Shan, T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. Sci. Total Environ. 2023, 911, 168648. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Chhabra, A.; Sagurthi, S.R.; Tyagi, R.K. Zearalenone and its metabolites provoke contrasting modulatory responses on estrogen and androgen receptors: Insights into the molecular basis of endocrine disruption in live cells. Food Chem. Toxicol. 2025, 203, 115593. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, H.; Jiang, J.; Fotina, H. Synthesis of Zearalenone Immunogen and Comparative Analysis of Antibody Characteristics. Int. J. Anal. Chem. 2021, 2021, 7109383. [Google Scholar] [CrossRef]
- Nicole, L.; Sven, D.; Lutz, E.; Christoph, G.; Eva, L.; Doris, M.; Michael, R.; Angela, M. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2018, 35, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Belhassen, H.; Jiménez-Díaz, I.; Ghali, R.; Ghorbel, H.; Molina-Molina, J.M.; Olea, N.; Hedili, A. Validation of a UHPLC–MS/MS method for quantification of zearalenone, α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol and zearalanone in human urine. J. Chromatogr. B 2014, 962, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Frizzell, C.; Ndossi, D.; Verhaegen, S.; Dahl, E.; Eriksen, G.; Sørlie, M.; Ropstad, E.; Muller, M.; Elliott, C.T.; Connolly, L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 2011, 206, 210–217. [Google Scholar] [CrossRef] [PubMed]
- NY/T 1109-2017; General Biosafety Standard for Microbial Fertilizers. Agriculture Industry Standard of the People’s Republic of China: Beijing, China, 2017.















| Species (a) | Strain (b) | Geographical Origin | Source |
|---|---|---|---|
| T. asperellum | GC-T2 | Tibet, China | Soil |
| GC-T4 | Tibet, China | Soil | |
| T. atroviride | GC-T78 | Yunnan, China | Rotten wood in soil |
| GC-T8 | Tibet, China | Soil | |
| GC-T9 | Tibet, China | Soil | |
| T. citrinoviride | GC-T19 | Tibet, China | Soil |
| GC-T20 | Tibet, China | Soil | |
| GC-T21 | Tibet, China | Soil | |
| T. dorotheae | GC-T24 | Tibet, China | Soil |
| GC-T25 | Tibet, China | Soil | |
| T. erinaceum | GC-T27 | Tibet, China | Soil |
| T. gamsii | GC-T26 | Tibet, China | Soil |
| T. harzianum | GC-T40-1 | Tibet, China | Soil |
| GC-T41 | Tibet, China | Soil | |
| T. hispanicum | GC-T42 | Tibet, China | Soil |
| T. inhamatum | GC-T44 | Tibet, China | Soil |
| T. koningii | GC-T75-1 | Yunnan, China | Rotten wood in soil |
| T. longifialidicum | GC-T87 | Tibet, China | Soil |
| T. reesei | GG-T40 | China | Rotten wood in soil |
| T. sulphureum | GC-T43-1 | China | Rotten wood in soil |
| T. velutinum | GC-T82 | Tibet, China | Soil |
| GC-T83 | Tibet, China | Soil | |
| GC-T85 | Tibet, China | Soil | |
| T. viride | GC-T45-1 | Shandong, China | Soil |
| T. virilente | GC-T88 | Tibet, China | Soil |
| GC-T89 | Tibet, China | Soil |
| Time (min) | Flow (mL/min) | A (%) | B (%) |
|---|---|---|---|
| 0.00 | 0.400 | 95 | 5 |
| 0.50 | 0.400 | 95 | 5 |
| 5.50 | 0.400 | 50 | 50 |
| 9.00 | 0.400 | 5 | 95 |
| 10.50 | 0.400 | 5 | 95 |
| 12.00 | 0.400 | 95 | 5 |
| Time (min) | Flow (mL/min) | A (%) | B (%) |
|---|---|---|---|
| 0.01 | 0.400 | 90 | 10 |
| 2.00 | 0.400 | 90 | 10 |
| 2.50 | 0.400 | 70 | 30 |
| 3.50 | 0.400 | 30 | 70 |
| 5.00 | 0.400 | 10 | 90 |
| 9.00 | 0.400 | 10 | 90 |
| 9.50 | 0.400 | 90 | 10 |
| Compound | Retention Time (min) | Formula | Calculated Mass (m/z) a | Experimental Mass (m/z) a | Mass Error | DBE | |
|---|---|---|---|---|---|---|---|
| mDa | PPM | ||||||
| AFB1 | 4.665 | C17H13O6 | 313.0712 | 313.0754 | 4.2 | 13.4 | 11.5 |
| A | 3.288 | C17H15O7 | 331.0818 | 331.0800 | −1.8 | −5.4 | 10.5 |
| B | 4.330 | C16H15O5 | 287.0919 | 287.0937 | 1.8 | 6.3 | 9.5 |
| C | 7.679 | C11H11O4 | 207.0657 | 207.0706 | 4.9 | 23.7 | 6.5 |
| D | 7.665 | C14H17O4 | 249.1127 | 249.1151 | 2.4 | 9.6 | 6.5 |
| E | 3.994 | C15H11O4 | 255.0657 | 255.0665 | 0.8 | 3.1 | 10.5 |
| F | 6.585 | C17H15O5 | 299.0919 | 299.0936 | 1.7 | 5.7 | 10.5 |
| Compound | Retention Time (min) | Formula | Calculated Mass (m/z) b | Experimental Mass (m/z) b | Mass Error | DBE | |
|---|---|---|---|---|---|---|---|
| mDa | PPM | ||||||
| ZEN | 6.298 | C18H21O5 | 317.1389 | 317.1396 | 0.7 | 2.2 | 8.5 |
| G | 6.987 | C18H23O5 | 319.1545 | 319.1563 | 1.8 | 5.6 | 7.5 |
| Toxicity Test Type | Dose | Animal No. | Initial Weight (g) | Final Weight (g) | Mortality | Gross Pathology (Day 3/7/14) | MTD/LD50 |
|---|---|---|---|---|---|---|---|
| Acute Oral Toxicity | 5000 mg/kg | 20 | 15.8 ± 0.5 | 31.1 ± 0.8 | 0/20 | N/A | >5000 mg/kg |
| 5000 mg/kg | 20 | 17.0 ± 0.3 | 33.5 ± 0.4 | 0/20 | N/A | >5000 mg/kg | |
| Pathogenicity | 0.50 mL | 15 | 20.4 ± 0.6 | N/A | 0/15 | No lesions | N/A |
| 0.50 mL | 15 | 22.7 ± 0.7 | N/A | 0/15 | No lesions | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Y.; Fan, L.; Li, G.; Guo, C.; Ning, M.; Zhang, B.; Qu, J.; Ren, X. Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40. J. Fungi 2026, 12, 46. https://doi.org/10.3390/jof12010046
Wang Y, Fan L, Li G, Guo C, Ning M, Zhang B, Qu J, Ren X. Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40. Journal of Fungi. 2026; 12(1):46. https://doi.org/10.3390/jof12010046
Chicago/Turabian StyleWang, Yixuan, Lixia Fan, Guidong Li, Changying Guo, Mingxiao Ning, Bingchun Zhang, Jiangyong Qu, and Xianfeng Ren. 2026. "Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40" Journal of Fungi 12, no. 1: 46. https://doi.org/10.3390/jof12010046
APA StyleWang, Y., Fan, L., Li, G., Guo, C., Ning, M., Zhang, B., Qu, J., & Ren, X. (2026). Structure Elucidation and Toxicity Analyses of the Degradation Products of Aflatoxin B1 and Zearalenone by Trichoderma reesei GG-T40. Journal of Fungi, 12(1), 46. https://doi.org/10.3390/jof12010046

