Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation
Abstract
1. Introduction
2. Results
2.1. General Lesion Features
2.2. Morphology
2.3. Lineage Markers—CK19 and Hep Par-1
2.4. Proliferative Index (PCNA)
2.5. Oncogenic Pathways
2.5.1. p53 Expression
2.5.2. Wnt/β-Catenin Pathway
2.5.3. Cell-Cycle Markers—Cyclin D1 and Rb
2.6. IHC Summary
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethical Approval and Regulatory Compliance
5.2. Animals and Housing Condition
5.3. Aflatoxin Mixture and Dosing Regimen
5.4. Experimental Design, Clinical Monitoring, and Follow-Up
5.5. Macroscopic Liver Examination and Tissue Sampling
5.6. Histopathology
5.7. Immunohistochemistry and Scoring Criteria
5.8. Statistical Approach
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFs | Aflatoxins |
| AFB1 | Aflatoxin B1 |
| AFB2 | Aflatoxin B2 |
| AFG1 | Aflatoxin G1 |
| AFG2 | Aflatoxin G2 |
| iCCA | Intrahepatic Cholangiocarcinoma |
| TP53 | Tumor Protein 53 |
| DNA | Deoxyribonucleic Acid |
| CK19 | Cytokeratin 19 |
| Hep Par-1 | Hepatocyte Paraffin 1 |
| HSA | Hepatocyte Specific Antigen |
| Wnt | Wingless/Integrated Signaling Pathway |
| β-catenin | Beta-catenin (Catenin beta-1) |
| PCNA | Proliferating Cell Nuclear Antigen |
| Rb | Retinoblastoma Protein |
| CDK4/6 | Cyclin-Dependent Kinases 4 and 6 |
| cHCC-CCA | Combined Hepatocellular–Cholangiocarcinoma |
| HCC | Hepatocellular Carcinoma |
| SPF | Specific Pathogen-Free |
| H&E | Hematoxylin and Eosin |
| IHC | Immunohistochemistry |
| CTNNB1 | Catenin Beta 1 |
| IDH1/2 | Isocitrate dehydrogenase 1 and 2 |
| FGFR2 | Fibroblast Growth Factor Receptor 2 |
| BAP1 | BRCA1-associated protein 1 |
| DAB | 3,3′-Diaminobenzidine |
| LSAB | Labeled Streptavidin–Biotin |
| ARRIVE | Animal Research: Reporting of In Vivo Experiments |
| CEUA | Comissão de Ética no Uso de Animais (Institutional Animal Care and Use Committee) |
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S.; Gores, G.J. Cholangiocarcinoma. Nat. Rev. Dis. Primers 2021, 7, 65. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Aflatoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100F, pp. 225–248. [Google Scholar]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef]
- Kirk, G.D.; Lesi, O.A.; Mendy, M.; Szymańska, K.; Whittle, H.; Goedert, J.J.; Hainaut, P.; Montesano, R. 249(Ser) TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of hepatocellular carcinoma. Oncogene 2005, 24, 5858–5867. [Google Scholar] [CrossRef]
- Bressac, B.; Kew, M.; Wands, J.; Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991, 350, 429–431. [Google Scholar] [CrossRef]
- Huang, M.N.; Yu, W.; Teoh, W.W.; Ardin, M.; Jusakul, A.; Ng, A.W.T.; Boot, A.; Abedi-Ardekani, B.; Villar, S.; Myint, S.S.; et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017, 27, 1475–1486. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef]
- Moore, M.R.; Pitot, H.C.; Miller, E.C.; Miller, J.A. Cholangiocellular carcinomas induced in Syrian golden hamsters administered aflatoxin B1 in large doses. J. Natl. Cancer Inst. 1982, 68, 271–278. [Google Scholar] [PubMed]
- Tilak, T.B. Induction of cholangiocarcinoma following treatment of a rhesus monkey with aflatoxin. Food Cosmet. Toxicol. 1975, 13, 247–249. [Google Scholar] [CrossRef]
- Leong, A.S.; Sormunen, R.T.; Tsui, W.M.; Liew, C.T. Hep Par 1 and selected antibodies in the immunohistological distinction of hepatocellular carcinoma from cholangiocarcinoma, combined tumours and metastatic carcinoma. Histopathology 1998, 33, 318–324. [Google Scholar] [CrossRef]
- Fan, Z.; van de Rijn, M.; Montgomery, K.; Rouse, R.V. Hep par 1 antibody stain for the differential diagnosis of hepatocellular carcinoma: 676 tumors tested using tissue microarrays and conventional tissue sections. Mod. Pathol. 2003, 16, 137–144. [Google Scholar] [CrossRef]
- Valle, J.W.; Kelley, R.K.; Nervi, B.; Oh, D.-Y.; Zhu, A.X. Biliary tract cancer. Lancet 2021, 397, 428–444. [Google Scholar] [CrossRef]
- Sell, S.; Leffert, H.L. Liver cancer stem cells. J. Clin. Oncol. 2008, 26, 2800–2805. [Google Scholar] [CrossRef]
- Hainaut, P.; Pfeifer, G.P. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med. 2016, 6, a026179. [Google Scholar] [CrossRef] [PubMed]
- Tickoo, S.K.; Zee, S.Y.; Obiekwe, S.; Xiao, H.; Koea, J.; Robiou, C.; Blumgart, L.H.; Jarnagin, W.; Ladanyi, M.; Klimstra, D.S. Combined hepatocellular-cholangiocarcinoma: A histopathologic, immunohistochemical, and in situ hybridization study. Am. J. Surg. Pathol. 2002, 26, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Ro, J.Y. Combined Hepatocellular-Cholangiocarcinoma: An Update on Pathology and Diagnostic Approach. Biomedicines 2022, 10, 1826. [Google Scholar] [CrossRef]
- Beaufrère, A.; Calderaro, J.; Paradis, V. Combined hepatocellular-cholangiocarcinoma: An update. J. Hepatol. 2021, 74, 1212–1224. [Google Scholar] [CrossRef]
- Wang, A.; Wu, L.; Lin, J.; Han, L.; Bian, J.; Wu, Y.; Robson, S.C.; Xue, L.; Ge, Y.; Sang, X.; et al. Whole-Exome Sequencing Reveals the Origin and Evolution of Hepato-Cholangiocarcinoma. Nat. Commun. 2018, 9, 894. [Google Scholar] [CrossRef]
- Xue, R.; Chen, L.; Zhang, C.; Fujita, M.; Li, R.; Yan, S.M.; Ong, C.K.; Liao, X.; Gao, Q.; Sasagawa, S.; et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019, 35, 932–947.e8. [Google Scholar] [CrossRef] [PubMed]
- Apolinário, L.A.; Ramalho, L.N.Z.; Hashemi Moosavi, M.; Jager, A.V.; Augusto, M.J.; Trotta, M.R.; Petta, T.; Khaneghah, A.M.; Oliveira, C.A.F.; Ramalho, F.S. Oncogenic and tumor suppressor pathways in subchronic aflatoxicosis in rats: Association with serum and urinary aflatoxin exposure biomarkers. Food Chem. Toxicol. 2021, 153, 112263. [Google Scholar] [CrossRef]
- Khosla, D.; Misra, S.; Chu, P.L.; Guan, P.; Nada, R.; Gupta, R.; Kaewnarin, K.; Ko, T.K.; Heng, H.L.; Srinivasalu, V.K.; et al. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers 2024, 16, 801. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.D.; Beltran, H. Retinoblastoma Loss in Cancer: Casting a Wider Net. Clin. Cancer Res. 2019, 25, 4199–4201. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017, 169, 1327–1341.e23. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.; Sanchon-Sanchez, P.; Morente-Carrasco, A.; Chinchilla-Tábora, L.M.; Mauriz, J.L.; Fernández-Palanca, P.; Marin, J.J.G.; Macias, R.I.R. Impact of Aberrant β-Catenin Pathway on Cholangiocarcinoma Heterogeneity. Cells 2023, 12, 1141. [Google Scholar] [CrossRef]
- Sugimachi, K.; Taguchi, K.; Aishima, S.; Tanaka, S.; Shimada, M.; Kajiyama, K.; Sugimachi, K.; Tsuneyoshi, M. Altered Expression of β-Catenin without Genetic Mutation in Intrahepatic Cholangiocarcinoma. Mod. Pathol. 2001, 14, 900–905. [Google Scholar] [CrossRef]
- Young, S.E.; Sritharan, R.; Sia, D. Genomic Alterations in Intrahepatic Cholangiocarcinoma. Hepatoma Res. 2023, 9, 34. [Google Scholar] [CrossRef]
- Farshidfar, F.; Zheng, S.; Gingras, M.-C.; Newton, Y.; Shih, J.; Robertson, A.G.; Hinoue, T.; Hoadley, K.A.; Gibb, E.A.; Roszik, J.; et al. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Rep. 2017, 19, 2878–2880. [Google Scholar] [CrossRef]
- Simbolo, M.; Fassan, M.; Ruzzenente, A.; Mafficini, A.; Wood, L.D.; Corbo, V.; Melisi, D.; Malleo, G.; Vicentini, C.; Malpeli, G.; et al. Multigene Mutational Profiling of Cholangiocarcinomas Identifies Actionable Molecular Subgroups. Oncotarget 2014, 5, 2839–2852. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]



| Animal | Tumor | CK19 | Hep Par-1 | Classification | PCNA | p53 | Cyclin D1 | Rb | β- Catenin |
|---|---|---|---|---|---|---|---|---|---|
| 1 | A | ✅ | ❌ | iCCA | 66.3% | ✅ | ✅ | ❌ | ❌ |
| 2 | B | ✅ | ❌ | iCCA | 55.5% | ✅ | ✅ | ❌ | ❌ |
| 3 | C | ✅ | ❌ | iCCA | 72.1% | ✅ | ❌ | ✅ | ❌ |
| 3 | D | ✅ | ❌ | iCCA | 80.2% | ✅ | ✅ | ✅ | ❌ |
| 4 | E | ✅ | ❌ | iCCA | 58.9% | ✅ | ✅ | ✅ | ❌ |
| 5 | F | ✅ | ❌ | iCCA | 77.5% | ✅ | ✅ | ✅ | ❌ |
| 5 | G | ✅ | ❌ | iCCA | 50.9% | ✅ | ✅ | ✅ | ❌ |
| 5 | H | ✅ | ❌ | iCCA | 79.5% | ✅ | ✅ | ✅ | ❌ |
| 6 | I | ✅ | ❌ | iCCA | 67.3% | ❌ | ❌ | ❌ | ❌ |
| 6 | J | ✅ | ❌ | iCCA | 80.8% | ✅ | ✅ | ❌ | ✅ |
| 7 | K | ✅ | ❌ | iCCA | 65.7% | ❌ | ❌ | ❌ | ❌ |
| 8 | L | ✅ | ✅ | cHCC-CCA | 71.2% | ✅ | ❌ | ✅ | ❌ |
| 9, 10 | — | ✅ | ✅ | non-cancerous | <5% | ❌ | ❌ | ❌ | ❌ |
| 11, 12, 13, 14, 15 | — | ✅ | ✅ | normal liver | <5% | ❌ | ❌ | ❌ | ❌ |
| Protein | Expression Pattern | Cutoff Value for Positivity | Interpretation |
|---|---|---|---|
| Cytokeratin 19 | Membranous/ cytoplasmic | ≥10% of positive tumor cells | Cholangiocellular lineage |
| Hep Par-1 | Cytoplasmic | ≥10% of positive tumor cells | Hepatocellular lineage |
| p53 | Nuclear | ≥10% of tumor cell nuclei positive | Nuclear p53 accumulation |
| Cyclin D1 | Nuclear | ≥10% of tumor cell nuclei positive | Nuclear cyclin D1 overexpression |
| Rb | Nuclear | Complete absence of nuclear staining in tumor cells | Loss of Rb protein expression |
| β-catenin | Nuclear | ≥10% of tumor cell nuclei positive (with/without cytoplasmic shift) | Aberrant activation of Wnt/β-catenin pathway |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Braga, V.M.; Pereira, P.H.F.; Apolinario, L.d.A.; Longo, D.M.S.; Ramalho, L.N.Z.; Ali, S.; Oliveira, C.A.F.d.; Ramalho, F.S. Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation. Toxins 2026, 18, 14. https://doi.org/10.3390/toxins18010014
Braga VM, Pereira PHF, Apolinario LdA, Longo DMS, Ramalho LNZ, Ali S, Oliveira CAFd, Ramalho FS. Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation. Toxins. 2026; 18(1):14. https://doi.org/10.3390/toxins18010014
Chicago/Turabian StyleBraga, Vinícius Menezes, Paulo Henrique Fernandes Pereira, Letícia de Araujo Apolinario, Deisy Mara Silva Longo, Leandra Naira Zambelli Ramalho, Sher Ali, Carlos Augusto Fernandes de Oliveira, and Fernando Silva Ramalho. 2026. "Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation" Toxins 18, no. 1: 14. https://doi.org/10.3390/toxins18010014
APA StyleBraga, V. M., Pereira, P. H. F., Apolinario, L. d. A., Longo, D. M. S., Ramalho, L. N. Z., Ali, S., Oliveira, C. A. F. d., & Ramalho, F. S. (2026). Aflatoxin Mixture-Driven Intrahepatic Cholangiocarcinoma in Rats Involving G1/S Checkpoint Dysregulation. Toxins, 18(1), 14. https://doi.org/10.3390/toxins18010014

