Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = monometallic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2312 KB  
Article
Green Nanoparticles for Enhanced Electrochemical Monitoring of Pharmaceutical Contaminants: Comparative Investigation Between Monometallic and Bimetallic Nanoparticles
by Soumaya Nasri, Amani Chrouda, Shazalia Mahmoud Ahmed Ali, Bakheit Mustafa, Manahil Babiker Elamin, Laila M. Alhaidari, Hamdi Ben Halima and Nicole Jafezic-Renault
Micromachines 2026, 17(1), 60; https://doi.org/10.3390/mi17010060 (registering DOI) - 31 Dec 2025
Abstract
Study presents a comparative analytical investigation into the green synthesis of monometallic and bimetallic nanoparticles using Punica granatum (pomegranate) extract, aimed at developing high-performance electrochemical sensors for the detection of ciprofloxacin (CIP) as a representative pharmaceutical pollutant. Three nanoparticle systems were successfully synthesized: [...] Read more.
Study presents a comparative analytical investigation into the green synthesis of monometallic and bimetallic nanoparticles using Punica granatum (pomegranate) extract, aimed at developing high-performance electrochemical sensors for the detection of ciprofloxacin (CIP) as a representative pharmaceutical pollutant. Three nanoparticle systems were successfully synthesized: monometallic Au@NPs and TiO2@NPs, as well as the bimetallic AuTiO2@NPs. Their structural and physicochemical characteristics were comprehensively analyzed using UV–Vis spectroscopy, FTIR, SEM, TEM, and XRD techniques. The obtained nanoparticles exhibited predominantly spherical morphologies with average particle sizes of approximately 40 ± 5 nm for Au@NPs, 50 ± 7 nm for TiO2@NPs, and 60 ± 6 nm for AuTiO2@NPs. These nanomaterials were subsequently employed to modify electrode surfaces for electrochemical sensing applications. Their analytical performance was evaluated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The sensors displayed excellent sensitivity, with limits of detection of 0.8 ppb for TiO2@NPs, 0.8 ppb for Au@NPs, and 0.2 ppb for the AuTiO2@NP-based sensor. The bimetallic platform demonstrated superior electrochemical behavior, enhanced signal intensity, and strong selectivity, achieving recovery rates of 98% in tap water and 103% in wastewater. Overall, the results confirm the effectiveness of green-synthesized bimetallic nanoparticles as efficient, low-cost materials for environmental monitoring of emerging pharmaceutical contaminants. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 4581 KB  
Article
Carbonate Inhibition in Au-Cu/γ-Al2O3 Catalysts for CO Oxidation
by Karla López, Gamaliel Che-Galicia, Rodolfo Zanella, Jesús F. Guayaquil-Sosa and Alvaro Sampieri
Catalysts 2025, 15(11), 1080; https://doi.org/10.3390/catal15111080 - 14 Nov 2025
Viewed by 646
Abstract
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and [...] Read more.
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and 1:1.5) that were synthesized on γ-Al2O3 via sequential deposition–precipitation with urea. The catalysts were pretreated in either air or H2 and evaluated for CO oxidation activity and stability. A comprehensive characterization (EDS, BET, TEM, H2-TPR, O2-TPO, XPS, DRIFTS, and UV–Vis) was used to investigate particle size, metal oxidation states, and redox properties. Among all materials, the AuCu 1:1 catalyst exhibited the highest low-temperature CO conversion (>90% at 0 °C) and improved stability during 24 h tests, reflecting minimal nanoparticle sintering as confirmed by TEM analysis. In situ DRIFTS revealed that the presence of Cu+ and Cu2+ minimizes the accumulation of free carbonates (one of the main deactivation pathways in Au/γ-Al2O3) while promoting the formation of reactive intermediates that facilitate CO2 production. Notably, air pretreatment at moderate temperature proved as effective as H2 pretreatment in activating both monometallic and bimetallic catalysts. These findings highlight the role of Cu as a structural and electronic promoter of gold, offering practical guidelines for designing durable, cost-effective catalysts for low-temperature CO oxidation on non-reducible supports. Full article
Show Figures

Graphical abstract

17 pages, 4046 KB  
Article
Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation
by Seden Beyhan
Nanomaterials 2025, 15(20), 1561; https://doi.org/10.3390/nano15201561 - 14 Oct 2025
Viewed by 530
Abstract
This study introduces nitrogen- and silicon-containing carbon quantum dots (N,Si-CQDs), synthesized hydrothermally from the sustainable bioresource stinging nettle (Urtica dioica L.), as chemically active supports for Pt, Pd, and Pt3Pd1 electrocatalysts. The N,Si-CQDs were characterized by a high concentration [...] Read more.
This study introduces nitrogen- and silicon-containing carbon quantum dots (N,Si-CQDs), synthesized hydrothermally from the sustainable bioresource stinging nettle (Urtica dioica L.), as chemically active supports for Pt, Pd, and Pt3Pd1 electrocatalysts. The N,Si-CQDs were characterized by a high concentration of N/O surface functionalities and the presence of biogenic Si. A significant finding is that, with this support, biogenic Si acts as a nucleation template: Pd forms in situ as orthorhombic Pd9Si2 nanorods alongside spherical particles, whereas Pt predominantly develops as cubic/quasi-cubic crystals. This templating process promotes faceted (cubic) Pt3Pd1 alloy nanoparticles with robust interfacial contact with the support and a log-normal size distribution (14.2 ± 4.3 nm) on N,Si-CQDs (4.7 ± 1.4 nm). This configuration enhanced the electrochemically active surface area to 181 m2 gPt−1, significantly exceeding those of commercial Pt1Pd1/XC-72 (27.7 m2 gPt−1) and monometallic Pt/N,Si-CQDs (14.3 m2 gPt−1). Consequently, the catalyst demonstrated superior methanol oxidation performance, evidenced by a low onset potential (0.17 V), approximately 10-fold higher mass activity compared to Pt1Pd1/XC-72, and 53% activity retention after a 16 h accelerated durability test. The enhanced performance is attributed to the strong nanoparticle anchoring by N,Si-CQDs, the bifunctional/ligand effects of the Pt–Pd alloy that improve CO tolerance, and the templating role of biogenic Si. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

24 pages, 11937 KB  
Article
Effect of Pectin and Copper Modification on the Performance of Pd/ZnO Catalyst in Liquid-Phase Hydrogenation and Photocatalytic Hydrogen Evolution
by Alima M. Kenzheyeva, Alima K. Zharmagambetova, Eldar T. Talgatov, Aigul T. Zamanbekova, Aigul I. Jumekeyeva, Assemgul S. Auyezkhanova, Zhannur K. Myltykbayeva and Atıf Koca
Molecules 2025, 30(18), 3806; https://doi.org/10.3390/molecules30183806 - 18 Sep 2025
Viewed by 838
Abstract
This study investigates the influence of pectin and copper incorporation on the catalytic properties of Pd/ZnO catalysts in the liquid-phase hydrogenation of 2-hexyn-1-ol and photocatalytic hydrogen evolution. A series of monometallic Pd/ZnO catalysts with varying pectin contents (0–8.1 wt%) and bimetallic PdCu-Pec/ZnO catalysts [...] Read more.
This study investigates the influence of pectin and copper incorporation on the catalytic properties of Pd/ZnO catalysts in the liquid-phase hydrogenation of 2-hexyn-1-ol and photocatalytic hydrogen evolution. A series of monometallic Pd/ZnO catalysts with varying pectin contents (0–8.1 wt%) and bimetallic PdCu-Pec/ZnO catalysts with different Pd to Cu mass ratios (3:1, 1:1, 1:3) were synthesized via sequential adsorption of the polymer and metal ions onto ZnO. The catalysts were characterized using TGA, EDX, IR spectroscopy, XRD, TEM, UV–Vis DRS, and XPS. Characterization confirmed successful modification and changes in surface properties. Pectin modification improved the distribution of Pd nanoparticles on the surface of ZnO, resulting in the enhanced catalytic performance of Pd-Pec/ZnO in both hydrogenation and hydrogen evolution reactions compared to unmodified Pd/ZnO. In contrast, copper addition led to a deterioration of catalytic properties in both processes, likely due to the inhibited reduction of Pd caused by Pd–Cu interactions. Among the catalysts studied, Pd-Pec/ZnO with low pectin content (1.8 wt%) exhibited the highest activity in both reactions. The hydrogenation of 2-hexyn-1-ol to cis-2-hexen-1-ol proceeded with high selectivity (96%) at a rate (WC≡C) of 3.3 × 10−6 mol/s, and the catalyst retained its activity over 30 consecutive runs. In the photocatalytic hydrogen evolution reaction, the rate reached 1.11 mmol/(h·gcat) and the catalyst maintained ~94% of its initial activity after three consecutive runs. These findings demonstrate the potential of biopolymer-modified ZnO composites for the design of multifunctional catalysts combining hydrogenation and photocatalytic activity. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
Show Figures

Graphical abstract

24 pages, 8010 KB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 932
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

35 pages, 2501 KB  
Review
Polysaccharides from Agro-Industrial Waste and By-Products: An Overview on Green Synthesis of Metallic Nanoparticles—An Ecofriendly Approach
by Frida Lourdes García-Larez, Ariel Alain Vergel-Alfonso, Hylse Aurora Ruiz-Velducea, Karla Hazel Ozuna-Valencia, Miguel Ángel Urías-Torres, Dora Evelia Rodríguez-Félix, María Jesús Moreno-Vásquez, Carlos Gregorio Barreras-Urbina, Clara Rosalía Álvarez-Chávez, Betzabe Ebenhezer López-Corona, Idania Emedith Quintero-Reyes, Francisco Rodríguez-Félix and José Agustín Tapia-Hernández
Polysaccharides 2025, 6(2), 53; https://doi.org/10.3390/polysaccharides6020053 - 19 Jun 2025
Cited by 1 | Viewed by 1906
Abstract
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and [...] Read more.
This review explores the eco-friendly synthesis of metallic nanoparticles derived from polysaccharides obtained from agricultural and food industry waste. Initially, it outlines the problem of agri-food waste, highlighting its abundance and the potential to extract valuable polysaccharides such as cellulose, hemicellulose, lignin, and pectin. The focus is on green synthesis methods that use these polysaccharides to produce metallic nanoparticles, emphasizing the environmental benefits compared to conventional methods. The article reviews the physicochemical properties of key polysaccharides and details their extraction processes from various agricultural waste. The synthesis of diverse types of metallic nanoparticles, including monometallic (e.g., gold, silver, and platinum), bimetallic (e.g., gold–silver and gold–zinc), and oxide nanoparticles (e.g., zinc oxide and iron oxide), is extensively covered. Additionally, mechanisms of nanoparticle synthesis, such as nucleation, growth, stabilization, and capping, are examined, alongside examples from existing research. The article highlights the applications of these nanoparticles in diverse fields, including food safety, healthcare, agriculture, and environmental protection. It concludes by underscoring the potential of green synthesis to reduce waste and promote sustainable industrial practices and calls for further research to optimize these methods. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

13 pages, 3080 KB  
Article
Influence of Ni Addition on Au/CeO2 Photocatalysts for Solar Photocatalytic H2 Production by Glycerol Photoreforming
by Eleonora La Greca, Maria Teresa Armeli Iapichino, M. Carmen Herrera Beurnio, Francisco J. Urbano Navarro, Leonarda Francesca Liotta, Salvatore Scirè and Roberto Fiorenza
Catalysts 2025, 15(6), 555; https://doi.org/10.3390/catal15060555 - 3 Jun 2025
Cited by 1 | Viewed by 1849
Abstract
Solar glycerol photoreforming was investigated on Au-Ni/CeO2 photocatalysts with an overall metal content equal to 1wt% and different Au/Ni weight ratios. The deposition of gold over ceria was performed by two different methods, deposition–precipitation and photoreduction. Deposition–precipitation was the best method to [...] Read more.
Solar glycerol photoreforming was investigated on Au-Ni/CeO2 photocatalysts with an overall metal content equal to 1wt% and different Au/Ni weight ratios. The deposition of gold over ceria was performed by two different methods, deposition–precipitation and photoreduction. Deposition–precipitation was the best method to deposit gold on CeO2 with the formation of small Au nanoparticles (around 4 nm). The most active sample (0.9 wt% Au-0.1 Ni wt%/CeO2) provided a H2 production rate of 350 µmol/gcat∙h, much higher than the corresponding monometallic samples. A higher amount of Ni led to detrimental effects in H2 production, likely due to the covering of the gold surface active sites by Ni. On the contrary, the presence of a small amount of Ni (0.1 wt%) allowed a remarkable improvement of the Au/CeO2 photocatalytic stability after consecutive runs of simulated solar irradiation. This finding, as well as the activation of synergistic effects, the improved charge carrier separation, and the exploitation of the localized surface plasmon resonance property of gold, led to the proposal of an alternative photocatalytic system to the most investigated TiO2-based photocatalysts for H2 production. The enhanced stability is promising to further foster the investigation of these photocatalysts applied to sustainable H2 production. Full article
(This article belongs to the Collection Gold Catalysts)
Show Figures

Figure 1

20 pages, 8428 KB  
Article
The Role of Pd-Pt Bimetallic Catalysts in Ethylene Detection by CMOS-MEMS Gas Sensor Dubbed GMOS
by Hanin Ashkar, Sara Stolyarova, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 672; https://doi.org/10.3390/mi16060672 - 31 May 2025
Cited by 2 | Viewed by 3622
Abstract
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic [...] Read more.
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic composition of metallic nanoparticles. The paper presents a study on ethylene and ethanol sensing using a miniature catalytic sensor fabricated by Complementary Metal Oxide Semiconductor–Silicon-on-Insulator–Micro-Electro-Mechanical System (CMOS-SOI-MEMS) technology. The GMOS performance with bimetallic palladium–platinum (Pd-Pt) and monometallic palladium (Pd) and platinum (Pt) catalysts is compared. The synergetic effect of the Pd-Pt catalyst is observed, which is expressed in the shift of combustion reaction ignition to lower catalyst temperatures as well as increased sensitivity compared to monometallic components. The optimal catalysts and their temperature regimes for low and high ethylene concentrations are chosen, resulting in lower power consumption by the sensor. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

21 pages, 3236 KB  
Article
Green Synthesis of Cu and Pd Catalysts Using Mexican Oregano (Lippia graveolens) Extract and Their Application in the Conversion of a Biomass-Derived Molecule
by Bárbara Jazmín Lino Galarza, Javier Rivera De la Rosa, Carlos J. Lucio-Ortiz, Marco Antonio Garza-Navarro, Carolina Solis Maldonado, Ladislao Sandoval Rángel, Diana Busto Martínez and Carlos Enrique Escarcega-González
Processes 2025, 13(6), 1681; https://doi.org/10.3390/pr13061681 - 27 May 2025
Cited by 1 | Viewed by 1004
Abstract
This work reports the synthesis of two monometallic catalysts, Cu/Al2O3, and Pd/Al2O3, using a green approach based on Mexican oregano (Lippia graveolens), a common food condiment. Its extract has been largely overlooked as a [...] Read more.
This work reports the synthesis of two monometallic catalysts, Cu/Al2O3, and Pd/Al2O3, using a green approach based on Mexican oregano (Lippia graveolens), a common food condiment. Its extract has been largely overlooked as a high-technology reactive for synthesizing catalysts, metallic or oxide nanoparticles, unlike other green leaf plants. The green synthesis was compared with a conventional catalyst synthesis methodology using commercial chemical reducing agents. Oregano extract shows promise for novel applications extending beyond its culinary use, valorizing it as a chemical reducer to produce catalysts. Thus, this kind of application could significantly elevate the value of oregano, empowering communities that rely on its cultivation for economic benefit and transforming the plant from a low-profit agro-industrial product to a high-added-value crop. The reduction kinetics involved in the formation of nanoparticles were monitored up to the first stage of nucleation and a first-order model adequately described the data. Activation energy analysis showed that the chemical reaction mechanism has a dominant role in controlling the reaction, compared to mass transfer effects. Notoriously, the Pd/Al2O3 green synthesis catalyst showed the smallest mean particle size (4.85 ± 1.30 nm). These findings underscore the potential of green synthesis as an economically viable and environmentally friendly alternative for producing catalysts. Concerning the 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) as a biomass-derived molecule, its oxidation with H2O2 using both Pd/Al2O3 catalysts (by green and chemical synthesis methods) exhibited significantly higher selectivity toward 2,5-diformylfuran (DFF) compared to Cu/Al2O3 catalysts, suggesting a possible inhibitory effect. Full article
Show Figures

Graphical abstract

13 pages, 1568 KB  
Article
Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells
by Chandra Sekhar Yellatur, Venkatachalam Vinothkumar, Poshan Kumar Reddy Kuppam, Juwon Oh and Tae Hyun Kim
Catalysts 2025, 15(2), 128; https://doi.org/10.3390/catal15020128 - 29 Jan 2025
Cited by 3 | Viewed by 1903
Abstract
The design of efficient and cost-effective electrocatalysts to replace Pt in an oxygen reduction reaction (ORR) is crucial for advancing proton exchange membrane fuel cell (PEMFC) technologies. This study synthesized Pd-Co bimetallic alloy nanoparticles supported on reduced graphene oxide (rGO) through a simple [...] Read more.
The design of efficient and cost-effective electrocatalysts to replace Pt in an oxygen reduction reaction (ORR) is crucial for advancing proton exchange membrane fuel cell (PEMFC) technologies. This study synthesized Pd-Co bimetallic alloy nanoparticles supported on reduced graphene oxide (rGO) through a simple chemical-reduction method, making it suitable for low-cost, large-scale fabrication and significantly reducing the need for Pt. The nanostructures were systematically characterized using various analytical techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV). Electrochemical investigations revealed that the Pd-Co/rGO catalyst exhibits remarkable ORR performance in an alkaline environment, with an electrode-area-normalized activity rivaling that of the commercial Pt/C catalyst. Remarkably, Pd-Co/rGO demonstrated an onset potential (Eonset) of 0.944 V (vs. RHE) and a half-wave potential (E1/2) of 0.782 V (vs. RHE), highlighting its excellent ORR activity. Furthermore, the Pd-Co/rGO catalyst displayed superior methanol-tolerant ORR activity, outperforming Pt/C and monometallic Pd/rGO and Co/rGO systems. The enhanced electrocatalytic performance is attributed to the smallest size, consistent shape, and good dispersion of the alloy structure on the RGO surface. These findings establish Pd-Co/rGO as a promising alternative to Pt-based catalysts, addressing key challenges such as methanol crossover while advancing PEMFC technology in alkaline media. Full article
(This article belongs to the Special Issue Insight into Electrocatalysts for Oxygen Reduction Reaction)
Show Figures

Graphical abstract

22 pages, 4995 KB  
Article
3D Printed Ni–Cu Sodalite Catalysts for Sustainable γ-Valerolactone Production from Levulinic Acid—Effect of the Copper Content and the Method of Preparation
by Margarita Popova, Boian Mladenov, Ivan Dimitrov, Momtchil Dimitrov, Violeta Mitova, Yavor Mitrev, Daniela Kovacheva, Nikolay Velinov, Daniela Karashanova and Silviya Boycheva
Processes 2025, 13(1), 72; https://doi.org/10.3390/pr13010072 - 1 Jan 2025
Cited by 3 | Viewed by 2105
Abstract
Coal fly ash zeolites with Sodalite structure were synthesized by ultrasound-assisted double stage fusion-hydrothermal synthesis. Monometallic Ni and bimetallic Ni–Cu supported catalysts with 5 wt.% Ni and different copper contents of 1.5, 2.5 and 5.0 wt.% Cu were prepared by post-synthesis incipient wetness [...] Read more.
Coal fly ash zeolites with Sodalite structure were synthesized by ultrasound-assisted double stage fusion-hydrothermal synthesis. Monometallic Ni and bimetallic Ni–Cu supported catalysts with 5 wt.% Ni and different copper contents of 1.5, 2.5 and 5.0 wt.% Cu were prepared by post-synthesis incipient wetness impregnation. The catalysts were characterized by X-ray powder diffraction, N2 physisorption, transmission electron microscopy (TEM), Mössbauer spectroscopy and H2 temperature programmed reduction analysis. It was found that crystalline Cu0 and NixCuy intermetallic nanoparticles were formed in the reduced powder and 3D printed catalysts and that they affected the reducibility of the catalytically active nickel phase. Three-dimensionally printed 5Ni2.5Cu/Sodalite catalysts were prepared via modification with metals before and after 3D printing for comparative studies. The powder and 3D printed catalysts were studied in the lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The formation of NiCu alloy, which is found on the powder and 3D printed catalysts, favors their catalytic performance in the studied reaction. In contrast with powder catalysts, the preservation of the Sodalite structure was detected for all 3D printed samples and was found to have a positive influence on the metal dispersion registered in the 3D spent catalysts. The powder 5Ni2.5Cu/Sodalite catalyst showed the highest LA conversion and high GVL yield at 150 °C reaction temperature. Three-dimensionally printed catalysts show more stable catalytic activity than powder catalysts due to the preservation of the zeolite structure and metal dispersion. Full article
Show Figures

Graphical abstract

14 pages, 1624 KB  
Review
Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles
by Agnes Mastalir
Molecules 2024, 29(24), 5857; https://doi.org/10.3390/molecules29245857 - 12 Dec 2024
Cited by 4 | Viewed by 2187
Abstract
Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. [...] Read more.
Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species. The heterogeneous catalysts can be recovered and reused, and the presence of copper tends to reduce the cost of the expensive Pd catalyst, which is beneficial for industrial applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

21 pages, 5741 KB  
Article
Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis
by Juti Rani Deka, Diganta Saikia, Ning-Fang Lu, Chieh-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Nanomaterials 2024, 14(22), 1818; https://doi.org/10.3390/nano14221818 - 13 Nov 2024
Cited by 2 | Viewed by 1684
Abstract
In this study, bimetallic NiCo nanoparticles (NPs) were encapsulated within the mesopores of carboxylic acid functionalized mesoporous silica (CMS) through the chemical reduction approach. Both NaBH4 and NH3BH3 were used as reducing agents to reduce the metal ions simultaneously. [...] Read more.
In this study, bimetallic NiCo nanoparticles (NPs) were encapsulated within the mesopores of carboxylic acid functionalized mesoporous silica (CMS) through the chemical reduction approach. Both NaBH4 and NH3BH3 were used as reducing agents to reduce the metal ions simultaneously. The resulting composite was used as a catalyst for hydrolysis of ammonia borane (NH3BH3, AB) to produce H2. The bimetallic NiCo NPs supported on carboxylic group functionalized mesoporous silica, referred to as NixCo100−x@CMS, exhibited significantly higher catalytic activity for AB hydrolysis compared to their monometallic counterparts. The remarkable activity of NixCo100−x@CMS could be ascribed to the synergistic contributions of Ni and Co, redox reaction during the hydrolysis, and the fine-tuned electronic structure. The catalytic performance of the NixCo100−x@CMS nanocatalyst was observed to be dependent on the composition of Ni and Co. Among all the compositions investigated, Ni40Co60@CMS demonstrated the highest catalytic activity, with a turn over frequency (TOF) of 18.95 molH2min−1molcatalyst−1 and H2 production rate of 8.0 L min−1g−1. The activity of Ni40Co60@CMS was approximately three times greater than that of Ni@CMS and about two times that of Co@CMS. The superior activity of Ni40Co60@CMS was attributed to its finely-tuned electronic structure, resulting from the electron transfer of Ni to Co. Furthermore, the nanocatalyst exhibited excellent durability, as the carboxylate group in the support provided a strong metal–support interaction, securely anchoring the NPs within the mesopores, preventing both agglomeration and leakage. Full article
(This article belongs to the Special Issue Applications of Nanoporous Materials in Sensors and Catalysis)
Show Figures

Figure 1

20 pages, 4112 KB  
Article
Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid
by Yasmin Abd El-Salam, Hussein Dhahi Adday, Fatma Abdel Samad, Hamza Qayyum and Tarek Mohamed
Nanomaterials 2024, 14(15), 1290; https://doi.org/10.3390/nano14151290 - 31 Jul 2024
Cited by 11 | Viewed by 3148
Abstract
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power [...] Read more.
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power and exposure time, Ag and Au NPs in distilled water were created individually. Next, the assembly of Ag and Au NP colloids was exposed again to the pulsed laser, and the effects were examined at different average powers and exposure times. Furthermore, Ag/Au alloy nanoparticles were synthesized with by raising the average power and exposure time. The absorption spectrum, average size, and shape of alloy NPs were obtained by using an ultraviolet-visible (UV–Vis) spectrophotometer and transmission electron microscope instrument. Ag/Au alloy NPs have been obtained in the limit of quantum dots (<10 nm). The optical band gap energies of the Ag/Au alloy colloidal solutions were assessed for different Ag/Au alloy NP concentrations and NP sizes as a function of the exposure time and average power. The experimental data showed a trend toward an increasing bandgap with decreasing nanoparticle size. The nonlinear optical characteristics of Ag/Au NPs were evaluated and measured by the Z-scan technique using high repetition rate (80 MHz), femtosecond (100 fs), and near-infrared (NIR) (750–850 nm) laser pulses. In open aperture (OA) Z-scan measurements, Ag, Au, and Ag/AuNPs present reverse saturation absorption (RSA) behavior, indicating a positive nonlinear absorption (NLA) coefficient. In the close-aperture (CA) measurements, the nonlinear refractive (NLR) indices (n2) of the Ag, Au, and Ag/Au NP samples were ascribed to the self-defocusing effect, indicating an effective negative nonlinearity for the nanoparticles. The NLA and NLR characteristics of the Ag/Au NPs colloids were found to be influenced by the incident power and excitation wavelength. The optical limiting (OL) effects of the Ag/Au alloy solution at various excitation wavelengths were studied. The OL effect of alloy NPs is greater than that of monometallic NPs. The Ag/Au bimetallic nanoparticles were found to be more suitable for optical-limiting applications. Full article
(This article belongs to the Topic Laser Processing of Metallic Materials)
Show Figures

Figure 1

21 pages, 3813 KB  
Article
Increased Cytotoxicity of Bimetallic Ultrasmall Silver–Platinum Nanoparticles (2 nm) on Cells and Bacteria in Comparison to Silver Nanoparticles of the Same Size
by Natalie Wolff, Nataniel Białas, Kateryna Loza, Marc Heggen, Torsten Schaller, Felix Niemeyer, Claudia Weidenthaler, Christine Beuck, Peter Bayer, Oleg Prymak, Cristiano L. P. Oliveira and Matthias Epple
Materials 2024, 17(15), 3702; https://doi.org/10.3390/ma17153702 - 26 Jul 2024
Cited by 9 | Viewed by 3394
Abstract
Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, [...] Read more.
Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction, and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria Escherichia coli and Staphylococcus xylosus. Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver and platinum nanoparticles. However, the measured release of silver ions from monometallic and bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated high specific surface area. This is probably due to the surface protection by a dense layer of thiolated ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the biological environment in cell culture media, together with a polarization of silver by platinum. Full article
Show Figures

Figure 1

Back to TopTop