Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid
Abstract
:1. Introduction
2. Experimental Setup
2.1. Laser Ablation Setup
2.2. Z-Scan Setup
3. Results and Discussion
3.1. Synthesis of Ag and Au Nanoparticles
3.2. Synthesis of Ag/Au Alloy NPs
3.2.1. Linear Optical Properties
3.2.2. Characterization of the Average Size and Structure
3.3. Studying the Nonlinear Optical Properties of Ag/Au Alloy NPs
3.3.1. Studying the Nonlinear Absorption Coefficient β of Ag/Au Alloy NPs
3.3.2. Investigating the Nonlinear Refractive Index n2 of Ag/Au Alloy NPs
3.4. Comparison of the Nonlinear Optical Characteristics of Monometallic (Ag, Au) and Bimetallic (Ag/Au) NPs
3.5. Optical Limiting Effect of Ag, Au, and Bimetallic Ag/Au NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boyd, R.W.; Gaeta, A.L.; Giese, E. Nonlinear optics. In Springer Handbook of Atomic, Molecular, and Optical Physics; Springer International Publishing: Cham, Switzerland, 2008; pp. 1097–1110. [Google Scholar]
- Kowalevicz, A.M.; Sharma, V.; Ippen, E.P.; Fujimoto, J.G.; Minoshima, K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 2005, 30, 1060–1062. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yamada, K.; Ishizuka, T.; Watanabe, W.; Itoh, K.; Zhou, Z. Single femtosecond pulse holography using polymethyl methacrylate. Opt. Express 2002, 10, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.S.; Cardoso, M.R.; Tribuzi, V.; Misoguti, L.; Mendonca, C.R. Femtosecond laser in polymeric materials: Microfabrication of doped structures and micromachining. IEEE J. Sel. Top. Quantum Electron. 2011, 18, 176–186. [Google Scholar] [CrossRef]
- Mançois, F.; Pozzo, J.; Pan, J.; Adamietz, F.; Rodriguez, V.; Ducasse, L.; Castet, F.; Plaquet, A.; Champagne, B. Two-way molecular switches with large nonlinear optical contrast. Chem. A Eur. J. 2009, 15, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Veera Babu, N.; Veerabhadram, G. A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Appl. Nanosci. 2014, 4, 113–119. [Google Scholar] [CrossRef]
- Aromal, S.A.; Philip, D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.A. Nanoparticle plasmon waveguides. In Plasmonic Nanoguides and Circuits; Jenny Stanford Publishing: Singapore, 2019; pp. 63–93. [Google Scholar]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.H.; Le, A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 033001. [Google Scholar] [CrossRef]
- Samir, A.; Abd El-salam, H.M.; Harun, S.W.; Mohamed, T. The effects of different parameters and interaction angles of a 532 nm pulsed Nd: YAG laser on the properties of laser-ablated silver nanoparticles. Opt. Commun. 2021, 501, 127366. [Google Scholar] [CrossRef]
- Ashour, M.; G Faris, H.; Ahmed, H.; Mamdouh, S.; Thambiratnam, K.; Mohamed, T. Using femtosecond laser pulses to explore the nonlinear optical properties of Au NP colloids that were synthesized by laser ablation. Nanomaterials 2022, 12, 2980. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Na, H.J.; Lee, K.C.; Yoo, E.A.; Lee, M. Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J. Mater. Chem. 2003, 13, 1789–1792. [Google Scholar] [CrossRef]
- Link, S.; Wang, Z.L.; El-Sayed, M.A. Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 1999, 103, 3529–3533. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yeh, C.S. A New Approach for the Formation of Alloy Nanoparticles: Laser Synthesis of Gold–Silver Alloy from Gold–Silver Colloidal mixturesElectronic Supplementary Information (ESI) Available: Experimental Details, UV–VIS Spectra, TEM Images and EDX Analysis for Molar Ratios (Au:Ag) of 1:2 and 2:1. Chem. Commun. 2001, 371–372. Available online: http://www.rsc.org/suppdata/cc/b0/b009854j (accessed on 25 July 2024).
- Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Chen, Y.H.; Tseng, Y.H.; Yeh, C.S.; Chen, Y.H.; Tseng, Y.H.; Yeh, C.S. Laser-Induced Alloying Au–Pd and Ag–Pd Colloidal Mixtures: The Formation of Dispersed Au/Pd and Ag/Pd nanoparticlesElectronic Supplementary Information (ESI) Available: TEM Images of the Molar Ratios 2∶1 for Both Au–Pd and Ag–Pd Colloids. 2002. Available online: http://www.rsc.org/suppdata/jm/b2/b200587e/ (accessed on 25 July 2024).
- Devi, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Kaushik, D.; Verma, R.; Bhatt, S.; Sahoo, B.M.; Bhattacharya, T.; Alshehri, S.; et al. Quantum dots: An emerging approach for cancer therapy. Front. Mater. 2022, 8, 798440. [Google Scholar] [CrossRef]
- Srinoi, P.; Chen, Y.T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 2018, 8, 1106. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.C.; Qin, D.; Xia, Y. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef] [PubMed]
- Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 2020, 30, 1909260. [Google Scholar] [CrossRef]
- Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—Novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201. [Google Scholar] [CrossRef]
- Vilas, V.; Philip, D.; Mathew, J. Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. J. Mol. Liq. 2016, 221, 179–189. [Google Scholar] [CrossRef]
- Nasrabadi, H.T.; Abbasi, E.; Davaran, S.; Kouhi, M.; Akbarzadeh, A. Bimetallic nanoparticles: Preparation, properties, and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Luo, Z.; Fan, Z.; Zhang, X.; Tan, C.; Li, H.; Zhang, H.; Xue, C. Triangular Ag–Pd alloy nanoprisms: Rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale 2014, 6, 11738–11743. [Google Scholar] [CrossRef] [PubMed]
- Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836–2846. [Google Scholar] [CrossRef]
- Deng, R.; Qu, H.; Liang, L.; Zhang, J.; Zhang, B.; Huang, D.; Xu, S.; Liang, C.; Xu, W. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal. Chem. 2017, 89, 2844–2851. [Google Scholar] [CrossRef]
- Abhijith, K.S.; Sharma, R.; Ranjan, R.; Thakur, M.S. Facile synthesis of gold–silver alloy nanoparticles for application in metal enhanced bioluminescence. Photochem. Photobiol. Sci. 2014, 13, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Bastys, V.; Pastoriza-Santos, I.; Rodríguez-González, B.; Vaisnoras, R.; Liz-Marzán, L.M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 2006, 16, 766–773. [Google Scholar] [CrossRef]
- Childs, A.; Vinogradova, E.; Ruiz-Zepeda, F.; Velazquez-Salazar, J.J.; Jose-Yacaman, M. Biocompatible gold/silver nanostars for surface-enhanced Raman scattering. J. Raman Spectrosc. 2016, 47, 651–655. [Google Scholar] [CrossRef]
- Mafuné, F.; Kohno, J.Y.; Takeda, Y.; Kondow, T.; Sawabe, H. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 2001, 105, 5114–5120. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Salim, A.A.; Bidin, N.; Lafi, A.S.; Huyop, F.Z. Antibacterial activity of PLAL synthesized nanocinnamon. Mater. Des. 2017, 132, 486–495. [Google Scholar] [CrossRef]
- Byram, C.; Soma, V.R. 2, 4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures. Nano-Struct. Nano-Objects 2017, 12, 121–129. [Google Scholar] [CrossRef]
- Qayyum, H.; Amin, S.; Ahmed, W.; Mohamed, T.; Rehman, Z.U.; Hussain, S. Laser-based two-step synthesis of Au-Ag alloy nanoparticles and their application for surface-enhanced Raman spectroscopy (SERS) based detection of rhodamine 6G and urea nitrate. J. Mol. Liq. 2022, 365, 120120. [Google Scholar] [CrossRef]
- Rybaltovsky, A.; Epifanov, E.; Khmelenin, D.; Shubny, A.; Zavorotny, Y.; Yusupov, V.; Minaev, N. Two approaches to the laser-induced formation of Au/Ag bimetallic nanoparticles in supercritical carbon dioxide. Nanomaterials 2021, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.G.; Pereira RS, F.; Andritschky, M.; Lopes AL, B.; de Freitas Grilo, J.P.; do Nascimento, R.M.; Silva, F.S. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid. Opt. Laser Technol. 2017, 97, 20–28. [Google Scholar] [CrossRef]
- Valverde-Alva, M.A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M.B.; Márquez-Herrera, C.E.; Llamazares, J.S. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1–10 Hz). Laser Phys. Lett. 2016, 13, 106002. [Google Scholar] [CrossRef]
- Tsuji, T.; Iryo, K.; Nishimura, Y.; Tsuji, M. Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J. Photochem. Photobiol. A Chem. 2001, 145, 201–207. [Google Scholar] [CrossRef]
- Gal, G.; Monsa, Y.; Ezersky, V.; Bar, I. Alloying copper and palladium nanoparticles by pulsed laser irradiation of colloids suspended in ethanol. RSC Adv. 2018, 8, 33291–33300. [Google Scholar] [CrossRef]
- Zhang, J.; Worley, J.; Dénommée, S.; Kingston, C.; Jakubek, Z.J.; Deslandes, Y.; Post, M.; Simard, B.; Braidy, N.; Botton, G.A. Synthesis of metal alloy nanoparticles in solution by laser irradiation of a metal powder suspension. J. Phys. Chem. B 2003, 107, 6920–6923. [Google Scholar] [CrossRef]
- Swiatkowska-Warkocka, Z.; Koga, K.; Kawaguchi, K.; Wang, H.; Pyatenko, A.; Koshizaki, N. Pulsed laser irradiation of colloidal nanoparticles: A new synthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres. RSC Adv. 2013, 3, 79–83. [Google Scholar] [CrossRef]
- Bharati MS, S.; Chandu, B.; Rao, S.V. Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Adv. 2019, 9, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Hajiesmaeilbaigi, F.; Motamedi, A. Synthesis of Au/Ag alloy nanoparticles by Nd: YAG laser irradiation. Laser Phys. Lett. 2006, 4, 133. [Google Scholar] [CrossRef]
- Salim, A.A.; Ghoshal, S.K.; Bakhtiar, H.; Krishnan, G.; Sapingi, H.H.J. Pulse laser ablated growth of Au-Ag nanocolloids: Basic insight on physiochemical attributes. J. Phys. Conf. Ser. 2020, 1484, 012011. [Google Scholar]
- Caligiuri, V.; Kwon, H.; Griesi, A.; Ivanov, Y.P.; Schirato, A.; Alabastri, A.; Cuscunà, M.; Balestra, G.; De Luca, A.; Tapani, T. Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial. Nanophotonics 2024, 13, 1159–1167. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Y.; Chen, C.; Wu, W.; Kong, D.; Gao, Y. Wavelength-dependent optical nonlinear absorption of Au-Ag nanoparticles. Appl. Sci. 2021, 11, 3072. [Google Scholar] [CrossRef]
- Ferreira, E.; Kharisov, B.; Vázquez, A.; Méndez, E.A.; Severiano-Carrillo, I.; Trejo-Durán, M. Tuning the nonlinear optical properties of Au@ Ag bimetallic nanoparticles. J. Mol. Liq. 2020, 298, 112057. [Google Scholar] [CrossRef]
- Fathima, R.; Mujeeb, A. Nonlinear optical investigations of laser generated gold, silver and gold-silver alloy nanoparticles and optical limiting applications. J. Alloys Compd. 2021, 858, 157667. [Google Scholar] [CrossRef]
- Simon, J.; Nampoori VP, N.; Kailasnath, M. Concentration dependent thermo-optical properties and nonlinear optical switching behavior of bimetallic Au-Ag nanoparticles synthesized by femtosecond laser ablation. Opt. Laser Technol. 2021, 140, 107022. [Google Scholar] [CrossRef]
- Messina, E.; D’urso, L.; Fazio, E.; Satriano, C.; Donato, M.; D’andrea, C.; Maragò, O.; Gucciardi, P.; Compagnini, G.; Neri, F. Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2490–2498. [Google Scholar] [CrossRef]
- Samad, F.A.; Mahmoud, A.; Abdel-Wahab, M.S.; Tawfik, W.Z.; Zakaria, R.; Soma, V.R.; Mohamed, T. Investigating the influence of ITO thin film thickness on the optical Kerr nonlinearity using ultrashort laser pulses. JOSA B 2022, 39, 1388–1399. [Google Scholar] [CrossRef]
- Samad, F.A.; Mohamed, T. Intensity and wavelength-dependent two-photon absorption and its saturation in ITO film. Appl. Phys. A 2023, 129, 31. [Google Scholar] [CrossRef]
- Sun, L.; Luan, W.; Shan, Y.J. A composition and size controllable approach for Au-Ag alloy nanoparticles. Nanoscale Res. Lett. 2012, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Tyurnina, A.E.; Shur, V.Y.; Kozin, R.V.; Kuznetsov, D.K.; Mingaliev, E.A. Synthesis of stable silver colloids by laser ablation in water. In Fundamentals of Laser-Assisted Micro-and Nanotechnologies 2013; SPIE: Bellingham, WA, USA, 2013; Volume 9065, pp. 128–135. [Google Scholar]
- Mafuné, F. Structure diagram of gold nanoparticles in solution under irradiation of UV pulse laser. Chem. Phys. Lett. 2004, 397, 133–137. [Google Scholar] [CrossRef]
- Neumeister, A.; Jakobi, J.; Rehbock, C.; Moysig, J.; Barcikowski, S. Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys. Chem. Chem. Phys. 2014, 16, 23671–23678. [Google Scholar] [CrossRef] [PubMed]
- Kuladeep, R.; Jyothi, L.; Alee, K.S.; Deepak, K.L.N.; Narayana Rao, D. Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt. Mater. Express 2012, 2, 161–172. [Google Scholar] [CrossRef]
- Kushwah, M.; Gaur, M.S.; Berlina, A.N.; Arora, K. Biosynthesis of novel Ag@ Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity. Mater. Res. Express 2019, 6, 116561. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n 2 measurements. Opt. Lett. 1989, 14, 955–957. [Google Scholar] [CrossRef]
- Saad, N.A.; Dar, M.H.; Ramya, E.; Naraharisetty SR, G.; Narayana Rao, D. Saturable and reverse saturable absorption of a Cu2O–Ag nanoheterostructure. J. Mater. Sci. 2019, 54, 188–199. [Google Scholar] [CrossRef]
- Falconieri, M. Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J. Opt. A Pure Appl. Opt. 1999, 1, 662. [Google Scholar] [CrossRef]
- Kwak, C.H.; Lee, Y.L.; Kim, S.G. Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As 2 S 3 thin film. JOSA B 1999, 16, 600–604. [Google Scholar] [CrossRef]
- Severiano-Carrillo, I.; Alvarado-Méndez, E.; Trejo-Durán, M.; Méndez-Otero, M.M. Improved Z-scan adjustment to thermal nonlinearities by including nonlinear absorption. Opt. Commun. 2017, 397, 140–146. [Google Scholar] [CrossRef]
- Shehata, A.; Mohamed, T. Method for an accurate measurement of nonlinear refractive index in the case of high-repetition-rate femtosecond laser pulses. JOSA B 2019, 36, 1246–1251. [Google Scholar] [CrossRef]
- Shiju, E.; Abhijith, T.B.; Chandrasekharan, K. Nonlinear optical behavior of Au@ Ag core-shell nanostructures. J. Mol. Liq. 2021, 333, 115935. [Google Scholar]
- Mariano, S.D.; Saraiva, N.A.; Costa, J.C.; Sousa, C.A.; Silva, N.J.; Garcia, H.A.; Santos FE, P. Nonressonant nonlinear optical switching behavior of Ag monometallic and Ag@ Au bimetallic investigated by femtosecond Z-Scan measurements. Opt. Laser Technol. 2021, 142, 107247. [Google Scholar] [CrossRef]
- Krishnakanth, K.N.; Chandu, B.; Bharathi MS, S.; Raavi SS, K.; Rao, S.V. Ultrafast excited state dynamics and femtosecond nonlinear optical properties of laser fabricated Au and Ag50Au50 nanoparticles. Opt. Mater. 2019, 95, 109239. [Google Scholar] [CrossRef]
- Sakthisabarimoorthi, A.; Martin Britto Dhas, S.A.; Jose, M. Preparation of composite Ag@ Au core–shell nanoparticles and their linear and nonlinear optical properties. J. Mater. Sci. Mater. Electron. 2019, 30, 1677–1685. [Google Scholar] [CrossRef]
Metal NPs | n0 | n2 × 10−15 (cm2/W) | γ × 10−19 (cm3/W2) |
---|---|---|---|
Ag | 2.06 | 5.82 | 0.72 |
Au | 4.69 | 6.19 | 1.42 |
Ag–Au | 1.96 | 6.43 | 1.71 |
Au@Ag Bimetallic NPs | Preparation Method | Wavelength(nm) | Pulse Duration | Repetition Rate (Hz) | Au–Ag Avg. Size (nm) | n2 (cm2/W) | Ref. |
---|---|---|---|---|---|---|---|
Au–Ag in water | Laser ablation | 532 | 10 ns | 10 | 14.8 | −0.5 × 10−12 | [51] |
16.3 | −0.521 × 10−12 | ||||||
11.6 | −0.892 × 10−12 | ||||||
Au@Ag in water | Chemical | 632.8 | - | - | 20 | 81.6× 10−6 | [73] |
Au@Ag in water | Chemical | 1040 | 357 fs | 1000 | 73 | 4.41 × 10−16 | [71] |
Au@Ag in water | Laser ablation | 800 | 50 fs | 1000 | 19.8 | 1.6 × 10−12 | [72] |
Au–Ag in water | Laser ablation | From 750 to 850 | 100 fs | 80 × 106 | 8.5 | From 6.26 × 10−15 to 6.45 × 10−15 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Salam, Y.; Adday, H.D.; Abdel Samad, F.; Qayyum, H.; Mohamed, T. Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid. Nanomaterials 2024, 14, 1290. https://doi.org/10.3390/nano14151290
Abd El-Salam Y, Adday HD, Abdel Samad F, Qayyum H, Mohamed T. Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid. Nanomaterials. 2024; 14(15):1290. https://doi.org/10.3390/nano14151290
Chicago/Turabian StyleAbd El-Salam, Yasmin, Hussein Dhahi Adday, Fatma Abdel Samad, Hamza Qayyum, and Tarek Mohamed. 2024. "Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid" Nanomaterials 14, no. 15: 1290. https://doi.org/10.3390/nano14151290
APA StyleAbd El-Salam, Y., Adday, H. D., Abdel Samad, F., Qayyum, H., & Mohamed, T. (2024). Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid. Nanomaterials, 14(15), 1290. https://doi.org/10.3390/nano14151290