Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Graphene Oxide (GO)
3.3. Synthesis of Pd-Co Bimetallic NPs on rGO
3.4. Material Characterization
3.5. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, J.; Sharma, V.; Kumar Das, D.; Pandit, B.; Shahzad Samdani, M.; Shkir, M.; Aslam Manthrammel, M.; Nangan, S.; Jagadeesha Angadi, V.; Ubaidullah, M. Single-Atom Catalysts for Oxygen Reduction Reaction and Methanol Oxidation Reaction. Fuel 2024, 358, 130241. [Google Scholar] [CrossRef]
- Shen, T.; Zhang, J.; Chen, K.; Deng, S.; Wang, D. Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. Energy Fuels 2020, 34, 9137–9153. [Google Scholar] [CrossRef]
- Vo, T.; Gao, J.; Liu, Y. Recent Development and Future Frontiers of Oxygen Reduction Reaction in Neutral Media and Seawater. Adv. Funct. Mater. 2024, 34, 2314282. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, T.; Yuan, Q. Low-Pt Octahedral PtCuCo Nanoalloys: “One Stone, Four Birds” for Oxygen Reduction and Methanol Oxidation Reactions. Inorg. Chem. 2023, 62, 11581–11588. [Google Scholar] [CrossRef]
- Yang, X.; Lin, L.; Guo, X.; Zhang, S. Design of Multifunctional Electrocatalysts for ORR/OER/HER/HOR: Janus Makes Difference. Small 2024, 20, 2404000. [Google Scholar] [CrossRef]
- Martinaiou, I.; Daletou, M.K. Enhancing Electrode Efficiency in Proton Exchange Membrane Fuel Cells with PGM-Free Catalysts: A Mini Review. Energies 2024, 17, 3443. [Google Scholar] [CrossRef]
- Saeidfar, A.; Yesilyurt, S. Durability Investigation of Low Pt-Loaded PEM Fuel Cells with Different Catalyst Layer Morphologies. ECS Trans. 2024, 113, 3–10. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, S.Y.; Lee, H.J.; In Lee, H.; Lim, D.-H.; Lee, Y.S.; Kim, H.S.; Woo, S.H. Strategies for the Design and Synthesis of Pt-Based Nanostructured Electrocatalysts in Proton Exchange Membrane Fuel Cells (PEMFCs). ACS Eng. Au 2024. [Google Scholar] [CrossRef]
- Charalampopoulos, G.; Maniatis, I.; Daletou, M. Non-PGM Cathode Electrocatalysts for PEM Fuel Cells. ECS Trans. 2023, 112, 335–341. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Brouzgou, A.; Song, S.; Liang, Z.-X.; Tsiakaras, P. Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts 2016, 6, 159. [Google Scholar] [CrossRef]
- Goswami, C.; Hazarika, K.K.; Bharali, P. Transition Metal Oxide Nanocatalysts for Oxygen Reduction Reaction. Mater. Sci. Energy Technol. 2018, 1, 117–128. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Zhang, B.; Jin, J.; Su, D.S.; Wang, S.; Sun, G. Controllable Synthesis of Cobalt Monoxide Nanoparticles and the Size-Dependent Activity for Oxygen Reduction Reaction. ACS Catal. 2014, 4, 2998–3001. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Wei, C.; Feng, Z.; Scherer, G.G.; Barber, J.; Shao-Horn, Y.; Xu, Z.J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800. [Google Scholar] [CrossRef]
- Safakas, A.; Bampos, G.; Bebelis, S. Oxygen Reduction Reaction on La0.8Sr0.2CoxFe1-XO3-δ Perovskite/Carbon Black Electrocatalysts in Alkaline Medium. Appl. Catal. B 2019, 244, 225–232. [Google Scholar] [CrossRef]
- Hong, W.T.; Risch, M.; Stoerzinger, K.A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, Q.; Chen, H.; Shao, M. Recent Advances in Palladium-Based Electrocatalysts for Fuel Cell Reactions and Hydrogen Evolution Reaction. Nano Energy 2016, 29, 198–219. [Google Scholar] [CrossRef]
- Lima, F.H.B.; Zhang, J.; Shao, M.H.; Sasaki, K.; Vukmirovic, M.B.; Ticianelli, E.A.; Adzic, R.R. Catalytic Activity−d-Band Center Correlation for the O 2 Reduction Reaction on Platinum in Alkaline Solutions. J. Phys. Chem. C 2007, 111, 404–410. [Google Scholar] [CrossRef]
- Raghavendra, P.; Sekhar, Y.C.; Reddy, G.V.; Chandana, P.S.; Sarma, L.S. Hetero-Epitaxial Grown Pt@Au Core-Shell Bimetallic Nanoparticles on Reduced Graphene Oxide (RGO) as Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Adv. Nat. Sci. Nanosci. Nanotechnol. 2024, 15, 015005. [Google Scholar] [CrossRef]
- Raghavendra, P.; Vishwakshan Reddy, G.; Sivasubramanian, R.; Sri Chandana, P.; Subramanyam Sarma, L. Reduced Graphene Oxide-Supported Pd@Au Bimetallic Nano Electrocatalyst for Enhanced Oxygen Reduction Reaction in Alkaline Media. Int. J. Hydrogen Energy 2018, 43, 4125–4135. [Google Scholar] [CrossRef]
- Gunji, T.; Wakabayashi, R.H.; Noh, S.H.; Han, B.; Matsumoto, F.; DiSalvo, F.J.; Abruña, H.D. The Effect of Alloying of Transition Metals (M = Fe, Co, Ni) with Palladium Catalysts on the Electrocatalytic Activity for the Oxygen Reduction Reaction in Alkaline Media. Electrochim. Acta 2018, 283, 1045–1052. [Google Scholar] [CrossRef]
- Cui, N.; Li, W.; Guo, Z.; Xu, X.; Zhao, H. Electrocatalytic Performance of Carbon Supported WO3-Containing Pd–W Nanoalloys for Oxygen Reduction Reaction in Alkaline Media. Catalysts 2018, 8, 225. [Google Scholar] [CrossRef]
- Yang, T.; Ma, Y.; Huang, Q.; Cao, G. Palladium–Iridium Nanocrystals for Enhancement of Electrocatalytic Activity toward Oxygen Reduction Reaction. Nano Energy 2016, 19, 257–268. [Google Scholar] [CrossRef]
- Wang, G.; Guan, J.; Xiao, L.; Huang, B.; Wu, N.; Lu, J.; Zhuang, L. Pd Skin on AuCu Intermetallic Nanoparticles: A Highly Active Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Nano Energy 2016, 29, 268–274. [Google Scholar] [CrossRef]
- Yin, H.; Liu, S.; Zhang, C.; Bao, J.; Zheng, Y.; Han, M.; Dai, Z. Well-Coupled Graphene and Pd-Based Bimetallic Nanocrystals Nanocomposites for Electrocatalytic Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2014, 6, 2086–2094. [Google Scholar] [CrossRef]
- Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catal. 2020, 10, 13560–13583. [Google Scholar] [CrossRef]
- Chasanah, U.; Trisunaryanti, W.; Triyono; Santoso, I.; Fatmawati, D.A.; Purbonegoro, J. Effect of Stabilizer Agent Type on the Characteristics of Pd–Ni Nanoparticles Deposited on Reduced Graphene Oxide as Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Sci. 2024, 59, 20593–20605. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Electronic Factors Determining the Reactivity of Metal Surfaces. Surf. Sci. 1995, 343, 211–220. [Google Scholar] [CrossRef]
- Xu, Y.; Ruban, A.V.; Mavrikakis, M. Adsorption and Dissociation of O 2 on Pt-Co and Pt-Fe Alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725. [Google Scholar] [CrossRef]
- Mavrikakis, M.; Hammer, B.; Nørskov, J.K. Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822. [Google Scholar] [CrossRef]
- Castegnaro, M.V.; Paschoalino, W.J.; Fernandes, M.R.; Balke, B.; Alves, M.C.M.; Ticianelli, E.A.; Morais, J. Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium: Correlating the Electronic Structure with Activity. Langmuir 2017, 33, 2734–2743. [Google Scholar] [CrossRef] [PubMed]
- Lüsi, M.; Erikson, H.; Käärik, M.; Piirsoo, H.-M.; Aruväli, J.; Kikas, A.; Kisand, V.; Leis, J.; Kukli, K.; Tammeveski, K. One-Pot Synthesis of Pd Nanoparticles Supported on Carbide-Derived Carbon for Oxygen Reduction Reaction. Nanomaterials 2024, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Golubović, J.; Rakočević, L.; Vasiljević Radović, D.; Štrbac, S. Improved Oxygen Reduction on GC-Supported Large-Sized Pt Nanoparticles by the Addition of Pd. Catalysts 2022, 12, 968. [Google Scholar] [CrossRef]
- Golubović, J.; Rakočević, L.; Štrbac, S. The Effect of Sulphate and Chloride Palladium Salt Anions on the Morphology of Electrodeposited Pd Nanoparticles and Their Catalytic Activity for Oxygen Reduction in Acid and Alkaline Media. Int. J. Electrochem. Sci. 2022, 17, 220943. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, P.; Zhang, H.; Deng, K.; Yu, H.; Xu, Y.; Li, X.; Wang, H.; Wang, L. PdCu Bimetallene for Enhanced Oxygen Reduction Electrocatalysis. Inorg. Chem. 2023, 62, 5622–5629. [Google Scholar] [CrossRef]
- Xu, W.; Yoon, D.; Yang, Y.; Xiong, Y.; Li, H.; Zeng, R.; Muller, D.A.; Abruña, H.D. MOF-Derived Bimetallic Pd-Co Alkaline ORR Electrocatalysts. ACS Appl. Mater. Interfaces 2022, 14, 44735–44744. [Google Scholar] [CrossRef]
- Schneider-Coppolino, M.; Taylor, A.; Kilham, A.M.; Gautam, S.; Tahmasebi, S.; Gates, B.D. Cathodic Pd 1-X Ni X Nanocatalyst Development for Alkaline Fuel Cell Applications. ECS Meet. Abstr. 2022, 241, 2295. [Google Scholar] [CrossRef]
- Zamora Zeledón, J.A.; Stevens, M.B.; Gunasooriya, G.T.K.K.; Gallo, A.; Landers, A.T.; Kreider, M.E.; Hahn, C.; Nørskov, J.K.; Jaramillo, T.F. Tuning the Electronic Structure of Ag-Pd Alloys to Enhance Performance for Alkaline Oxygen Reduction. Nat. Commun. 2021, 12, 620. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Y.; Zhao, X.; Shen, T.; Zhao, T.; Gong, M.; Chen, K.; Lai, C.; Zhang, J.; Xin, H.L.; et al. Highly Active N-Doped Carbon Encapsulated Pd-Fe Intermetallic Nanoparticles for the Oxygen Reduction Reaction. Nano Res. 2020, 13, 2365–2370. [Google Scholar] [CrossRef]
- St. John, S.; Atkinson, R.W.; Dyck, O.; Sun, C.-J.; Zawodzinski, T.A.; Papandrew, A.B. Segregated Pt on Pd Nanotubes for Enhanced Oxygen Reduction Activity in Alkaline Electrolyte. Chem. Commun. 2015, 51, 16633–16636. [Google Scholar] [CrossRef] [PubMed]
- Archana, S.; Elumalai, P. Solvent-Engineered ZIF-67-Derived Cobalt-Embedded Carbon as Polysulfide Trapping Host for High-Stability Li–S Battery. Ionics 2024. [Google Scholar] [CrossRef]
- Chandra Sekhar, Y.; Raghavendra, P.; Sri Chandana, P.; Maiyalagan, T.; Subramanyam Sarma, L. Graphene Supported Pd–Cu Bimetallic Nanoparticles as Efficient Catalyst for Electrooxidation of Methanol in Alkaline Media. J. Phys. Chem. Solids 2023, 174, 111133. [Google Scholar] [CrossRef]
- Chandra Sekhar, Y.; Raghavendra, P.; Thulasiramaiah, G.; Sravani, B.; Sri Chandana, P.; Maiyalagan, T.; Sarma, L.S. Reduced Graphene Oxide (RGO)-Supported Pd–CeO2 Nanocomposites as Highly Active Electrocatalysts for Facile Formic Acid Oxidation. New J. Chem. 2022, 46, 2478–2486. [Google Scholar] [CrossRef]
- Sekhar, Y.C.; Vinothkumar, V.; Rao, H.S.; Sarma, L.S.; Oh, J.; Kim, T.H. Synergistic Effects of Platinum-Bismuth Nanoalloys on Reduced Graphene Oxide for Superior Methanol and Ethanol Oxidation in Acidic Medium. Int. J. Hydrogen Energy 2024, 81, 471–480. [Google Scholar] [CrossRef]
- Hossain, S.S.; Alwi, M.M.; Saleem, J.; Al-Hashem, H.T.; McKay, G.; Mansour, S.; Ali, S.S. Bimetallic Pd-Co Nanoparticles Supported on Nitrogen-Doped Reduced Graphene Oxide as Efficient Electrocatalysts for Formic Acid Electrooxidation. Catalysts 2021, 11, 910. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Hosseinzadeh, F.; Zardari, P.; Darbandi, M. Pd-Co Nanoparticles Decorated on Different Carbon Based Substrates as Electrocatalyst for O2 Reduction Reaction. Int. J. Hydrogen Energy 2021, 46, 28513–28526. [Google Scholar] [CrossRef]
- He, W.; Jiang, H.; Zhou, Y.; Yang, S.; Xue, X.; Zou, Z.; Zhang, X.; Akins, D.L.; Yang, H. An Efficient Reduction Route for the Production of Pd–Pt Nanoparticles Anchored on Graphene Nanosheets for Use as Durable Oxygen Reduction Electrocatalysts. Carbon 2012, 50, 265–274. [Google Scholar] [CrossRef]
- Shen, C.; Chen, H.; Qiu, M.; Shi, Y.; Yan, W.; Jiang, Q.; Jiang, Y.; Xie, Z. Introducing Oxophilic Metal and Interstitial Hydrogen into the Pd Lattice to Boost Electrochemical Performance for Alkaline Ethanol Oxidation. J. Mater. Chem. A Mater. 2022, 10, 1735–1741. [Google Scholar] [CrossRef]
- Son, D.N.; Le, O.K.; Chihaia, V.; Takahashi, K. Effects of Co Content in Pd-Skin/PdCo Alloys for Oxygen Reduction Reaction: Density Functional Theory Predictions. J. Phys. Chem. C 2015, 119, 24364–24372. [Google Scholar] [CrossRef]
- Sankarasubramanian, S.; Singh, N.; Mizuno, F.; Prakash, J. Ab Initio Investigation of the Oxygen Reduction Reaction Activity on Noble Metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) Alloy Surfaces, for Li O2 Cells. J. Power Sources 2016, 319, 202–209. [Google Scholar] [CrossRef]
- Maheswari, S.; Karthikeyan, S.; Murugan, P.; Sridhar, P.; Pitchumani, S. Carbon-Supported Pd-Co as Cathode Catalyst for APEMFCs and Validation by DFT. Phys. Chem. Chem. Phys. 2012, 14, 9683. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Chandra Sahu, S.; Ghosh, A.; Basu, S.; Chakraborty, B.; Jena, B.K. The Experimental and Theoretical Insights towards the CO Induced Pd-Graphene and Their Multifunctional Energy Conversion Applications. Carbon 2019, 149, 307–317. [Google Scholar] [CrossRef]
- Nasim, F.; Nadeem, M.A. Understanding the Mechanism and Synergistic Interaction of Cobalt-Based Electrocatalysts Containing Nitrogen-Doped Carbon for 4 e—ORR. J. Mater. Chem. A Mater. 2023, 11, 10095–10124. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yellatur, C.S.; Vinothkumar, V.; Kuppam, P.K.R.; Oh, J.; Kim, T.H. Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells. Catalysts 2025, 15, 128. https://doi.org/10.3390/catal15020128
Yellatur CS, Vinothkumar V, Kuppam PKR, Oh J, Kim TH. Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells. Catalysts. 2025; 15(2):128. https://doi.org/10.3390/catal15020128
Chicago/Turabian StyleYellatur, Chandra Sekhar, Venkatachalam Vinothkumar, Poshan Kumar Reddy Kuppam, Juwon Oh, and Tae Hyun Kim. 2025. "Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells" Catalysts 15, no. 2: 128. https://doi.org/10.3390/catal15020128
APA StyleYellatur, C. S., Vinothkumar, V., Kuppam, P. K. R., Oh, J., & Kim, T. H. (2025). Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells. Catalysts, 15(2), 128. https://doi.org/10.3390/catal15020128