Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (721)

Search Parameters:
Keywords = moment space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 797 KiB  
Article
On Becoming a Senior Staff Nurse in Taiwan: A Narrative Study
by Yu-Jen Hsieh and Yu-Tzu Dai
Healthcare 2025, 13(15), 1896; https://doi.org/10.3390/healthcare13151896 - 4 Aug 2025
Abstract
Background/Objectives: Senior nurses in Taiwan shoulder layered responsibilities shaped by professional roles, gendered expectations, and family duty. Although Taiwan faces a persistent shortage of experienced clinical nurses, limited research has explored how long-serving nurses sustain identity and commitment across decades of caregiving. [...] Read more.
Background/Objectives: Senior nurses in Taiwan shoulder layered responsibilities shaped by professional roles, gendered expectations, and family duty. Although Taiwan faces a persistent shortage of experienced clinical nurses, limited research has explored how long-serving nurses sustain identity and commitment across decades of caregiving. This study examines how senior staff nurses understand their journeys of becoming—and remaining—nurses within a culturally and emotionally complex landscape. Methods: Interviews were conducted between May 2019 and September 2023 in locations chosen by participants, with most sessions face-to-face and others undertaken via video conferencing during COVID-19. This narrative inquiry involved in-depth, multi-session interviews with five female senior staff nurses born in the 1970s to early 1980s. Each participant reflected on her life and career, supported by co-constructed “nursing life lines.” Thematic narrative analysis was conducted using McCormack’s five-lens framework and Riessman’s model, with ethical rigor ensured through reflexive journaling and participant validation. Results: Three overarching themes emerged: (1) inner strength and endurance, highlighting silent resilience and the ethical weight of caregiving; (2) support and responsibility in relationships, revealing the influence of family, faith, and relational duty; and (3) role navigation and professional identity, showing how nurses revisit meaning, self-understanding, and tensions across time. Participants described emotionally powerful moments, identity re-connection, and cultural values that shaped their paths. Conclusions: These narratives offer a relational and culturally embedded understanding of what it means to sustain a career in nursing. Narrative inquiry created space for reflection, meaning-making, and voice in a system where such voices are often unheard. Identity was not static—it was lived, reshaped, and held in story. Full article
Show Figures

Figure 1

21 pages, 4761 KiB  
Article
Enhanced Dynamic Game Method for Offshore Wind Turbine Airfoil Optimization Design
by Rui Meng, Jintao Song, Xueqing Ren and Xuhui Chen
J. Mar. Sci. Eng. 2025, 13(8), 1481; https://doi.org/10.3390/jmse13081481 - 31 Jul 2025
Viewed by 156
Abstract
The novel enhanced dynamic game method (EDGM) is proposed to advance game-based design approaches, with a focus on enhancing solution distribution, precision, and the ability to reveal the dynamic influence sensitivity of design variables on objective functions. An integrated mathematical model is developed [...] Read more.
The novel enhanced dynamic game method (EDGM) is proposed to advance game-based design approaches, with a focus on enhancing solution distribution, precision, and the ability to reveal the dynamic influence sensitivity of design variables on objective functions. An integrated mathematical model is developed by combining EDGM with PARSEC and CST parameterization methods, forming a systematic framework for offshore wind turbine airfoil optimization. Targeting airfoils with approximately 30% and 35% thickness, the study aims to improve annual energy production (AEP) and optimize the polar moment of inertia. Redesigned airfoils using the EDGM-integrated model exhibit significant enhancements in aerodynamic performance and anti-flutter capability compared to baseline airfoils DU97W300 and DU99W350. The methodology’s superiority is validated through analyses of pressure distributions, lift-to-drag ratios, and streamline patterns, as well as comparative evaluations using HV and Spacing metrics, demonstrating EDGM’s potential for broader engineering applications in complex multi-objective optimization scenarios. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 387
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

25 pages, 9567 KiB  
Article
Mechanical Characterization and Theoretical Study of Friction Pile Groups in Coastal Areas Based on Finite Element Analysis
by Jun Wu, Yanfeng Li, Jia Zhao, Guangzuo Feng, Yuanhui Li, Jialong Li and Jiaxu Jin
Buildings 2025, 15(14), 2556; https://doi.org/10.3390/buildings15142556 - 20 Jul 2025
Viewed by 212
Abstract
Field foundation pile loading tests were conducted in the context of an actual bridge pile foundation project. The test data were analyzed to determine the reasons for the variation in the complex geological conditions of the seashore. Moreover, finite element analysis was conducted [...] Read more.
Field foundation pile loading tests were conducted in the context of an actual bridge pile foundation project. The test data were analyzed to determine the reasons for the variation in the complex geological conditions of the seashore. Moreover, finite element analysis was conducted to evaluate the influence of pile length and diameter on the settlement of coastal friction foundation piles. Increasing the pile length from 65 m to 75 m reduced the settlement by 25.7%, while increasing the diameter from 1.5 m to 2.0 m led to a 35.9% reduction. Increasing the pile spacing reduced the amount of structural settlement. Group pile foundation pile spacings should be 2.5–3.0 D. Pile group superposition reduced the most obvious effects and the settlement reduction rate was the fastest. Under seismic conditions, the pile group foundation exhibited 5.60 times greater horizontal displacement, 3.57 times higher bending moment, and 5.30 times increased shear force relative to static loading. The formula for predicting the settlement of oversized friction pile group foundations was modified based on settlement values calculated using finite elements. The revised formula is suitable for calculating the settlement of friction pile group foundations in coastal areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 1167 KiB  
Article
A Reservoir Group Flood Control Operation Decision-Making Risk Analysis Model Considering Indicator and Weight Uncertainties
by Tangsong Luo, Xiaofeng Sun, Hailong Zhou, Yueping Xu and Yu Zhang
Water 2025, 17(14), 2145; https://doi.org/10.3390/w17142145 - 18 Jul 2025
Viewed by 249
Abstract
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir [...] Read more.
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir maximum water level and downstream control section flow) through the Long Short-Term Memory (LSTM) network, constructing a feasible weight space including four scenarios (unique fixed value, uniform distribution, etc.), resolving conflicts among the weight results from four methods (Analytic Hierarchy Process (AHP), Entropy Weight, Criteria Importance Through Intercriteria Correlation (CRITIC), Principal Component Analysis (PCA)) using game theory, defining decision-making risk as the probability that the actual safety level fails to reach the evaluation threshold, and quantifying risks based on the First-Order Second-Moment (FOSM) method. Case verification in the cascade reservoirs of the Qiantang River Basin of China shows that the model provides a risk assessment framework integrating multi-source uncertainties for flood control scheduling decisions through probabilistic description of indicator uncertainties (e.g., Zmax1 with μ = 65.3 and σ = 8.5) and definition of weight feasible regions (99% weight distribution covered by the 3σ criterion), filling the methodological gap in risk quantification during the decision-making process in existing research. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

22 pages, 7778 KiB  
Article
Gas Leak Detection and Leakage Rate Identification in Underground Utility Tunnels Using a Convolutional Recurrent Neural Network
by Ziyang Jiang, Canghai Zhang, Zhao Xu and Wenbin Song
Appl. Sci. 2025, 15(14), 8022; https://doi.org/10.3390/app15148022 - 18 Jul 2025
Viewed by 289
Abstract
An underground utility tunnel (UUT) is essential for the efficient use of urban underground space. However, current maintenance systems rely on patrol personnel and professional equipment. This study explores industrial detection methods for identifying and monitoring natural gas leaks in UUTs. Via infrared [...] Read more.
An underground utility tunnel (UUT) is essential for the efficient use of urban underground space. However, current maintenance systems rely on patrol personnel and professional equipment. This study explores industrial detection methods for identifying and monitoring natural gas leaks in UUTs. Via infrared thermal imaging gas experiments, data were acquired and a dataset established. To address the low-resolution problem of existing imaging devices, video super-resolution (VSR) was used to improve the data quality. Based on a convolutional recurrent neural network (CRNN), the image features at each moment were extracted, and the time series data were modeled to realize the risk-level classification mechanism based on the automatic classification of the leakage rate. The experimental results show that when the sliding window size was set to 10 frames, the classification accuracy of the CRNN was the highest, which could reach 0.98. This method improves early warning precision and response efficiency, offering practical technical support for UUT maintenance management. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Industrial Engineering)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 263
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2932 KiB  
Article
Optimization Study of the Line Array Layout of Slope–Pendulum Wave Energy Conversion Device
by Yue Zhao, Zhanhong Wan, Ze Li and Guiyu Cao
J. Mar. Sci. Eng. 2025, 13(7), 1367; https://doi.org/10.3390/jmse13071367 - 18 Jul 2025
Viewed by 247
Abstract
The development of wave energy is of great ecological and commercial value. This paper studies the linear vertical array arrangement of the slope–pendulum wave energy conversion device (S-PWEC). Based on the WEC-Sim open-source program, we build four wave energy-generating devices with linear vertical [...] Read more.
The development of wave energy is of great ecological and commercial value. This paper studies the linear vertical array arrangement of the slope–pendulum wave energy conversion device (S-PWEC). Based on the WEC-Sim open-source program, we build four wave energy-generating devices with linear vertical array distributions to study the power generation performance of the array platform and establish the factors influencing the array. S-PWEC is affected by radiation and a shading effect from neighboring devices in a linear vertical array configuration. The overall and individual power generation efficiencies are similar. An increase in the number of devices in the linear vertical array exacerbates the fluctuation of wave excitation moment and output power, indicating that there exists an optimal array configuration for maximizing the power generation efficiency. The performance of the array devices is significantly affected by the direction of incoming waves, and the spacing of the arrays should therefore be adjusted according to the periods of the sea state: increasing the spacing in small periods and decreasing the spacing in large periods can effectively improve the overall power generation. In the future, we will continue to study other array forms of S-PWEC to improve the conversion efficiency of array wave power generation devices. Full article
Show Figures

Figure 1

40 pages, 600 KiB  
Article
Advanced Lifetime Modeling Through APSR-X Family with Symmetry Considerations: Applications to Economic, Engineering and Medical Data
by Badr S. Alnssyan, A. A. Bhat, Abdelaziz Alsubie, S. P. Ahmad, Abdulrahman M. A. Aldawsari and Ahlam H. Tolba
Symmetry 2025, 17(7), 1118; https://doi.org/10.3390/sym17071118 - 11 Jul 2025
Viewed by 228
Abstract
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for [...] Read more.
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for enhancing shape flexibility while maintaining mathematical tractability. This construction enables fine control over both the tail behavior and the symmetry properties, distinguishing it from traditional alpha power or survival-based extensions. We focus on a key member of this family, the two-parameter Alpha Power Survival Ratio Exponential (APSR-Exp) distribution, deriving essential mathematical properties including moments, quantile functions and hazard rate structures. We estimate the model parameters using eight frequentist methods: the maximum likelihood (MLE), maximum product of spacings (MPSE), least squares (LSE), weighted least squares (WLSE), Anderson–Darling (ADE), right-tailed Anderson–Darling (RADE), Cramér–von Mises (CVME) and percentile (PCE) estimation. Through comprehensive Monte Carlo simulations, we evaluate the estimator performance using bias, mean squared error and mean relative error metrics. The proposed APSR-X framework uniquely enables preservation or controlled modification of the symmetry in probability density and hazard rate functions via its shape parameter. This capability is particularly valuable in reliability and survival analyses, where symmetric patterns represent balanced risk profiles while asymmetric shapes capture skewed failure behaviors. We demonstrate the practical utility of the APSR-Exp model through three real-world applications: economic (tax revenue durations), engineering (mechanical repair times) and medical (infection durations) datasets. In all cases, the proposed model achieves a superior fit over that of the conventional alternatives, supported by goodness-of-fit statistics and visual diagnostics. These findings establish the APSR-X family as a unique, symmetry-aware modeling framework for complex lifetime data. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 1583 KiB  
Article
Modeling, Validation, and Controllability Degradation Analysis of a 2(P-(2PRU–PRPR)-2R) Hybrid Parallel Mechanism Using Co-Simulation
by Qing Gu, Zeqi Wu, Yongquan Li, Huo Tao, Boyu Li and Wen Li
Dynamics 2025, 5(3), 30; https://doi.org/10.3390/dynamics5030030 - 11 Jul 2025
Viewed by 227
Abstract
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the [...] Read more.
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the research mechanism, the inverse kinematic model of the closed-chain mechanism is established through GF set theory, with explicit analytical expressions derived for the motion parameters of limb mass centers. Introducing a principal inertial coordinate system into the dynamics equations, a recursive algorithm incorporating force/moment coupling terms is developed. Numerical simulations reveal a 9.25% periodic deviation in joint moments using conventional methods. Through analysis of the mechanism’s intrinsic properties, it is identified that the lack of angular momentum conservation constraints on the end-effector in non-inertial frames leads to system controllability degradation. Accordingly, a constraint compensation strategy is proposed: establishing linearly independent differential algebraic equations supplemented with momentum/angular momentum balance equations for the end platform. Co-Simulation results demonstrate that the optimized model reduces the maximum relative error of actuator joint moments to 0.98%, and maintains numerical stability across the entire configuration space. The constraint compensation framework provides a universal solution for dynamics modeling of complex closed-chain mechanisms, validated through applications in flight simulators and automotive driving simulators. Full article
Show Figures

Figure 1

21 pages, 5291 KiB  
Article
Sensitivity Analysis and Optimization of Urban Roundabout Road Design Parameters Based on CFD
by Hangyu Zhang, Sihui Dong, Shiqun Li and Shuai Zheng
Eng 2025, 6(7), 156; https://doi.org/10.3390/eng6070156 - 9 Jul 2025
Viewed by 262
Abstract
With the rapid advancement of urbanization, urban transportation systems are facing increasingly severe congestion challenges, especially at traditional roundabouts. The rapid increase in vehicles has led to a sharp increase in pressure at roundabouts. In order to alleviate the traffic pressure in the [...] Read more.
With the rapid advancement of urbanization, urban transportation systems are facing increasingly severe congestion challenges, especially at traditional roundabouts. The rapid increase in vehicles has led to a sharp increase in pressure at roundabouts. In order to alleviate the traffic pressure in the roundabout, this paper changes the road design parameters of the roundabout, uses a CFD method combined with sensitivity analysis to study the influence of different inlet angles, lane numbers, and the outer radius on the pressure, and seeks the road design parameter scheme with the optimal mitigation effect. Firstly, the full factorial experimental design method is used to select the sample points in the design sample space, and the response values of each sample matrix are obtained by CFD. Secondly, the response surface model between the road design parameters of the roundabout and the pressure in the ring is constructed. The single-factor analysis method and the multi-factor analysis method are used to analyze the influence of the road parameters on the pressure of each feature point, and then the moment-independent sensitivity analysis method based on the response surface model is used to solve the sensitivity distribution characteristics of the road design parameters of the roundabout. Finally, the Kriging surrogate model is constructed, and the NSGA-II is used to solve the multi-objective optimization problem to obtain the optimal solution set of road parameters. The results show that there are significant differences in the mechanism of action of different road geometric parameters on the pressure of each feature point of the roundabout, and it shows obvious spatial heterogeneity of parameter sensitivity. The pressure changes in the two feature points at the entrance conflict area and the inner ring weaving area are significantly correlated with the lane number parameters. There is a strong coupling relationship between the pressure of the maximum pressure extreme point in the ring and the radius parameters of the outer ring. According to the optimal scheme of road parameters, that is, when the parameter set (inlet angle/°, number of lanes, outer radius/m) meets (35.4, 5, 65), the pressures of the feature points decrease by 34.1%, 38.3%, and 20.7%, respectively, which has a significant effect on alleviating the pressure in the intersection. This study optimizes the geometric parameters of roundabouts through multidisciplinary methods, provides a data-driven congestion reduction strategy for the urban sustainable development framework, and significantly improves road traffic efficiency, which is crucial for building an efficient traffic network and promoting urban sustainable development. Full article
Show Figures

Figure 1

22 pages, 4871 KiB  
Article
Multi-Objective Optimization Method for Multi-Module Micro–Nano Satellite Components Assignment and Layout
by Hao Zhang, Jun Zhou and Guanghui Liu
Aerospace 2025, 12(7), 614; https://doi.org/10.3390/aerospace12070614 - 8 Jul 2025
Viewed by 224
Abstract
The assembly optimization design of satellite components is a crucial element in the overall design of satellites. In this paper, a novel three-dimensional assembly optimization design problem (3D-AODP) for multi-module micro–nano satellite components is proposed according to the engineering requirements, aiming at optimizing [...] Read more.
The assembly optimization design of satellite components is a crucial element in the overall design of satellites. In this paper, a novel three-dimensional assembly optimization design problem (3D-AODP) for multi-module micro–nano satellite components is proposed according to the engineering requirements, aiming at optimizing the satellite mass characteristics, and taking into account constraints such as space interference, space occupation and special location. Multi-module micro–nano satellites are a new type of satellite configuration based on the assembly of multiple U-shaped cube units. The 3D-AODP of its components is a challenging two-layer composite optimization task involving discrete variable optimization of component allocation and continuous variable optimization of component layout, which interact with each other. To solve the problem, a hybrid assembly optimization method based on tabu search (TS) and multi-objective differential evolutionary (MODE) algorithms is proposed, in which the assignment problem of the components is converted into a domain search problem by the TS algorithm. The space interference constraints and space occupancy constraints of the components are considered, and an assignment scheme with the minimum mass difference is obtained. On this basis, a bi-objective differential evolutionary algorithm is used to develop the layout optimization problem for the components, which takes into account the spatial non-interference constraints and special location constraints of the components, and obtains the Pareto solution set of the assembly scheme under the optimal mass characteristics (moment of inertia and product of inertia). Finally, the feasibility and effectiveness of the proposed method is demonstrated by an engineering case. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

34 pages, 20701 KiB  
Article
Sustainable Preservation of Historical Temples Through Ventilation Airflow Dynamics and Environmental Analysis Using Computational Fluid Dynamics
by Mongkol Kaewbumrung, Chalermpol Plengsa-Ard and Wasan Palasai
Appl. Sci. 2025, 15(13), 7466; https://doi.org/10.3390/app15137466 - 3 Jul 2025
Viewed by 524
Abstract
Preserving heritage sites is a complex challenge that requires multidisciplinary approaches, combining scientific accuracy with cultural and historical sensitivity. In alignment with UNESCO’s conservation guidelines, this study investigated the airflow dynamics and wind-induced structural effects within ancient architecture using advanced computational fluid dynamics [...] Read more.
Preserving heritage sites is a complex challenge that requires multidisciplinary approaches, combining scientific accuracy with cultural and historical sensitivity. In alignment with UNESCO’s conservation guidelines, this study investigated the airflow dynamics and wind-induced structural effects within ancient architecture using advanced computational fluid dynamics (CFD). The study site was the Na Phra Meru Historical Temple in Ayutthaya, Thailand, where the shear stress transport kω turbulence model was applied to analyze distinctive airflow patterns. A high-precision 3D computational domain was developed using Faro focus laser scanning technology, with the CFD results being validated based on onsite experimental data. The findings provided critical insights into the temple’s ventilation behavior, revealing strong correlations between turbulence characteristics, wind speed, temperature, and relative humidity. Notably, the small slit windows generated complex flow mixing, producing a large internal recirculation zone spanning approximately 70% of the central interior space. In addition to airflow distribution, the study evaluated the aerodynamic forces and rotational moments acting on the structure based on five prevailing wind directions. Based on these results, winds from the east and northeast generated the highest aerodynamic loads and rotational stresses, particularly in the lateral and vertical directions. Overall, the findings highlighted the critical role of airflow and wind-induced forces in the deterioration and long-term stability of heritage buildings. The study demonstrated the value of integrating CFD, environmental data, and structural analysis to bridge the gap between conservation science and engineering practice. Future work will explore further the interactions between wall moisture and the multi-layered pigments in mural paintings to inform preservation practices. Full article
Show Figures

Figure 1

25 pages, 27045 KiB  
Article
Photovoltaic Strings on Large, Flat Roofs: Experimental Wind Loads on Representative Configurations
by Giacomo Scrinzi, Enrico Sergio Mazzucchelli and Sara Muggiasca
Sustainability 2025, 17(13), 5914; https://doi.org/10.3390/su17135914 - 27 Jun 2025
Viewed by 337
Abstract
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under [...] Read more.
The integration of tilted photovoltaic strings on large, flat roofs, typical of industrial and commercial buildings, raises complex design challenges, particularly regarding wind-induced loads. This study presents a comprehensive wind tunnel investigation aimed at evaluating the aerodynamic effects on rooftop PV strings under various representative configurations and the correlation between characteristic geometric parameters such as tilt angle, bottom clearance, row spacing, and wind direction. Following a literature review, a detailed 1:10 scaled model with geometric adjustment capabilities was developed and eventually tested in a boundary-layer wind tunnel. High-resolution pressure measurements were processed to derive force and moment resultants normalised by reference wind pressure. Envelopes of force/moment resultants are presented for each representative geometric configuration and for each wind exposure angle. The results present severe variations in local wind actions, particularly significant at the strings’ free ends and for oblique wind angles. The severe underestimation of local wind loads by standard codes is discussed. The findings underline the importance of detailed wind-load assessment for both new constructions and retrofits, suggesting that reliance solely on code provisions might result in unsafe designs. Full article
Show Figures

Figure 1

26 pages, 1569 KiB  
Review
Unlocking the Secrets of Knee Joint Unloading: A Systematic Review and Biomechanical Study of the Invasive and Non-Invasive Methods and Their Influence on Knee Joint Loading
by Nuno A. T. C. Fernandes, Ana Arieira, Betina Hinckel, Filipe Samuel Silva, Óscar Carvalho and Ana Leal
Rheumato 2025, 5(3), 8; https://doi.org/10.3390/rheumato5030008 - 25 Jun 2025
Viewed by 462
Abstract
Background/Objectives: This review analyzes the effects of invasive and non-invasive methods of knee joint unloading on knee loading, employing a biomechanical model to evaluate their impact. Methods: PubMed, Web of Science, Cochrane, and Scopus were searched up to 15 May 2024 [...] Read more.
Background/Objectives: This review analyzes the effects of invasive and non-invasive methods of knee joint unloading on knee loading, employing a biomechanical model to evaluate their impact. Methods: PubMed, Web of Science, Cochrane, and Scopus were searched up to 15 May 2024 to identify eligible clinical studies evaluating Joint Space Width, Cartilage Thickness, the Western Ontario and McMaster Universities Osteoarthritis Index, the Knee Injury and Osteoarthritis Outcome Score system, Gait velocity, Peak Knee Adduction Moment, time to return to sports and to work, ground reaction force, and the visual analogue scale pain score. A second search was conducted to select a biomechanical model that could be parametrized, including the modifications that each treatment would impose on the knee joint and was capable of estimate joint loading to compare the effectiveness of each method. Results: Analyzing 28 studies (1652 participants), including 16 randomized clinical trials, revealed significant improvements mainly when performing knee joint distraction surgery, increasing Joint Space Width even after removal, and high tibial osteotomy, which realigns the knee but does not reduce loading. Implantable shock absorbers are also an attractive option as they partially unload the knee but require further investigation. Non-invasive methods improve biomechanical indicators of knee joint loading; however, they lack quantitative analysis of cartilage volume or Joint Space Width. Conclusions: Current evidence indicates a clear advantage in knee joint unloading methods, emphasizing the importance of adapted therapy. However, more extensive research, particularly using non-invasive approaches, is required to further understand the underlying knee joint loading mechanisms and advance the state of the art. Full article
Show Figures

Figure 1

Back to TopTop