Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = microgrids (MGs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1482 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 - 31 Jul 2025
Viewed by 121
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
Show Figures

Figure 1

16 pages, 5057 KiB  
Article
Control and Management of Multi-Agent Systems Using Fuzzy Logic for Microgrids
by Zineb Cabrane, Mohammed Ouassaid, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 279; https://doi.org/10.3390/batteries11070279 - 21 Jul 2025
Viewed by 240
Abstract
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs [...] Read more.
The existing standalone microgrids (MGs) require good energy management systems (EMSs) to respond to energy needs. The EMS presented in this paper is used for an MG based on PV and wind energy sources. The energy storage system is implemented using three packs of batteries. Power smoothing is carried out via the introduction of supercapacitors (SCs) in parallel to the loads and sources. The distribution of energy of the presented MG is focused on the multi-agent system (MAS) using Fuzzy Logic Supervisor control. The MAS is used in order to leverage autonomous and interacting agents to optimize operations and achieve system objectives. To reduce the stress on batteries and avoid damaging all the batteries together by the charge and discharge cycles, one pack of batteries can usually be used. When this pack of batteries is fully discharged and there is a need for energy, it can be taken from another pack of batteries. The same analysis applies to the charge; when batteries of the first pack are fully charged and there is a surplus of energy, it can be stored in other packs of batteries. Two simulation results are used to demonstrate the efficiency of the EMS control used. These simulation tests are proposed with and without SCs. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

26 pages, 2688 KiB  
Article
Improved Parallel Differential Evolution Algorithm with Small Population for Multi-Period Optimal Dispatch Problem of Microgrids
by Tianle Li, Yifei Li, Fang Wang, Cheng Gong, Jingrui Zhang and Hao Ma
Energies 2025, 18(14), 3852; https://doi.org/10.3390/en18143852 - 19 Jul 2025
Cited by 1 | Viewed by 265
Abstract
Microgrids have drawn attention due to their helpfulness in the development of renewable energy. It is necessary to make an optimal power dispatch scheme for each micro-source in a microgrid in order to make the best use of fluctuating and unpredictable renewable energy. [...] Read more.
Microgrids have drawn attention due to their helpfulness in the development of renewable energy. It is necessary to make an optimal power dispatch scheme for each micro-source in a microgrid in order to make the best use of fluctuating and unpredictable renewable energy. However, the computational time of solving the optimal dispatch problem increases greatly when the grid’s structure is more complex. An improved parallel differential evolution (PDE) approach based on a message-passing interface (MPI) is proposed, aiming at the solution of the optimal dispatch problem of a microgrid (MG), reducing the consumed time effectively but not destroying the quality of the obtained solution. In the new approach, the main population of the parallel algorithm is divided into several small populations, and each performs the original operators of a differential evolution algorithm, i.e., mutation, crossover, and selection, in different processes concurrently. The gather and scatter operations are employed after several iterations to enhance population diversity. Some improvements on mutation, adaptive parameters, and the introduction of migration operation are also proposed in the approach. Two test systems are employed to verify and evaluate the proposed approach, and the comparisons with traditional differential evolution are also reported. The results show that the proposed PDE algorithm can reduce the consumed time on the premise of obtaining no worse solutions. Full article
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 448
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

34 pages, 1569 KiB  
Review
Microgrids’ Control Strategies and Real-Time Monitoring Systems: A Comprehensive Review
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(13), 3576; https://doi.org/10.3390/en18133576 - 7 Jul 2025
Cited by 1 | Viewed by 754
Abstract
Microgrids (MGs) technologies, with their advanced control techniques and real-time monitoring systems, provide users with attractive benefits including enhanced power quality, stability, sustainability, and environmentally friendly energy. As a result of continuous technological development, Internet of Things (IoT) architectures and technologies are becoming [...] Read more.
Microgrids (MGs) technologies, with their advanced control techniques and real-time monitoring systems, provide users with attractive benefits including enhanced power quality, stability, sustainability, and environmentally friendly energy. As a result of continuous technological development, Internet of Things (IoT) architectures and technologies are becoming more and more important to the future smart grid’s creation, control, monitoring, and protection of microgrids. Since microgrids are made up of several components that can function in network distribution mode using AC, DC, and hybrid systems, an appropriate control strategy and monitoring system is necessary to ensure that the power from microgrids is delivered to sensitive loads and the main grid effectively. As a result, this article thoroughly assesses MGs’ control systems and groups them based on their degree of protection, energy conversion, integration, advantages, and disadvantages. The functions of IoT and monitoring systems for MGs’ data analytics, energy transactions, and security threats are also demonstrated in this article. This study also identifies several factors, challenges, and concerns about the long-term advancement of MGs’ control technology. This work can serve as a guide for all upcoming energy management and microgrid monitoring systems. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

15 pages, 1162 KiB  
Article
An Automated Load Restoration Approach for Improving Load Serving Capabilities in Smart Urban Networks
by Ali Esmaeel Nezhad, Mohammad Sadegh Javadi, Farideh Ghanavati and Toktam Tavakkoli Sabour
Urban Sci. 2025, 9(7), 255; https://doi.org/10.3390/urbansci9070255 - 3 Jul 2025
Viewed by 215
Abstract
In this paper, a very fast and reliable strategy for load restoration utilizing optimal distribution feeder reconfiguration (DFR) is developed. The automated network configuration switches can improve the resilience of a microgrid (MG) equipped with a centralized and coordinated energy management system (EMS). [...] Read more.
In this paper, a very fast and reliable strategy for load restoration utilizing optimal distribution feeder reconfiguration (DFR) is developed. The automated network configuration switches can improve the resilience of a microgrid (MG) equipped with a centralized and coordinated energy management system (EMS). The EMS has the authority to reconfigure the distribution network to fulfil high priority loads in the entire network, at the lowest cost, while maintaining the voltage at desirable bounds. In the case of islanded operation, the EMS is responsible for serving the high priority loads, including the establishment of new MGs, if necessary. This paper discusses the main functionality of the EMS in both grid-connected and islanded operation modes of MGs. The proposed model is developed based on a mixed-integer quadratically constrained program (MIQCP), including an optimal power flow (OPF) problem to minimize the power losses in normal operation and the load shedding in islanded operation, while keeping voltage and capacity constraints. The proposed framework is implemented on a modified IEEE 33-bus test system and the results show that the model is fast and accurate enough to be utilized in real-life situations without a loss of accuracy. Full article
Show Figures

Figure 1

44 pages, 822 KiB  
Article
Intelligent Active and Reactive Power Management for Wind-Based Distributed Generation in Microgrids via Advanced Metaheuristic Optimization
by Rubén Iván Bolaños, Héctor Pinto Vega, Luis Fernando Grisales-Noreña, Oscar Danilo Montoya and Jesús C. Hernández
Appl. Syst. Innov. 2025, 8(4), 87; https://doi.org/10.3390/asi8040087 - 26 Jun 2025
Viewed by 671
Abstract
This research evaluates the performance of six metaheuristic algorithms in the active and reactive power management of wind turbines (WTs) integrated into an AC microgrid (MG). The population-based genetic algorithm (PGA) is proposed as the primary optimization strategy and is rigorously compared against [...] Read more.
This research evaluates the performance of six metaheuristic algorithms in the active and reactive power management of wind turbines (WTs) integrated into an AC microgrid (MG). The population-based genetic algorithm (PGA) is proposed as the primary optimization strategy and is rigorously compared against five benchmark techniques: Monte Carlo (MC), particle swarm optimization (PSO), the JAYA algorithm, the generalized normal distribution optimizer (GNDO), and the multiverse optimizer (MVO). This study aims to minimize, through independent optimization scenarios, the operating costs, power losses, or CO2 emissions of the microgrid during both grid-connected and islanded modes. To achieve this, a coordinated control strategy for distributed generators is proposed, offering flexible adaptation to economic, technical, or environmental priorities while accounting for the variability of power generation and demand. The proposed optimization model includes active and reactive power constraints for both conventional generators and WTs, along with technical and regulatory limits imposed on the MG, such as current thresholds and nodal voltage boundaries. To validate the proposed strategy, two scenarios are considered: one involving 33 nodes and another one featuring 69. These configurations allow evaluation of the aforementioned optimization strategies under different energy conditions while incorporating the power generation and demand variability corresponding to a specific region of Colombia. The analysis covers two-time horizons (a representative day of operation and a full week) in order to capture both short-term and weekly fluctuations. The variability is modeled via an artificial neural network to forecast renewable generation and demand. Each optimization method undergoes a statistical evaluation based on multiple independent executions, allowing for a comprehensive assessment of its effectiveness in terms of solution quality, average performance, repeatability, and computation time. The proposed methodology exhibits the best performance for the three objectives, with excellent repeatability and computational efficiency across varying microgrid sizes and energy behavior scenarios. Full article
Show Figures

Figure 1

17 pages, 2795 KiB  
Article
Coordinated Control Strategy-Based Energy Management of a Hybrid AC-DC Microgrid Using a Battery–Supercapacitor
by Zineb Cabrane, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 245; https://doi.org/10.3390/batteries11070245 - 25 Jun 2025
Cited by 1 | Viewed by 692
Abstract
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with [...] Read more.
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with a hybrid energy storage system (HESS) can create a standalone MG. This paper presents an MG that uses photovoltaic energy as a principal source. An HESS is required, combining batteries and supercapacitors. This MG responds “insure” both alternating current (AC) and direct current (DC) loads. The batteries and supercapacitors have separate parallel connections to the DC bus through bidirectional converters. The DC loads are directly connected to the DC bus where the AC loads use a DC-AC inverter. A control strategy is implemented to manage the fluctuation of solar irradiation and the load variation. This strategy was implemented with a new logic control based on Boolean analysis. The logic analysis was implemented for analyzing binary data by using Boolean functions (‘0’ or ‘1’). The methodology presented in this paper reduces the stress and the faults of analyzing a flowchart and does not require a large concentration. It is used in this paper in order to simplify the control of the EMS. It permits the flowchart to be translated to a real application. This analysis is based on logic functions: “Or” corresponds to the addition and “And” corresponds to the multiplication. The simulation tests were executed at Tau  =  6 s of the low-pass filter and conducted in 60 s. The DC bus voltage was 400 V. It demonstrates that the proposed management strategy can respond to the AC and DC loads. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

32 pages, 1246 KiB  
Review
A Review of Optimization Strategies for Energy Management in Microgrids
by Astrid Esparza, Maude Blondin and João Pedro F. Trovão
Energies 2025, 18(13), 3245; https://doi.org/10.3390/en18133245 - 20 Jun 2025
Viewed by 553
Abstract
Rapid industrialization, widespread transportation electrification, and significantly rising household energy consumption are rapidly increasing global electricity demand. Climate change and dependency on fossil fuels to meet this demand underscore the critical need for sustainable energy solutions. Microgrids (MGs) provide practical applications for renewable [...] Read more.
Rapid industrialization, widespread transportation electrification, and significantly rising household energy consumption are rapidly increasing global electricity demand. Climate change and dependency on fossil fuels to meet this demand underscore the critical need for sustainable energy solutions. Microgrids (MGs) provide practical applications for renewable energy, reducing reliance on fossil fuels and mitigating ecological impacts. However, renewable energy poses reliability challenges due to its intermittency, primarily influenced by weather conditions. Additionally, fluctuations in fuel prices and the management of multiple devices contribute to the increasing complexity of MGs and the necessity to address a range of objectives. These factors make the optimization of Energy Management Strategies (EMSs) essential and necessary. This study contributes to the field by categorizing the main aspects of MGs and optimization EMS, analyzing the impacts of weather on MG performance, and evaluating their effectiveness in handling multi-objective optimization and data considerations. Furthermore, it examines the pros and cons of different methodologies, offering a thorough overview of current trends and recommendations. This study serves as a foundational resource for future research aimed at refining optimization EMS by identifying research gaps, thereby informing researchers, practitioners, and policymakers. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 6571 KiB  
Article
Positive-Mode-Damping Stability Criterion Application and Damping Solutions in Microgrid-Integrated Transmission Grids
by Oriol Cartiel, Pablo Horrillo-Quintero, Juan-José Mesas, Pablo García-Triviño, Raúl Sarrias-Mena, Luis M. Fernández-Ramírez and Luis Sainz
Energies 2025, 18(12), 3089; https://doi.org/10.3390/en18123089 - 11 Jun 2025
Viewed by 550
Abstract
Stability problems are increasing in current power systems with a large number of electronic converters, such as microgrids (MGs) and microgrid clusters (MGCs). Frequency-domain methods, commonly used to analyse traditional power system stability, can also be extended to MGs. In particular, the positive-mode-damping [...] Read more.
Stability problems are increasing in current power systems with a large number of electronic converters, such as microgrids (MGs) and microgrid clusters (MGCs). Frequency-domain methods, commonly used to analyse traditional power system stability, can also be extended to MGs. In particular, the positive-mode-damping (PMD) stability criterion is a simple and practical method to evaluate the stability of multi-terminal power electronics-based systems, making it a powerful tool for addressing stability issues in MGCs. This paper extends the application of the PMD stability criterion to assess stability in MGC-integrated transmission grids. Moreover, it presents two bandpass filter-based active and passive damping compensators and examines their effectiveness in mitigating instabilities in MGCs. A modified IEEE three-bus power system integrating an MGC is used to conduct a small-signal harmonic stability study and apply active and passive damping solutions with the PMD stability criterion. The modified IEEE three-bus power system is implemented in real-time simulations using a hardware-in-the-loop setup with OPAL-RT4512 to validate the results obtained from MATLAB/Simulink R2022a simulations. Full article
(This article belongs to the Special Issue Emerging Trends in Enhancing Power Grid Performance)
Show Figures

Figure 1

26 pages, 4704 KiB  
Article
Two-Layer Optimal Dispatch of Distribution Grids Considering Resilient Resources and New Energy Consumption During Cold Wave Weather
by Lu Shen, Xing Luo, Wenlu Ji, Jinxi Yuan and Chong Wang
Energies 2025, 18(11), 2973; https://doi.org/10.3390/en18112973 - 4 Jun 2025
Viewed by 348
Abstract
Within the context of global warming, the frequent occurrence of extreme weather may lead to problems, such as a sharp decrease in new energy output, insufficient system backups, and an increase in the amount of energy consumed by users, resulting in large-scale power [...] Read more.
Within the context of global warming, the frequent occurrence of extreme weather may lead to problems, such as a sharp decrease in new energy output, insufficient system backups, and an increase in the amount of energy consumed by users, resulting in large-scale power shortages within the grid for a short period of time. With the increase in the numbers of electric vehicles (EVs) and microgrids (MGs), which are resilient resources, the ability of a system to participate in demand response (DR) is further improved, which may make up for short-term power shortages. In this paper, we first propose a charging and discharging model for EVs during the onset of a cold wave, and then perform load forecasting for EVs during cold wave weather based on user behavioral characteristics. Secondly, in order to accurately portray the flexible regulation capability of microgrids with massively flexible resource access, this paper adopts the convex packet fitting expression based on MGFOR to characterize the flexible regulation capability of MGs. Then, the Conditional Value at Risk (CVaR) is used to quantify the uncertainty of wind and solar power generation, and a two-layer model with the objective of minimizing the operation cost in the upper layer and maximizing the rate of new energy consumption in the lower layer is proposed and solved using Karush–Kuhn–Tucker (KKT) conditions. Finally, the proposed method is verified through examples to ensure the economic operation of the system and improve the new energy consumption rate of the system. Full article
(This article belongs to the Special Issue Impacts of Distributed Energy Resources on Power Systems)
Show Figures

Figure 1

28 pages, 4771 KiB  
Article
Discrimination of High Impedance Fault in Microgrids: A Rule-Based Ensemble Approach with Supervised Data Discretisation
by Arangarajan Vinayagam, Suganthi Saravana Balaji, Mohandas R, Soumya Mishra, Ahmad Alshamayleh and Bharatiraja C
Processes 2025, 13(6), 1751; https://doi.org/10.3390/pr13061751 - 2 Jun 2025
Viewed by 635
Abstract
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a [...] Read more.
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a conventional protective system. A machine learning (ML)-based ensemble classifier is used in this work to classify HIF more accurately. The ensemble classifier improves overall accuracy by combining the strengths of many rule-based models; this decreases the likelihood of overfitting and increases the robustness of classification. The ensemble classifier includes a classification process into two steps. The first phase extracts features from HIFs and other transient signals using the discrete wavelet transform (DWT) technique. A supervised discretisation approach is then used to discretise these attributes. Using discretised features, the rule-based classifiers like decision tree (DT), Java repeated incremental pruning (JRIP), and partial decision tree (PART) are trained in the second phase. In the classification step, the voting ensemble technique applies the rule of an average probability over the output predictions of rule-based classifiers to obtain the final target of classes. Under standard test conditions (STCs) and real-time weather circumstances, the ensemble technique surpasses individual classifiers in accuracy (95%), HIF detection success rate (93.3%), and overall performance metrics. Feature discretisation boosts classification accuracy to 98.75% and HIF detection to 95%. Additionally, the ensemble model’s efficacy is confirmed by classifying HIF from other transients in the IEEE 13-bus standard network. Furthermore, the ensemble model performs well, even with noisy event data. The proposed model provides higher classification accuracy in both PV-connected MG and IEEE 13 bus networks, allowing power systems to have effective protection against faults with improved reliability. Full article
Show Figures

Figure 1

24 pages, 6185 KiB  
Article
Decentralized Energy Management for Efficient Electric Vehicle Charging in DC Microgrids: A Piece-Wise Droop Control Approach
by Mallareddy Mounica, Bhooshan Avinash Rajpathak, Mohan Lal Kolhe, K. Raghavendra Naik, Janardhan Rao Moparthi, Sravan Kumar Kotha and Devasuth Govind
Processes 2025, 13(6), 1748; https://doi.org/10.3390/pr13061748 - 2 Jun 2025
Viewed by 808
Abstract
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of [...] Read more.
This paper addresses the challenges of efficient electric vehicle (EV) charging integration in Direct Current (DC) microgrids (MGs), particularly the impact of intermittent EV loads on power sharing and voltage regulation. Traditional droop control methods suffer from inherent trade-offs between performance indices of parallel distributed energy resources (DERs), which in turn results in improper source utilization. We propose a novel decentralized piece-wise droop control (PDC) approach with voltage compensation for EV charging to overcome this limitation and to minimize the unequal cable resistance effect on power sharing. This strategy dynamically optimises the droop characteristics based on EV charging load profiles, partitioning the droop curve to optimize power sharing accuracy and voltage stability considering the constraints of maximum allowable voltage deviation and loading. Simulation and experimental results demonstrate significant improvements in power sharing, enhanced DER utilization, and voltage deviations consistently within 2.5% when compared with traditional strategies. PDC offers a robust solution for enabling efficient and reliable EV charging in MGs, as it is not sensitive for EV load prediction errors and measurement noise. Full article
Show Figures

Figure 1

9 pages, 559 KiB  
Proceeding Paper
Review of Microgrids to Enhance Power System Resilience
by Jian-Hua He and Jhih-Hao Lin
Eng. Proc. 2025, 92(1), 82; https://doi.org/10.3390/engproc2025092082 - 27 May 2025
Viewed by 745
Abstract
As the frequency of extreme events keeps increasing, large-scale power system interruption is also increasing. Natural disasters cause more extensive damage than typical power outages or failures, and the system demands a longer recovery period. Accordingly, it is crucial and urgent for the [...] Read more.
As the frequency of extreme events keeps increasing, large-scale power system interruption is also increasing. Natural disasters cause more extensive damage than typical power outages or failures, and the system demands a longer recovery period. Accordingly, it is crucial and urgent for the power system to have resilience in addition to possessing strong robustness and reliability. For the power system resilience, time is a critical factor. The microgrid (MG) can be connected to the main grid or operate independently to significantly improve the flexibility of the system with great potential in enhancing the power system resilience. We summarize the important concepts of power system resilience and MGs to improve power system resilience. Useful references are provided in this article for power-related practitioners regarding efficient design schemes to improve the application of MGs in enhancing resilience. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

31 pages, 5880 KiB  
Article
Low-Carbon Optimal Operation Strategy of Multi-Energy Multi-Microgrid Electricity–Hydrogen Sharing Based on Asymmetric Nash Bargaining
by Hang Wang, Qunli Wu and Huiling Guo
Sustainability 2025, 17(10), 4703; https://doi.org/10.3390/su17104703 - 20 May 2025
Viewed by 492
Abstract
The cooperative interconnection of multi-microgrid systems offers significant advantages in enhancing energy utilization efficiency and economic performance, providing innovative pathways for promoting sustainable development. To establish a fair energy trading mechanism for electricity–hydrogen sharing within multi-energy multi-microgrid (MEMG) systems, this study first analyzes [...] Read more.
The cooperative interconnection of multi-microgrid systems offers significant advantages in enhancing energy utilization efficiency and economic performance, providing innovative pathways for promoting sustainable development. To establish a fair energy trading mechanism for electricity–hydrogen sharing within multi-energy multi-microgrid (MEMG) systems, this study first analyzes the operational architecture of MEMG energy sharing and establishes a multi-energy coordinated single-microgrid model integrating electricity, heat, natural gas, and hydrogen. To achieve low-carbon operation, carbon capture systems (CCSs) and power-to-gas (P2G) units are incorporated into conventional combined heat and power (CHP) systems. Subsequently, an asymmetric Nash bargaining-based optimization framework is proposed to coordinate the MEMG network, which decomposes the problem into two subproblems: (1) minimizing the total operational cost of MEMG networks, and (2) maximizing payment benefits through fair benefit allocation. Notably, Subproblem 2 employs the energy trading volume of individual microgrids as bargaining power to ensure equitable profit distribution. The improved alternating direction multiplier method (ADMM) is adopted for distributed problem-solving. Experimental results demonstrate that the cost of each MG decreased by 5894.14, 3672.44, and 2806.64 CNY, while the total cost of the MEMG network decreased by 12,431.22 CNY. Additionally, the carbon emission reduction ratios were 2.84%, 2.77%, and 5.51% for each MG and 11.12% for the MEMG network. Full article
Show Figures

Graphical abstract

Back to TopTop