Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
Abstract
1. Introduction
- A comprehensive discussion on MG architecture control, benefits, and limitations is one of the study’s main outputs.
- Examination of the variety of microgrid control strategies that require careful consideration, utilizing both conventional and sophisticated control approaches.
- Crucially, a study on how technology is changing MG management procedures includes IoT real-time monitoring technologies, SCADA, blockchain-based cybersecurity, and smart contracts.
- Analysis of the technological challenges facing the management techniques used by MGs today and offer of suggestions for overcoming them, especially by incorporating AI-driven control systems.
- Lastly, outline of the relevant research topic to enhance MG performance.
- This paper’s continuation is organized as follows: Section 2 provides a thorough taxonomy and restrictions of MG control architecture. Section 3 provides a detailed analysis of MG control strategies and how they affect microgrid systems. Section 4 discusses the significance of IoT monitoring system-based MGs, their uses, and how they complement other technological developments (smart contracts, SCADA systems, and blockchain technology). In Section 5, prospects for MGs and important research areas that will impact future MG growth are reviewed. Finally, a succinct summary of the work performed for this article is given in Section 6.
2. Architectures’ Control of Microgrids
2.1. Centralized Control (CC)
2.2. Decentralized Control (DCC)
2.3. Hierarchical Control (HC)
Centralized Control | |
---|---|
Research Gap/Difficulties | Evaluation |
Several interlinking converters |
|
Market participation |
|
Strong decision-making |
|
Optimal demand response |
|
MGCC’s protection functions |
|
Decentralized Control | |
Cost-based nonlinear drooping |
|
DC-bus signaling or power line |
|
System inertia |
|
Model-free algorithms |
|
Overall systems stability |
|
Hierarchical Control | |
Closed-loop designs |
|
Collaborative power quality assurance |
|
Contemporary control methods |
|
System for managing outages |
|
Unified method of mode switching control |
|
Aspects of cybersecurity |
|
3. Microgrid Control Strategies
3.1. Conventional Control Methods
3.1.1. Droop Control
3.1.2. Proportional Integral/Proportional Integral Derivative Controller
3.1.3. Multigrid Agent Control System (MACS)
3.2. Advanced Methods of Control
3.2.1. Model Predictive Control (MPC)
3.2.2. Sliding Mode Control (SMC)
3.2.3. Adaptive Control
3.2.4. Intelligent Control
3.3. Limitations of Control Strategies
4. Microgrid-Based IoT Monitoring System Applications
4.1. Emerging Trends of SCADA Systems and Smart Contract Applications
4.2. Microgrid Cyberattacks, Cybersecurity, and Standardization Protocols
4.3. Blockchain Technology
4.4. Impact of Blockchain Technology on Microgrids
5. Prospects for the Future of Microgrids
Important Research Topic to Enhance Microgrid Performance
- Future research should focus on more sophisticated control systems that can sustain the stability of the voltage and frequency system in the face of demand fluctuations and the growing share of RESs.
- Future research has to concentrate more on creating standard interoperability, energy trading made possible by blockchain technology, cooperation control techniques, and AI-driven predictive maintenance.
- As the number of MGs continues to grow, future research should concentrate on improving communication and cooperative control of MGs to work together to maximize energy flows and increase system resilience.
- Falsified data could trick an operator in the event of a cyberattack. Future research should concentrate on examining the effectiveness of grid code-based communication in MG BESSs for hardware systems by integrating a real-time digital simulator (RTDS) with a microgrid controller.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirza, Z.T.; Anderson, T.; Seadon, J.; Brent, A. A Thematic analysis of the factors that influence the development of a renewable energy policy. Renew. Energy Focus 2024, 49, 100522. [Google Scholar] [CrossRef]
- Sarita, K.; Kumar, S.; Singh, A.; Vardhan, S.; Elavarasan, R.M.; Saket, R.K.; Shafiullah, G.M.; Hossain, E. Power enhancement with grid stabilization of renewable energy-based generation system using UPQC-FLC-EVA technique. IEEE Access 2020, 8, 207443–207464. [Google Scholar] [CrossRef]
- Nawaz, F.; Pashajavid, E.; Fan, Y.; Batool, M. A comprehensive review of the state-of-the-art of secondary control strategies for microgrids. IEEE Access 2023, 11, 102444–102459. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Eliysaouy, L.; Kotb, H.; Aljarbouh, A.; Alkahtani, H.K.; Mostafa, S.M.; Tassaddiq, A.; Pupkov, A. Microgrid energy management and monitoring systems: A comprehensive review. Front. Energy Res. 2022, 10, 1097858. [Google Scholar] [CrossRef]
- Quizhpe, K.; Arevalo, P.; Ochoa-Correa, D.; Villa-Avila, E. Optimizing microgrid planning for renewable integration in power systems: A comprehensive review. Electronics 2024, 13, 3620. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and control aspects of microgrid architectures—A comprehensive review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Ishaq, S.; Khan, I.; Rahman, S.; Hussain, T.; Iqbal, A.; Elavarasan, R.M. A review on recent developments in control and optimization of microgrids. Energy Rep. 2022, 8, 4085–4103. [Google Scholar] [CrossRef]
- Reilly, J.T. Microgrids to aggregators of distributed energy resources: The microgrid controller and distributed energy management systems. Electr. J. 2019, 32, 30–34. [Google Scholar] [CrossRef]
- Sharma, S.; Varshney, L.; Elavarasan, R.M.; Singh, A.; Vardhan, S.; Singh, A.; Vardhan, S.; Saket, R.K.; Subramaniam, U.; Hossain, E. Performance enhancement of pv system configurations under partial shading conditions using MS method. IEEE Access 2021, 9, 56630–56644. [Google Scholar] [CrossRef]
- Boche, A.; Foucher, C.; Villa, L.F. Understanding microgrid sustainability: A systemic and comprehensive review. Energies 2022, 15, 2906. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Mitani, Y.; Phunpeng, V. Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables. Energies 2019, 12, 3902. [Google Scholar] [CrossRef]
- Razmi, D.; Lu, T. A Literature Review of the control challenges of distributed energy resources based on microgrids: Past, present and future. Energies 2022, 15, 4676. [Google Scholar] [CrossRef]
- Tkac, M.; Kajanova, M.; Bracinik, P. A review of advanced control strategies of microgrids with charging stations. Energies 2023, 16, 6692. [Google Scholar] [CrossRef]
- Singh, A.R.; Kumar, R.S.; Bajaj, M.; Khadse, C.B.; Zaitsev, I. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. Sci. Rep. 2024, 14, 19207. [Google Scholar] [CrossRef]
- Elazab, R.; Dahab, A.A.; Adma, M.A.; Hassan, H.A. Reviewing the frontier: Modeling and energy management strategies for sustainable 100% renewable microgrids. Discov. Appl. Sci. 2024, 6, 168. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, N.; Ye, L.; Du, E.; Kang, C. Advances in model predictive control for large-scale wind power integration in power systems. Adv. Appl. Energy 2024, 14, 100177. [Google Scholar] [CrossRef]
- Hou, H.; Yu, X.; Fu, Z. Sliding mode control of networked control systems: An auxiliary matrices-based approach. IEEE Trans. Automat. Control 2022, 67, 3574–3581. [Google Scholar] [CrossRef]
- Gundu, V.; Simon, S.P. Short term solar power and temperature forecast using recurrent neural networks. Neural Process Lett. 2021, 53, 1771–1791. [Google Scholar] [CrossRef]
- Khalid, M. Smart grids and renewable energy systems: Perspectives and grid integration challenges. Energy Strategy Rev. 2024, 51, 101299. [Google Scholar] [CrossRef]
- Lv, Y. Transitioning to sustainable energy: Opportunities, challenges, and the potential of blockchain technology. Front. Energy Res. 2023, 11, 1258044. [Google Scholar] [CrossRef]
- IEEE Std 1547-2018; Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: New York, NY, USA, 2018.
- IEC 61850; Communication Networks and Systems for Power Utility Automation. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013.
- IEEE Std 2030.8-2018; IEEE Standard for the Testing of Microgrid Controllers. IEEE: New York, NY, USA, 2018.
- Che, L.; Shahidehpour, M.; Alabdulwahab, A.; Al-Turki, Y. Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid 2015, 6, 3042–3051. [Google Scholar] [CrossRef]
- Ojo, K.E.; Saha, A.K.; Srivastava, V.M. Microgrids’ control strategies and real-time monitoring systems: A comprehensive review. Energies 2025, 18, 3576. [Google Scholar]
- Uddin, M.; Mo, H.; Dong, D.; Elsawah, S.; Zhu, J.; Guerrero, J.M. Microgrids: A review, outstanding issues and future trends. Energy Strategy Rev. 2023, 49, 101127. [Google Scholar] [CrossRef]
- Espín-Sarzosa, D.; Palma-Behnke, R.; Núñez-Mata, O. Energy management systems for microgrids: Main existing trends in centralized control architectures. Energies 2020, 13, 547. [Google Scholar] [CrossRef]
- Abdelwanis, M.I.; Elmezain, M.I. A comprehensive review of hybrid AC/DC networks: Insights into system planning, energy management, control, and protection. Neural Comput. Appl. 2024, 36, 17961–17977. [Google Scholar] [CrossRef]
- Zhang, J. Energy management system: The engine for sustainable development and resource optimization. Highlights Sci. Eng. Technol. 2023, 76, 618–624. [Google Scholar] [CrossRef]
- Khan, M.R.; Haider, Z.M.; Malik, F.H.; Almasoudi, F.M.; Alatawi, K.S.S.; Bhutta, M.S. A comprehensive review of microgrid energy management strategies considering electric vehicles, energy storage systems, and AI techniques. Processes 2024, 12, 270. [Google Scholar] [CrossRef]
- Cabrera-Tobar, A.; Massi Pavan, A.; Petrone, G.; Spagnuolo, G. A review of the optimization and control techniques in the presence of uncertainties for the energy management of microgrids. Energies 2022, 15, 9114. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Parida, S.M.; Kotb, H.; Flah, A.; Tostado-Véliz, M.; Samad, B.A.; Shouran, M. An insight into the integration of distributed energy resources and energy storage systems with smart distribution networks using demand-side management. Appl. Sci. 2022, 12, 8914. [Google Scholar] [CrossRef]
- Kumar, R.S.; Raghav, L.P.; Raju, D.K.; Singh, A.R. Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids. Appl. Energy 2021, 301, 117466. [Google Scholar] [CrossRef]
- Espina, E.; Llanos, J.; Burgos, M.C.; Cardenas, D.R.; Martinez, G.M.; Saez, D. Distributed control strategies for microgrids: An overview. IEEE Access 2020, 8, 193412–193448. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, H.; Xiang, X.; Li, C.; Li, W.C.; He, X. Islanding detection with positive feedback of selected frequency for DC microgrid systems. IEEE Trans. Pow. Elect. 2021, 99, 11800–11817. [Google Scholar] [CrossRef]
- Mahrjan, L.; Ditsworth, M.; Fahimi, B. Critical reliability improvement using Q-learning-based energy management system for microgrids. Energies 2022, 15, 8779. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Kumar, S.; Lal, C.; Kumar, C. Energy management system for a small-scale microgrid. J. Electr. Syst. Inf. Technol. 2022, 9, 5. [Google Scholar] [CrossRef]
- Erenoğlu, A.K.; Şengör, İ.; Erdinç, O.; Taşcıkaraoğlu, A.; Catalão, J.P.S. Optimal energy management system for microgrids considering energy storage, demand response, and renewable power generation. Int. J. Electr. Power Energy Syst. 2022, 136, 107714. [Google Scholar] [CrossRef]
- Pothireddy, K.M.R.; Vuddanti, S. Alternating direction method of multipliers-based distributed energy scheduling of grid-connected microgrid by considering the demand response. Discov. Appl. Sci. 2024, 6, 343. [Google Scholar] [CrossRef]
- El Zerk, A.; Ouassaid, M.; Zidani, Y. Decentralised strategy for energy management of collaborative microgrids using multi-agent system. IET Smart Grid 2022, 5, 440–462. [Google Scholar] [CrossRef]
- ISA-95; Enterprise-Control System Integration—Part 1: Models and Terminology. International Society of Automation (ISA): Research Triangle Park, NC, USA, 2000.
- Vasquez, J.C.; Guerrero, J.M.; Miret, J.; Castilla, M.; Vicuna, L.G. Hierarchical control of intelligent microgrids. IEEE Ind. Electron. Mag. 2011, 4, 23–29. [Google Scholar] [CrossRef]
- Guan, Y.; Vasquez, J.C.; Guerrero, J.M.; Wang, Y.; Feng, W. frequency stability of hierarchically controlled hybrid photovoltaic battery hydropower microgrids. IEEE Trans. Ind. Appl. 2015, 51, 4729–4742. [Google Scholar] [CrossRef]
- Cardenas, P.A.; Martinez, M.; Molina, M.G.; Mercado, P.E. development of control techniques for AC microgrids: A critical assessment. Sustainability 2023, 15, 15195. [Google Scholar] [CrossRef]
- Guo, Z.; Li, S.; Zheng, Y. Feedback linearization based distributed model predictive control for secondary control of islanded microgrid. Asian J. Control 2020, 22, 460–473. [Google Scholar] [CrossRef]
- Almihat, M.G.M.; Munda, J.L. Review on Recent Control System Strategies in Microgrid. Edelweiss Appl. Sci. Technol. 2024, 8, 5089–5111. [Google Scholar] [CrossRef]
- Davoudkhani, I.F.; Zare, P.; Shenava, S.J.S.; Abdelaziz, A.Y.; Bajaj, M.; Tuka, M.B. Maiden application of mountaineering team-based optimization algorithm optimized PD-PI controller for load frequency control in islanded microgrid with renewable energy sources. Sci. Rep. 2024, 14, 22851. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, A.; Mikhaylov, A.; Senjyu, T.; Eslami, M.; Hemeida, A.M.; Osheba, D.S.M. Modified Droop Control for Microgrid Power-Sharing Stability Improvement. Sustainability 2023, 15, 11220. [Google Scholar] [CrossRef]
- Abbasi, M.; Abbasi, E.; Li, L.; Aguilera, R.P.; Lu, D.; Wang, F. Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies 2023, 16, 484. [Google Scholar] [CrossRef]
- Ullah, F.; Zhang, X.; Khan, M.; Mastoi, M.S.; Munir, H.M.; Flah, A.; Said, Y. A comprehensive review of wind power integration and energy storage technologies for modern grid frequency regulation. Heliyon 2024, 10, e30466. [Google Scholar] [CrossRef]
- Khan, I.A.; Mokhlis, H.; Mansor, N.N.; Illias, H.A.; Awalin, L.J.; Wang, L. New trends and future directions in load frequency control and flexible power system: A comprehensive review. Alex. Eng. J. 2023, 71, 263–308. [Google Scholar] [CrossRef]
- Schiffer, J.; Ortega, R.; Astolfi, A.; Raisch, J.; Sezi, T. Conditions for the stability of droop-controlled inverter-based microgrids. Automatica 2014, 50, 2457–2469. [Google Scholar] [CrossRef]
- Gupta, R.K.; Mishra, V.M.; Singh, N.K. Elimination of circulating current in parallel operation of single-phase inverter using droop controller. Eng. Sci. Technol. Int. J. 2022, 28, 101025. [Google Scholar]
- Harasis, S. Controllable transient power-sharing of inverter-based droop controlled microgrid. Int. J. Electr. Power Energy Syst. 2024, 155, 109565. [Google Scholar] [CrossRef]
- Ebrahim, M.A.; Fattah, R.M.A.; Saied, E.M.M.; Maksoud, S.M.A.; Khashab, H.E. Real-time implementation of self-adaptive SALP swarm optimization-based microgrid droop control. IEEE Access 2020, 8, 185738–185751. [Google Scholar] [CrossRef]
- Al-Salloomee, A.G.S.; Romero-Cadava, E.; Roncero-Clemente, C.; Swadi, M. Efficient control scheme for compensating voltage unbalance and harmonics in islanded microgrid. In Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Limassol, Cyprus, 25–27 June 2024; pp. 1–6. [Google Scholar]
- Alzayed, M.; Lemaire, M.; Zarrabian, S.; Chaoui, H.; Massicotte, D. Droop-controlled bidirectional inverter-based microgrid using cascade forward neural networks. IEEE Open J. Circuits Syst. 2022, 3, 298–308. [Google Scholar] [CrossRef]
- Hosseinimoghadam, S.M.; Dashtdar, M.; Dashtdar, M. Improving the sharing of reactive power in an islanded microgrid based on adaptive droop control with virtual impedance. Autom. Control Comput. Sci. 2021, 55, 155–166. [Google Scholar] [CrossRef]
- Oluwole, A.A.; Ojo, K.E.; Aborisade, O.D. A review on optimal temperature control of milk pasteurization using extremum seeking based proportional integral derivative controller. FUOYE J. Eng. Technol. 2022, 7, 47–54. [Google Scholar]
- Ojo, E.K.; Adewuyi, P.A.; Ezugwu, C.A.; Ogunkeyede, Y.O.; Fanifosi, J.S. A microcontroller based proportional integral derivative controller for yam tuber storage chamber temperature and humidity control. Nig. J. Eng. 2023, 30, 2705–3954. [Google Scholar] [CrossRef]
- Davoudkhani, I.F.; Zare, P.; Abdelaziz, A.Y.; Bajaj, M.; Tuka, M.B. Robust load-frequency control of islanded urban microgrid using 1PD-3DOF-PID controller including mobile EVs energy storage. Sci. Rep. 2024, 14, 13962. [Google Scholar] [CrossRef]
- Hermassi, M.; Krim, S.; Kraiem, Y.; Hajjaji, M.A.; Alshammari, B.M.; Alsaif, H.; Alshammari, A.S.; Guesmi, T. Design of vector control strategies based on fuzzy gain scheduling PID controllers for a grid-connected wind energy conversion system: Hardware FPGA-in-the-loop verification. Electronics 2023, 12, 1419. [Google Scholar] [CrossRef]
- Jamal, S.; Pasupuleti, J.; Ekanayake, J. A Rule-based energy management system for hybrid renewable energy sources with battery bank optimized by genetic algorithm optimization. Sci. Rep. 2024, 14, 4865. [Google Scholar] [CrossRef]
- Shukla, H.; Raju, M. Application of COOT algorithm optimized pid plus d2 controller for combined control of frequency and voltage considering renewable energy sources. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100269. [Google Scholar] [CrossRef]
- Latif, A.; Khan, L.; Agha, S.; Mumtaz, S.; Iqbal, J. Nonlinear control of two-stage single-phase standalone photovoltaic system. PLoS ONE 2024, 19, e0297612. [Google Scholar] [CrossRef]
- Zhang, L.; Crow, M.L.; Yang, Z.; Chen, S. The steady-state characteristics of a SSSC integrated with energy storage. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001; pp. 1311–1316. [Google Scholar]
- Jamil, M. Repetitive Current Control of Two-Level and Interleaved Three-Phase PWM Utility-Connected Converters. Doctoral Dissertation, Faculty of Engineering and the Environment, University of Southampton, Southampton, Hampshire, UK, 2012. [Google Scholar]
- Khan, M.W.; Wang, J.; Ma, M.; Xiong, L.; Wu, F. Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustain. Cities Soc. 2019, 44, 855–870. [Google Scholar] [CrossRef]
- Abbaspour, E.; Fani, B.; Heydarian-Forushani, E. A Bi-level multi-agent-based protection scheme for distribution networks with distributed generation. Int. J. Electr. Power Energy Syst. 2019, 112, 209–220. [Google Scholar] [CrossRef]
- Aeggegn, D.B.; Nyakoe, G.N.; Wekesa, C. A State-of-the-Art review on energy management techniques and optimal sizing of DERs in grid-connected multi-microgrids. Cogent Eng. 2024, 11, 2340306. [Google Scholar] [CrossRef]
- Zahraoui, Y.; Korõtko, T.; Rosin, A.; Mekhilef, S.; Seyedmahmoudian, M.; Stojcevski, A.; Alhamrouni, I. AI applications to enhance resilience in power systems and microgrids—A review. Sustainability 2024, 16, 4959. [Google Scholar] [CrossRef]
- Liang, H.; Choi, B.J.; Abdrabou, A.; Zhuang, W.; Shen, X. Decentralized economic dispatch in microgrids via heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 2012, 30, 1061–1074. [Google Scholar] [CrossRef]
- Boudoudouh, S.; Maâroufi, M. Multi-agent system solution to microgrid implementation. Sustain. Cities Soc. 2018, 39, 252–261. [Google Scholar] [CrossRef]
- Tazi, K.; Abbou, F.M.; Abdi, F. Multi-agent system for microgrids: Design, optimization and performance. Artif. Intell. Rev. 2020, 53, 1233–1292. [Google Scholar] [CrossRef]
- Bennagi, A.; AlHousrya, O.; Cotfas, D.T.; Cotfas, P.A. Comprehensive study of the artificial intelligence applied in renewable energy. Energy Strat. Rev. 2024, 54, 101446. [Google Scholar] [CrossRef]
- Konneh, K.V.; Adewuyi, O.B.; Lotfy, M.E.; Sun, Y.; Senjyu, T. Application strategies of model predictive control for the design and operations of renewable energy-based microgrid: A survey. Electronics 2022, 11, 554. [Google Scholar] [CrossRef]
- Sockeel, N.; Gafford, J.; Papari, B.; Mazzola, M. Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system. IEEE Trans. Sustain. Ener. 2020, 11, 2932–2939. [Google Scholar] [CrossRef]
- Saleh, A.; Deihimi, A.; Iravani, R. Model predictive control of distributed generations with feed-forward output currents. IEEE Trans. Smart Grid 2019, 10, 1488–1500. [Google Scholar] [CrossRef]
- Shabbir, M.N.S.K.; Liang, X.; Li, W.; Imtiaz, S.; Quaicoe, J. A Novel Model predictive controller for distributed generation in isolated microgrids: Part ii model predictive controller implementation. IEEE Trans. Ind. Appl. 2022, 58, 5844–5859. [Google Scholar] [CrossRef]
- Aragon, C.A.; Guzman, R.; de Vicuna, L.G.; Miret, J.; Castilla, M. Constrained predictive control based on a large-signal model for a three-phase inverter connected to a microgrid. IEEE Trans. Ind. Electron. 2021, 69, 6497–6507. [Google Scholar] [CrossRef]
- Hong, Q.; Shi, Y.; Chen, Z. Adaptive sliding mode control based on disturbance observer for placement pressure control system. Symmetry 2020, 12, 1057. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.L.; Ding, L. Distributed secondary control of AC microgrids with external disturbances and directed communication topologies: A full-order sliding-mode approach. IEEE/CAA J. Autom. Sin. 2021, 8, 554–564. [Google Scholar] [CrossRef]
- Bagheri, A.; Jabbari, A.; Mobayen, S. An intelligent ABC-based terminal sliding mode controller for load-frequency control of islanded microgrids. Sustain. Cities Soc. 2021, 64, 102544. [Google Scholar] [CrossRef]
- Xu, C.; Huang, Y.; Zhu, F.; Zhang, Y.; Chambers, J.A. An outlier robust Kalman filter with an adaptive selection of elliptically contoured distributions. IEEE Trans. Signal Process. 2022, 70, 994–1009. [Google Scholar] [CrossRef]
- Yan, H.; Han, J.; Zhang, H.; Zhan, X.; Wang, W. Adaptive event triggered predictive control for finite time microgrid. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1035–1044. [Google Scholar] [CrossRef]
- Huang, L.; Sun, W.; Li, Q.; Li, W.; Zhang, H. Distributed adaptive secondary control for microgrids with time delay and switching topology. Electr. Power Syst. Res. 2022, 210, 108117. [Google Scholar] [CrossRef]
- Abubakr, H.; Vasquez, J.C.; Mohamed, T.H.; Guerrero, J.M. The concept of direct adaptive control for improving voltage and frequency regulation loops in several power system applications. Int. J. Electr. Power Energy Syst. 2022, 140, 108068. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Ding, Z.; Xie, W.; Li, C. Self-adaptive secondary frequency regulation strategy of microgrid with multiple virtual synchronous generators. IEEE Trans. Ind. Appl. 2020, 56, 6007–6018. [Google Scholar] [CrossRef]
- Hassan, M.; Shah, R.; Hossain, J. Frequency regulation of multiple asynchronous grids using adaptive droop in the high-voltage direct current system. IET Gener. Transm. Distrib. 2020, 14, 1389–1399. [Google Scholar] [CrossRef]
- Tajjour, S.; Chandel, S.S. A comprehensive review on sustainable energy management systems for optimal operation of future-generation of solar microgrids. Sustain. Energy Technol. Assess. 2023, 58, 103377. [Google Scholar] [CrossRef]
- Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.; Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine learning for metabolic engineering: A review. Metab. Eng. 2021, 63, 34–60. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef]
- Dashtdar, M.; Flah, A.; Hosseinimoghadam, S.M.S. Frequency control of the islanded microgrid including energy storage using soft computing. Sci. Rep. 2022, 12, 20409. [Google Scholar] [CrossRef]
- Wagner, L.P.; Reinpold, L.M.; Kilthau, M.; Fay, A. A systematic review of modeling approaches for flexible energy resources. Renew. Sustain. Energy Rev. 2023, 184, 110043. [Google Scholar] [CrossRef]
- Maroua, B.; Laid, Z.; Benbouhenni, H.; Fateh, M.; Debdouche, N.; Colak, I. Robust Type-2 Fuzzy Logic Control Microgrid-Connected Photovoltaic System with Battery Energy Storage through Multi-Functional Voltage Source Inverter Using Direct Power Control. Energy Rep. 2024, 11, 3117–3134. [Google Scholar] [CrossRef]
- Wu, C.; Gao, S.; Liu, Y.; Song, T.E.; Han, H. A model predictive control approach in a microgrid considering multi-uncertainty of electric vehicles. Renew. Energy 2021, 163, 1385–1396. [Google Scholar] [CrossRef]
- Uswarman, R.; Munawar, K.; Anwari, M.; Bouchekara, H.R.E.H.; Hossain, A. Maximum power point tracking in photovoltaic systems based on global sliding mode control with adaptive gain scheduling. Electronics 2023, 12, 1128. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Zhong, D.; Xia, Z.; Zhu, Y.; Duan, J. Overview of predictive maintenance based on digital twin technology. Heliyon 2023, 9, e14534. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Shahzad, M.; Abbas, F.; Muqeet, H.A.; Hussain, M.M.; Bin, L. Optimal energy management system of IoT-enabled large building considering electric vehicle scheduling, distributed resources, and demand response schemes. Sensors 2022, 22, 7448. [Google Scholar] [CrossRef] [PubMed]
- Elkateb, S.; Métwalli, A.; Shendy, A.; Abu-Elanien, A.E.B. Machine learning and IoT-based predictive maintenance approach for industrial applications. Alex. Eng. J. 2024, 88, 298–309. [Google Scholar] [CrossRef]
- Sedhom, B.E.; El-Saadawi, M.M.; El Moursi, M.S.; Hassan, M.A.; Eladl, A.A. IoT-Based optimal demand side management and control scheme for smart microgrid. Int. J. Electr. Power Energy Syst. 2021, 127, 106674. [Google Scholar] [CrossRef]
- Baker, T.; Asim, M.; MacDermott, Á.; Iqbal, F.; Kamoun, F.; Shah, B.; Alfandi, O.; Hammoudeh, M. A secure fog-based platform for SCADA-based IoT critical infrastructure. Softw. Pract. Exp. 2020, 50, 503–518. [Google Scholar] [CrossRef]
- Tariq, N.; Asim, M.; Khan, F.A. Securing SCADA-based critical infrastructures: Challenges and open issues. Procedia Comput. Sci. 2019, 155, 612–617. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Cyber-security on smart grid: Threats and potential solutions. Comput. Netw. 2020, 169, 107094. [Google Scholar] [CrossRef]
- Dzobo, O.; Tivani, L.; Mbatha, L. A Review on Cybersecurity for Distributed Energy Resources: Opportunities for South Africa. J. Infrastruct. Policy Dev. 2024, 8, 8631. [Google Scholar] [CrossRef]
- Shafiee, Q.; Naderi, M.; Bevrani, H. Microgrids: Dynamic Modeling, Stability and Control; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Krpan, M.; Wang, X.; Beus, M.; Parisio, A.; Kuzle, I. Distributed Control of a Virtual Storage Plant for Frequency Restoration Services: An Experimental Validation. Int. J. Electr. Power Energy Syst. 2024, 159, 110031. [Google Scholar] [CrossRef]
- Boscaino, V.; Ditta, V.; Marsala, G.; Panzavecchia, N.; Tinè, G.; Cosentino, V.; Cataliotti, A.; Di Cara, D. Grid-Connected Photovoltaic Inverters: Grid Codes, Topologies and Control Techniques. Renew. Sustain. Energy Rev. 2024, 189, 113903. [Google Scholar] [CrossRef]
- Guo, S.; Sun, X.; Lam, H.K.S. Applications of Blockchain Technology in Sustainable Fashion Supply Chains: Operational Transparency and Environmental Efforts. IEEE Trans. Eng. Manag. 2023, 70, 1312–1328. [Google Scholar] [CrossRef]
- Gupta, S.P.; Gupta, K.; Chandavarkar, B.R. The Role of Cryptography in Cryptocurrency. In Proceedings of the 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), Jalandhar, India, 17–19 December 2021; pp. 273–278. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Weixiong, W. The role of blockchain technology in advancing sustainable energy with security settlement: Enhancing security and efficiency in china’s security market. Front. Energy Res. 2023, 11, 1271752. [Google Scholar] [CrossRef]
- Tsao, Y.C.; van Thanh, V. Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach. Renew. Sustain. Energy Rev. 2021, 136, 110452. [Google Scholar] [CrossRef]
- Koukaras, P.; Afentoulis, K.D.; Gkaidatzis, P.A.; Mystakidis, A.; Ioannidis, D.; Vagropoulos, S.I.; Tjortjis, C. Integrating blockchain in smart grids for enhanced demand response: Challenges, strategies, and future directions. Energies 2024, 17, 1007. [Google Scholar] [CrossRef]
- Vionis, P.; Kotsilieris, T. The potential of blockchain technology and smart contracts in the energy sector: A Review. Appl. Sci. 2024, 14, 253. [Google Scholar] [CrossRef]
Control Strategies | Stability | Scalability | Response Time | Robustness | Interoperability |
---|---|---|---|---|---|
Droop control | Moderate | High | Fast | Moderate | High |
PI/PID | Moderate | High | Very fast | Moderate | High |
MACS | Very high | Very high | Moderate | Very high | Very high |
MPC | High | High | Moderate | High | Moderate |
SMC | Very high | Low | Very fast | Very high | Low |
Adaptive control | High | Moderate | Fast | High | Moderate |
ANNs | High | Very high | Fast | High | High |
FLC | Moderate | Moderate | Fast | Moderate | Moderate |
Control Strategies | Control Goals (Case Studies) | Type of MGs | Mode of Operation | Simulation | Ref. |
---|---|---|---|---|---|
MACS |
| DC-MG | Nil | MATLAB/Simulink R2016a | [75] |
Droop control |
| AC & DC MGs | Grid connected | MATLAB/Simulink R2020b | [55] |
| AC-MG | Islanded | MATLAB/Simulink R2017b | [57] | |
PI/PID |
| DC-MG | Islanded | MATLAB/Simulink R2022a | [67] |
| DC-MG | Islanded | MATLAB/Simulink v6.0 | [68] | |
MPC |
| AC-MG | Islanded | PSCAD/EMTDC v4.2.1 | [80] |
| AC-MG | Grid connected | PSCAD/EMTDC v4.5 | [82] | |
FLC |
| AC & DC MGs | Grid connected | MATLAB/Simulink R2023a | [97] |
SMC |
| AC-MG | Islanded | MATLAB/Simulink R2019b | [84] |
| AC-MG | Islanded | MATLAB/Simulink R2019b | [85] | |
Adaptive control |
| AC-MG | Grid connected | MATLAB/Simulink R2018b | [90] |
| AC & DC MGs | Grid connected | DigSILENT Power System vSP1 | [91] | |
ANNs |
| Hybrid MGs | Islanded | MATLAB/Simulink R2020a | [95] |
Conventional Control Methods | |
---|---|
Benefits | Assessment |
Simplicity |
|
Decentralized functionality |
|
Consistent stability |
|
Low demands for communication |
|
Quick dynamic reaction |
|
Drawbacks | Assessment |
Restricted precision |
|
Lack of scalability |
|
Inadequate economic performance |
|
Weak to intricate disruptions |
|
Reliance on manual adjustment |
|
Advanced control methods | |
Benefits | Assessment |
Great precision and effectiveness |
|
Adaptability and Flexibility |
|
Improved integration of RESs |
|
Scalability |
|
Predictive abilities in real time |
|
Drawbacks | Assessment |
Complicated execution |
|
High demand for computation |
|
Challenges with standardization |
|
Required data |
|
Reliance on communication infrastructure |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojo, K.E.; Saha, A.K.; Srivastava, V.M. Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities. Energies 2025, 18, 3704. https://doi.org/10.3390/en18143704
Ojo KE, Saha AK, Srivastava VM. Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities. Energies. 2025; 18(14):3704. https://doi.org/10.3390/en18143704
Chicago/Turabian StyleOjo, Kayode Ebenezer, Akshay Kumar Saha, and Viranjay Mohan Srivastava. 2025. "Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities" Energies 18, no. 14: 3704. https://doi.org/10.3390/en18143704
APA StyleOjo, K. E., Saha, A. K., & Srivastava, V. M. (2025). Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities. Energies, 18(14), 3704. https://doi.org/10.3390/en18143704