Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = microbial starter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2830 KB  
Article
High-Performance Indigenous Lactiplantibacillus plantarum Strains for Enhanced Malolactic Fermentation and Wine Quality
by Yongzhang Zhu, Ni Chen, Zhenghua Xu, Jingyue Liu, Shuwen Liu and Kan Shi
Microorganisms 2025, 13(10), 2328; https://doi.org/10.3390/microorganisms13102328 - 9 Oct 2025
Viewed by 207
Abstract
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s [...] Read more.
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s Jiaodong Peninsula wine regions through polyphasic analysis. Thirty strains with high tolerance to wine stress conditions and efficient malate metabolism were selected. Among these, two high-performance strains, P101 and J43, exhibited superior MLF kinetics. Their applications had almost no effect on the wine’s basic physicochemical parameters, color parameters, and individual phenolic contents. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) analysis revealed that these strains significantly enhance key aroma compound contents in wines, including ethyl acetate, ethyl lactate, ethyl 2-methylbutyrate, and nerol, contributing more floral and fruity aroma characteristics. These indigenous L. plantarum strains, novel microbial starter cultures, demonstrate dual functionality in enhancing wine quality through controlled fermentation while supporting microbial biodiversity through the development of region-specific strain resources. Full article
(This article belongs to the Special Issue Fruit Wine Fermentation and Microbial Communities)
Show Figures

Figure 1

20 pages, 2201 KB  
Article
Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties
by Sebastiano Rosati, Ilenia Gaeta, Lucia Maiuro, Maria Carmela Trivisonno, Maria Cristina Messia and Elena Sorrentino
Life 2025, 15(10), 1571; https://doi.org/10.3390/life15101571 - 8 Oct 2025
Viewed by 316
Abstract
Carob pulp flour (Ceratonia siliqua) is gaining attention as a sustainable ingredient with nutritional and functional potential. This study evaluated the partial replacement of soft wheat flour with 10% carob pulp flour in breadmaking, focusing on the role of different leavening [...] Read more.
Carob pulp flour (Ceratonia siliqua) is gaining attention as a sustainable ingredient with nutritional and functional potential. This study evaluated the partial replacement of soft wheat flour with 10% carob pulp flour in breadmaking, focusing on the role of different leavening strategies: commercial baker’s yeast (LB), a selected starter culture, Lactiplantibacillus plantarum SL31 and Saccharomyces cerevisiae SY17 (LI), and a type I sourdough (LS). Dough rheology, microbial dynamics, bread quality, acceptability, and shelf-life were assessed. Results showed that the inclusion of carob pulp flour enhances the nutritional profile while maintaining satisfactory technological performance. The leavening strategy strongly influenced the final products: breads made with commercial yeast displayed high volume and softness but were less stable during storage; LS breads achieved greater microbial stability but were limited by excessive acidity and reduced sensory acceptance; breads obtained with the selected starter culture offered the most balanced outcome, combining moderate structure with enhanced flavor and consumer preference. Overall, the findings demonstrate the feasibility of incorporating carob pulp flour into bakery products and highlight the potential of tailored starter cultures as a promising compromise between technological performance, sensory quality, and shelf-life. Future work should optimize fermentation approaches to further enhance consumer appeal and support industrial application. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu
by Youwei Chen, Limei Zou, Luyao Wang, Weiwei Dong, Yanli Feng, Xiang Yu, Jun Liu, Yu Zhang, Yuanliang Hu and Shenxi Chen
Biology 2025, 14(10), 1324; https://doi.org/10.3390/biology14101324 - 25 Sep 2025
Viewed by 383
Abstract
Sauce-flavor Daqu is the solid-state fermentation starter for sauce-flavor Baijiu. Its microbial community influences flavor formation, yet links between community change, process conditions, and flavor development during high-temperature fermentation remain unclear. We investigated Daqu fermentation by integrating high-throughput sequencing, monitoring of physicochemical parameters, [...] Read more.
Sauce-flavor Daqu is the solid-state fermentation starter for sauce-flavor Baijiu. Its microbial community influences flavor formation, yet links between community change, process conditions, and flavor development during high-temperature fermentation remain unclear. We investigated Daqu fermentation by integrating high-throughput sequencing, monitoring of physicochemical parameters, and analysis of volatile compounds. Fermentation temperature showed three phases: rapid rise, fluctuating plateau, and gradual decline. High temperatures were associated with increased thermophilic microbes such as Bacillus and Thermoascus and with higher levels of reducing sugars and amino acid nitrogen; amylase, protease, and other hydrolase activities were detected. Bacterial composition varied more than fungal composition; Firmicutes and Ascomycota were the dominant phyla, and Bacillus and Thermoascus were abundant genera. Canonical correspondence analysis associated reducing sugars, acidity, and moisture with early community shifts, and amino acid nitrogen with later shifts; reducing sugars and moisture showed the strongest associations. Filamentous fungi and Bacillus correlated with pyrazine-type compounds. These results link microbial composition, process parameters, and flavor profiles, and may inform the standardization and mechanization of Daqu production. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

25 pages, 844 KB  
Review
From Raw to Fermented: Uncovering the Microbial Wealth of Dairy
by Yusuf Biçer, Arife Ezgi Telli, Gamze Turkal, Nihat Telli and Gürkan Uçar
Fermentation 2025, 11(10), 552; https://doi.org/10.3390/fermentation11100552 - 24 Sep 2025
Viewed by 977
Abstract
Dairy products harbor complex and dynamic microbial communities that contribute to their sensory properties, safety, and cultural distinctiveness. Raw milk contains a diverse microbiota shaped by seasonality, storage conditions, lactation stage, animal health, farm management, and genetics, serving as a variable starting point [...] Read more.
Dairy products harbor complex and dynamic microbial communities that contribute to their sensory properties, safety, and cultural distinctiveness. Raw milk contains a diverse microbiota shaped by seasonality, storage conditions, lactation stage, animal health, farm management, and genetics, serving as a variable starting point for further processing. Fermentation, whether spontaneous or starter driven, selects for subsets of lactic acid bacteria (LAB), yeasts, and molds, resulting in microbial succession that underpins both artisanal and industrial products such as kefir and cheese. Kefir represents a balanced LAB–yeast symbiosis, with species composition influenced by grain origin, milk type, and processing parameters, whereas the cheese microbiota reflects the interplay of starter and non-starter LAB, coagulants, ripening conditions, and “house microbiota”. Methodological factors—including DNA extraction, sequencing platform, and bioinformatic pipelines—further impact the reported microbial profiles, highlighting the need for standardization across studies. This review synthesizes current knowledge on raw milk, kefir, and cheese microbiomes, emphasizing the biological, technological, environmental, and methodological factors shaping microbial diversity. A holistic understanding of these drivers is essential to preserve product authenticity, ensure safety, and harness microbial resources for innovation in dairy biotechnology. Full article
Show Figures

Figure 1

23 pages, 2099 KB  
Article
Spatiotemporal Profiling of Starch-Degrading Enzymes in Nong-Flavor Daqu: Molecular Markers for Quantitative Quality Evaluation
by Yijia Jiang, Yue Lu, Yanling Jin, Yi Shen, Nian Liu, Shu Bao, Kui Peng, Langfei Gan, Chaokai Wang, Yuling Zhang, Lanchai Chen, Bo Chen, Yao Xiao, Kaize He, Zhuolin Yi and Hai Zhao
Foods 2025, 14(18), 3239; https://doi.org/10.3390/foods14183239 - 18 Sep 2025
Viewed by 405
Abstract
Nong-flavor (NF) Daqu, a critical fermentation starter for traditional Baijiu, harbors diverse starch-degrading enzymes with poorly characterized functional dynamics. This study transcended traditional quality assessments by developing molecular approaches to dissect starch-hydrolyzing enzyme genes. Specific and degenerate primers targeting glucoamylase, α-amylase, and α-glucosidase [...] Read more.
Nong-flavor (NF) Daqu, a critical fermentation starter for traditional Baijiu, harbors diverse starch-degrading enzymes with poorly characterized functional dynamics. This study transcended traditional quality assessments by developing molecular approaches to dissect starch-hydrolyzing enzyme genes. Specific and degenerate primers targeting glucoamylase, α-amylase, and α-glucosidase genes were designed, and key genes were qualitatively identified with distinct distributions among NF Daqus and unique presences between JXL and HB Daqu. Quantitative PCR revealed six genes with elevated expression in JXL Daqu versus HB Daqu, and which peaked during late fermentation in both Daqus. Metagenomics identified greater enzymatic diversity in HB Daqu. Phylogenetic clustering confirmed evolutionary conservation (GH13/GH15/GH31 families) and specificity of core enzyme genes across both Daqus. Enzymatic assays demonstrated the dominance of saccharification over α-glucosidase activity in both Daqus, with significantly higher α-glucosidase activity in JXL than HB Daqu. Divergent starch degradation strategies emerged: JXL prioritized high enzyme expression/activity, while HB utilized broader gene abundance. Based on Pearson correlation analysis, the saccharification activity showed the highest but weak correlation with α-glucosidase gene_15963 (r = 0.26), and was also positively correlated with the expression of all other enzyme genes except one glucoamylase gene. Meanwhile, α-glucosidase activity was most strongly linked to glucoamylase gene_22243 (r = 0.76), with additional correlations with two α-glucosidase genes being observed. This establishes RNA-based biomarkers for real-time quality control. Our findings decode divergent microbial strategies (JXL: high-expression/high-activity vs. HB: high-diversity) and provide a molecular framework for optimizing starch utilization in Baijiu fermentation. This technology holds potential to enable precision-driven standardization of traditional food production, which would reduce processing waste and enhance resource efficiency. Full article
Show Figures

Graphical abstract

23 pages, 5686 KB  
Article
Effects of Fermentation and Enzymatic Hydrolysis of Cottonseed Protein on Rumen Fermentation Characteristics, Intestinal Barrier Function, and Hepatic Metabolism in Suckling Lambs
by Weidong Niu, Changzhao Jin, Xiaohan Fan, Haiyun Yang, Yong Chen and Jiancheng Liu
Animals 2025, 15(18), 2652; https://doi.org/10.3390/ani15182652 - 10 Sep 2025
Viewed by 524
Abstract
The research aimed to examine the effects of fermentation and enzymatic hydrolysis of cottonseed protein on body weight changes, serum biochemistry, rumen function, intestinal health, and liver metabolism of suckling lambs. A total of twelve 7-day-old healthy male Hu sheep body weights (5.27 [...] Read more.
The research aimed to examine the effects of fermentation and enzymatic hydrolysis of cottonseed protein on body weight changes, serum biochemistry, rumen function, intestinal health, and liver metabolism of suckling lambs. A total of twelve 7-day-old healthy male Hu sheep body weights (5.27 ± 0.48 kg) were randomly distributed into two groups. Starter feed regimens containing microbial fermentation of cottonseed protein (MFCP) or enzymatic hydrolysate of cottonseed protein (EHCP) were administered to lambs during the initial 60-day period. Results showed that compared with EHCP group, the serum glucose, ruminal acetic, propionic, butyric and valeric acids concentrations, jejunal immunoglobulin G content and mRNA expressions of Claudin 1 and Occludin, as well as the relative abundance of actinobacteriota and pseudoscardovia in the rumen were significantly increased in the MFCP group (p < 0.05), whereas an opposite trend was observed in the jejunum. α-amylase and trypsin enzymatic activities were observed between the two groups. Relative to EHCP treatment, the MFCP group exhibited 69 elevated and 103 reduced hepatic metabolites, and these metabolites displayed distinct enrichment patterns within specific metabolic networks, including fructose and mannose metabolism (p = 0.003), arachidonic acid metabolism (p = 0.017), glycerophospholipid metabolism (p = 0.036), and the cAMP signaling pathway (p = 0.047). Overall, microbial fermentation of cottonseed protein may be beneficial for strengthening intestinal barrier function and facilitating hepatic lipid metabolism and immune regulation, while enzymatic hydrolysis of cottonseed protein enhances gastrointestinal digestive enzyme activity, thereby promoting nutrient digestion of suckling lambs. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

16 pages, 2374 KB  
Article
Production of Nutritional Protein Hydrolysates by Fermentation of Black Soldier Fly Larvae
by Penghui Zhang, Kelyn Seow, Leo Wein, Rachel Steven, Rebecca J. Case, Yulan Wang and Patricia L. Conway
Fermentation 2025, 11(9), 524; https://doi.org/10.3390/fermentation11090524 - 8 Sep 2025
Viewed by 1123
Abstract
The black soldier fly (Hermetia illucens) has become one of the most promising alternative protein sources in the feed and food industry. The aim of this work was to utilize microbial fermentation to enhance the nutritional properties of black soldier fly [...] Read more.
The black soldier fly (Hermetia illucens) has become one of the most promising alternative protein sources in the feed and food industry. The aim of this work was to utilize microbial fermentation to enhance the nutritional properties of black soldier fly larvae (BSFL) as a food ingredient for human consumption by optimizing the amino acid profile and small peptide content. Free amino acids (FAA) have a critical role in human nutrition and bioavailability. Unlike whole proteins that require enzymatic breakdown in the digestive tract, FAA are directly absorbable by the small intestine, allowing for rapid utilization in protein synthesis and metabolic functions. BSFL pastes were fermented using Lacticaseibacillus paracasei (PCB 030) or a mixed starter culture preparation, and results were compared to pea protein and BSFL pastes that were enzymatically hydrolyzed. The resultant hydrolyzed BSFL pastes were analyzed for free amino acids and small peptides. The L. paracasei PCB 030 fermented BSFL pastes yielded significantly higher amounts of free amino acids than the control or pastes fermented using a commercial starter culture (named F-LC). The increased FAA availability in fermented BSFL makes it a more efficient protein source for human consumption. The L. paracasei PCB 030 fermented pastes showed an increase in small peptides after three days fermentation; nearly 80% of normalized abundances of small peptides increased by over 100 times compared to day zero (before the fermentation started). Over 90% of these small peptides consisted of more than 50% hydrophobic amino acids, which may contribute to their antioxidant and antibacterial properties. This study provides a promising and industrially practical process for hydrolyzing BSFL protein to yield a functional protein hydrolysate with an enhanced nutritional profile. Full article
Show Figures

Graphical abstract

27 pages, 2402 KB  
Article
Sea Grape (Caulerpa racemosa) Kombucha: A Comprehensive Study of Metagenomic and Metabolomic Profiling, Its Molecular Mechanism of Action as an Antioxidative Agent, and the Impact of Fermentation Time
by Dian Aruni Kumalawati, Reza Sukma Dewi, Noor Rezky Fitriani, Scheirana Zahira Muchtar, Juan Leonardo, Nurpudji Astuti Taslim, Raffaele Romano, Antonello Santini and Fahrul Nurkolis
Beverages 2025, 11(5), 134; https://doi.org/10.3390/beverages11050134 - 5 Sep 2025
Cited by 1 | Viewed by 960
Abstract
Sea grape kombucha has been known to exhibit high antioxidant activity due to its elevated total polyphenol content. This study aims to identify and characterize the active microbial community involved in the fermentation of kombucha using sea grapes (C. racemosa) as [...] Read more.
Sea grape kombucha has been known to exhibit high antioxidant activity due to its elevated total polyphenol content. This study aims to identify and characterize the active microbial community involved in the fermentation of kombucha using sea grapes (C. racemosa) as the primary substrate. Furthermore, it evaluates the effects of different Symbiotic Culture of Bacteria and Yeast (SCOBY) starter concentrations on the physicochemical properties and antioxidant activity of sea grape kombucha. Our results showed that the pH of the kombucha was higher after 7 days of fermentation compared to later time points. The microbial community was composed of 97.08% bacteria and 2.92% eukaryotes, divided into 10 phyla and 69 genera. The dominant genus in all samples was Komagataeibacter. Functional profiling based on 16S rRNA data revealed that metabolic functions accounted for 77.04% of predicted microbial activities during fermentation. The most enriched functional categories were carbohydrate metabolism (15.70%), cofactor and vitamin metabolism (15.54%), and amino acid metabolism (14.24%). At KEGG Level 3, amino acid-associated pathways, particularly alanine, aspartate, and glutamate metabolism (4.24%), were predominant. The fermentation process in sea grape kombucha is primarily driven by carbohydrate and amino acid metabolism, supported by energy-generating and cofactor biosynthesis pathways. Our findings indicate that different metabolic pathways lead to variations in kombucha components, and distinct fermentation stages result in different metabolic reactions. For instance, early fermentation stages (Day 7) are dominated by amino acid metabolism, whereas the late stages (Day 21) show increased activity in carbohydrate and sulfur metabolism. Metabolomic analysis revealed that increasing the SCOBY starter concentration significantly influenced pH, soluble solid content, vitamin C, tannin, and flavonoid content. These variations suggest that fermentation duration and microbial composition significantly influence the spectrum of bioactive metabolites, which synergistically provide functional benefits such as antimicrobial, antioxidant, and metabolic health-promoting activities. For example, sample K1 produced more fatty acids and simple sugar alcohols, sample K2 enriched complex lipid compounds and phytosterols, while sample K3 dominated the production of polyols and terpenoid compounds. Full article
Show Figures

Graphical abstract

19 pages, 1137 KB  
Article
Effects of Stinging nettle Powder on Probiotics Survival, Physiochemical Properties, and Nutritional Value of Kefir
by Said Ajlouni, Jiheng Wu, Eliana Tang and Tingyu Liu
Fermentation 2025, 11(9), 502; https://doi.org/10.3390/fermentation11090502 - 27 Aug 2025
Viewed by 968
Abstract
Kefir is a historic dairy-fermented beverage produced using lactic acid bacteria and yeast as a starter culture and is considered nutritious with a good taste. Many studies have been conducted to incorporate various possible functional materials into kefir to enhance its nutritional value. [...] Read more.
Kefir is a historic dairy-fermented beverage produced using lactic acid bacteria and yeast as a starter culture and is considered nutritious with a good taste. Many studies have been conducted to incorporate various possible functional materials into kefir to enhance its nutritional value. This study aims to enrich kefir with 0.25% and 0.5% of Stinging nettle (Sn) powder before fermentation to improve its nutritional value. Stinging nettle (Urtica dioica) is a nutritious and multifunctional herb with a variety of healthful components such as fibers and polyphenols; it has significant potential as a useful food functional ingredient. The physicochemical, microbial, and nutritional properties of kefir fortified with Sn were examined weekly during refrigerated storage for 21 days. The results showed that adding Stinging nettle significantly (p < 0.05) increased the probiotic counts from 7.90 ± 0.22 log to 8.46 ± 0.19 log CFU/g, antioxidant activity (4%), and total polyphenol contents (5%) in kefir yogurt after 12 days of refrigerated storage. The addition of Sn also had a positive effect on the acidity of kefir and increased the viscosity and the syneresis to a certain extent. Furthermore, adding Sn increased lactic acid bacteria counts and the production of short-chain fatty acids after in vitro digestion and colonic fermentation. The results of this study indicated the potential use of Sn powder as a functional ingredient in kefir yogurt and other similar products. Full article
(This article belongs to the Special Issue Nutrition and Health of Fermented Foods—4th Edition)
Show Figures

Figure 1

17 pages, 2085 KB  
Article
Metabolic Modulation of Yogurt Fermentation Kinetics and Storage Stability by Lactobacillus-Starter Culture Interactions
by Meilun An, Zhi Zhao, Liang Zhao, Jianjun Yang, Haina Gao, Lele Zhang, Guoping Zhao, Baochao Hou, Jian He, Wei-Lian Hung, Baolei Li, Yangyang Yu, Shaoyang Ge, Xiaoxia Li and Ran Wang
Foods 2025, 14(17), 2935; https://doi.org/10.3390/foods14172935 - 22 Aug 2025
Viewed by 1062
Abstract
Lactobacillus-enriched yogurt is in increasingly high demand due to its health benefits, but the product stability requires an understanding of the microbial dynamics during fermentation and storage. This study investigated the interactions between probiotic pairs (L. paracasei L9 and L. acidophilus [...] Read more.
Lactobacillus-enriched yogurt is in increasingly high demand due to its health benefits, but the product stability requires an understanding of the microbial dynamics during fermentation and storage. This study investigated the interactions between probiotic pairs (L. paracasei L9 and L. acidophilus LAC) and starter culture (HYY) through fermentation kinetics, microbial viability, organic acid profiles, and metabolomics. The results demonstrated that L. paracasei L9 significantly increased the titratable acidity from 25.20 ± 7.01 °T to 36.56 ± 3.47 °T at 3 h and reduced the fermentation time by 0.5 h, whereas L. acidophilus LAC showed minimal effects. L. paracasei L9 achieved higher viability (8.4 lg CFU/g) via the high-affinity lactose transport and Leloir pathway, whereas the L. acidophilus LAC growth remained limited (6.9 lg CFU/g). The metabolomic investigation revealed the L9 + HYY upregulated glycerophospholipid metabolism and pantothenate/CoA biosynthesis to support rapid biomass accumulation. In contrast, LAC + HYY modulated the arginine and branched-chain amino acid metabolism for acid tolerance. During 21 days of storage, there were no significant differences in final TA values and lactic acid content among the probiotic supplementation groups. L9 + HYY remained stable (>9.0 lg CFU/g) by upregulating the aromatic amino acid biosynthesis and suppressing the purine/sulfur metabolism, whereas L. acidophilus LAC decreased to 6.02 lg CFU/g. These findings demonstrate the dual role of L. paracasei L9 in accelerating the fermentation and maintaining the microbial stability through metabolic reprogramming, which guides the development of improved probiotic yogurts. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 1143 KB  
Article
Development and Characterization of Pistachio Yogurt Analog: A Healthy, Sustainable, and Innovative Plant-Based Alternative
by Inés M. Ramos, Samuel Rodríguez García and Justa M. Poveda
Fermentation 2025, 11(8), 467; https://doi.org/10.3390/fermentation11080467 - 15 Aug 2025
Viewed by 918
Abstract
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and [...] Read more.
Plant-based yogurts are increasingly recognized as sustainable and health-conscious alternatives to dairy-based products, driven by environmental, ethical, and nutritional motivations. Pistachio milk, derived from an efficient and resilient crop, emerges as a promising raw material for yogurt production, offering unique sensory qualities and a dense nutritional profile. Rich in unsaturated fatty acids, bioactive compounds, and essential nutrients, pistachios are ideal for fermentation with lactic acid bacteria (LAB). In this study, a novel pistachio-based yogurt analog (PBYA) was developed using lactic acid fermentation, with a yogurt commercial starter, of pistachio milk. The production process was optimized to create an additive-free, clean-label formulation without the use of stabilizers or thickeners. The physicochemical, microbiological, and sensory properties of the PBYA were evaluated over refrigerated storage. The final product exhibited high levels of protein (5.6%), fat (5.4–6.8%), and total solids (20.5–21.4%), along with desirable texture and flavor characteristics. Notably, PBYA presented significantly higher concentrations of total free amino acids (754 mg/L) compared to commercial soy (557 mg/L) and cow’s milk yogurts (390 mg/L), particularly in essential amino acids such as lysine, methionine, and tryptophan. This enhanced free amino acid profile contributes to the product’s functional and nutritional value. Sensory analysis revealed good acceptance of the product, with improvements in viscosity and firmness over time, likely due to microbial exopolysaccharide production. Overall, the findings highlight the feasibility and commercial potential of PBYA as a clean-label, plant-based fermented product that meets current consumer demands for sustainability, nutrition, and sensory quality. Full article
Show Figures

Figure 1

17 pages, 599 KB  
Review
Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste
by Ioannis Stavrakakis, Paraschos Melidis, Nektarios Kavroulakis, Michael Goliomytis, Panagiotis Simitzis and Spyridon Ntougias
Microorganisms 2025, 13(8), 1891; https://doi.org/10.3390/microorganisms13081891 - 13 Aug 2025
Viewed by 868
Abstract
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting [...] Read more.
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting the EU’s commitment to fostering circularity. Biotreatment of citrus processing waste, including bioconversion into biomethane, biohydrogen, bioethanol and biodiesel, has been applied to valorize biomass for energy recovery. It can also be composted into a valuable soil conditioners and fertilizers, while raw and fermented citrus residues may exhibit phytoprotective activity. Citrus-derived residues can be converted into materials such as nanoparticles with adsorptive capacity for heavy metals and recalcitrant organic pollutants, and materials with antimicrobial properties against various microbial pathogens, or the potential to remove antibiotic-resistance genes (ARGs) from wastewater. Indeed, citrus residues are an ideal source of industrial biomolecules, like pectin, and the recovery of bioactive compounds with added value in food processing industry. Citrus processing waste can also serve as a source for isolating specialized microbial starter cultures or as a substrate for the growth of bioplastic-producing microorganisms. Solid-state fermentation of citrus residues can enhance the production of hydrolytic enzymes, with applications in food and environmental technology, as well as in animal feed. Certain fermented products also exhibit antioxidant properties. Citrus processing waste may be used as alternative feedstuff that potentially improves the oxidative stability and quality of animal products. Full article
(This article belongs to the Special Issue Earth Systems: Shaped by Microbial Life)
Show Figures

Figure 1

19 pages, 5087 KB  
Review
Biosensors in Microbial Ecology: Revolutionizing Food Safety and Quality
by Gajanan A. Bodkhe, Vishal Kumar, Xingjie Li, Shichun Pei, Long Ma and Myunghee Kim
Microorganisms 2025, 13(7), 1706; https://doi.org/10.3390/microorganisms13071706 - 21 Jul 2025
Cited by 2 | Viewed by 1727
Abstract
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial [...] Read more.
Microorganisms play a crucial role in food processes, safety, and quality through their dynamic interactions with other organisms. In recent years, biosensors have become essential tools for monitoring these processes in the dairy, meat, and fresh produce industries. This review highlights how microbial diversity, starter cultures, and interactions, such as competition and quorum sensing, shape food ecosystems. Diverse biosensor platforms, including electrochemical, optical, piezoelectric, thermal, field-effect transistor-based, and lateral flow assays, offer distinct advantages tailored to specific food matrices and microbial targets, enabling rapid and sensitive detection. Biosensors have been developed for detecting pathogens in real-time monitoring of fermentation and tracking spoilage. Control strategies, including bacteriocins, probiotics, and biofilm management, support food safety, while decontamination methods provide an additional layer of protection. The integration of new techniques, such as nanotechnology, CRISPR, and artificial intelligence, into Internet of Things systems is enhancing precision, particularly in addressing regional food safety challenges. However, their adoption is still hindered by complex food matrices, high costs, and the growing challenge of antimicrobial resistance. Looking ahead, intelligent systems and wearable sensors may help overcome these barriers. Although gaps in standardization and accessibility remain, biosensors are well-positioned to revolutionize food microbiology, linking ecological insights to practical solutions and paving the way for safer, high-quality food worldwide. Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
Show Figures

Figure 1

20 pages, 1065 KB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 5365
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

20 pages, 1509 KB  
Article
Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening
by Rakesh Kaushik and Sanjeev Anand
Appl. Microbiol. 2025, 5(3), 65; https://doi.org/10.3390/applmicrobiol5030065 - 3 Jul 2025
Viewed by 628
Abstract
Cheese ripening involves microbial changes, with starter lactic acid bacteria (SLAB) initiating fermentation and nonstarter lactic acid bacteria (NSLAB) driving flavor and texture development. However, heat-resistant spores of Clostridium and Bacillus can survive pasteurization and cause spoilage during ripening. This study evaluated NSLAB [...] Read more.
Cheese ripening involves microbial changes, with starter lactic acid bacteria (SLAB) initiating fermentation and nonstarter lactic acid bacteria (NSLAB) driving flavor and texture development. However, heat-resistant spores of Clostridium and Bacillus can survive pasteurization and cause spoilage during ripening. This study evaluated NSLAB dynamics in the presence of spores during cheese ripening. Cheddar cheese samples at pilot-scale level (110 L) with four treatments, namely control, with spores of B. licheniformis (T1), with spores of Cl. tyrobutyricum (T2), and both spores (T3) at 2.0 Log10 CFU/mL, were ripened at 7 °C for six months. SLAB declined from 8.0 to 0.2 Log10 CFU/g, while NSLAB increased from 2.0 to 8.5 Log10 CFU/g by month three and maintained their counts up to six months, unaffected by spore presence. Spore counts were ≤1.45 Log10 CFU/g in controls but reached 2.94 ± 0.02 (T2) and 2.48 ± 0.03 (T3), correlating with spoilage signs after five months. MALDI-TOF identified L. rhamnosus (up to 37%) and L. paracasei (up to 25%) as dominant NSLAB across treatments. Physicochemical parameters were not significantly affected by higher spore levels. While NSLAB dominated, they were inadequate to prevent spoilage in spore-inoculated samples exceeding 2.0 logs during cheese ripening. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

Back to TopTop