Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Flour Samples
2.1.1. Microbiological Analysis of the Flours
2.1.2. Chemical Analysis of Flours and Bread
2.2. Starter Cultures
- LS: a Type I sourdough obtained through spontaneous fermentation. The LS starter was prepared using a back-slopping method reported by Eraslan et al. [19] with minor modifications. Briefly, 500 g of CB10 flour were mixed with water (according to the water absorption percentage determined by farinograph analysis), mixed and incubated at 28 °C for 15 days. The dough was refreshed every 5 days by adding the same flour blend and water. The final sourdough (LS) was either used in the leavening trials or stored at 4 °C for further use.
- LI: a selected starter culture consisting of Lactiplantibacillus plantarum SL31 and Saccharomyces cerevisiae SY17, both belonging to the Collection of the DiAAA (Department of Agricultural, Environmental and Food Sciences, University of Molise), and previously isolated from a spontaneously fermented carob pulp flour dough. These strains were selected for their technological properties, such as sugar fermentation activity, acidification and leavening ability, as reported by Messia et al. [20]. Prior to use, the microbial strains were revitalized in MRS broth (Oxoid) for SL31 and YPD for SY17. The overnight cultures were centrifuged (13,000 rpm for 15 min at 4 °C; Centrifuge 5415 R; Eppendorf, Hamburg, Germany), washed twice in 0.9% (w/v) NaCl solution, and used as inoculum.
- LB: commercial baker’s yeast (Lievital, © 2025 Lesaffre, Trecasali, Italy) used as control.
2.3. Dough and Bread Preparation
- LB: CB10 blend (2 kg), salt (30 g), fresh baker’s yeast (50 g), and water (1130 mL, based on the absorption capacity determined by farinograph analysis) were mixed for 15 min in a planetary mixer (Conti, Bussolengo, Italy, mod. SP 20 2V). The leavening was carried out in a fermentation chamber at 30 °C for 90 min. The dough was then divided into loaves of approximately 300 g each, placed in aluminum trays, and subjected to a short proofing (50 min) at 26 °C. Baking was performed in a static electric oven (CIMAV, Villafranca, VR, Italy) for 41 min under the following conditions: 230 °C for the first 20 min, 200 °C for 15 min, and 180 °C for the final 6 min.
- LI: CB10 blend (400 g) was mixed with water, adjusted according to farinograph absorption values, in which the selected strains SY17 and SL31 were suspended at approximate concentrations of ~4.5 and ~5.5 log CFU/mL, respectively. The dough was kneaded for 10 min in a planetary mixer and then subjected to a first fermentation in a fermentation chamber (15 h, 28 °C), thus obtaining a biga, a traditional Italian stiff pre-ferment. Afterwards, the flour blend (1600 g), water (adjusted to the absorption capacity determined by farinograph analysis), and salt (30 g) were added to the biga and mixed for 15 min in a planetary mixer. A second fermentation was then carried out in a fermentation chamber at 28 °C for 6 h. Each loaf (approximately 300 g) was shaped into aluminum trays and subjected to a final proofing step (1 h). Baking was performed in a static electric oven for a total of 50 min, under the following temperature profile: 230 °C for the first 20 min, 200 °C for 15 min, and 180 °C for the remaining 15 min.
- LS: A portion of sourdough (400 g), prepared as described in Section 2.2, was used as the starter. The procedure was the same as for the LI batch: CB10 blend (1.6 kg), water (according to the absorption capacity determined by farinograph analysis), and salt (30 g) were added to the sourdough and mixed for 15 min in a planetary mixer. Fermentation was carried out in a fermentation chamber at 28 °C for 6 h. Each loaf (approximately 300 g) was placed in aluminum trays and subjected to a final short proofing (1 h). Baking was performed in a static electric oven for 47 min under the following temperature profile: 230 °C for the first 20 min, 200 °C for 15 min, and 180 °C for the final 12 min.
2.4. Dough Analyses
2.5. Breads Analyses
2.5.1. Color
2.5.2. Consumer Preference Evaluation
2.6. Bread Characterization During Storage
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Rheological Properties of Flours
3.2. Microbiological Aspect of Flours, Starters and Doughs
3.3. Evolution of the pH of Doughs and Breads
3.4. Breads Analyses
3.5. Consumer Preference Evaluation of Experimental Breads
3.6. Changes in Physical, Textural and Microbiological Parameters During Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanmartín, G.; Prieto, J.A.; Morard, M.; Estruch, F.; Blasco-García, J.; Randez-Gil, F. The Effects of Sourdough Fermentation on the Biochemical Properties, Aroma Profile and Leavening Capacity of Carob Flour. Foods 2025, 14, 1677. [Google Scholar] [CrossRef] [PubMed]
- Dakia, P.A.; Wathelet, B.; Paquot, M. Isolation and chemical evaluation of carob (Ceratonia siliqua) seed germ. Food Chem. 2007, 102, 1368–1374. [Google Scholar] [CrossRef]
- Saitta, F.; Apostolidou, A.; Papageorgiou, M.; Signorelli, M.; Mandala, I.; Fessas, D. Influence of carob flour ingredients on wheat-based systems. J. Cereal Sci. 2023, 111, 103655. [Google Scholar] [CrossRef]
- Brassesco, M.E.; Brandão, T.R.; Silva, C.L.; Pintado, M. Carob bean (Ceratonia siliqua): A new perspective for functional food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Issaoui, M.; Flamini, G.; Delgado, A. Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua). Sustainability 2021, 13, 8026. [Google Scholar] [CrossRef]
- Ikram, A.; Khalid, W.; Wajeeha Zafar, K.U.; Ali, A.; Afzal, M.F.; Aziz, A.; Rasool, F.; Al-Farga, A.; Aqlan, F.; Koraqi, H. Nutritional, biochemical, and clinical applications of carob: A review. Food Sci. Nutr. 2023, 11, 3641–3654. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Carob (Ceratonia siliqua), pharmacological and phytochemical activities of neglected legume of the Mediterranean Basin, as functional food. Rev. Recent Clin. Trials 2024, 19, 127–142. [Google Scholar]
- Mesías, M.; Holgado, F.; Morales, F.J. Antioxidant and antiglycation properties of carob flour extracts: Evaluating their potential as a functional ingredient in health-oriented foods and supplements. Appl. Sci. 2025, 15, 6556. [Google Scholar] [CrossRef]
- Turhan, I. Relationship between sugar profile and D-pinitol content of pods of wild and cultivated types of carob bean (Ceratonia siliqua). Int. J. Food Prop. 2014, 17, 363–370. [Google Scholar]
- Correia, P.J.; Pestana, M. Sugars and phenols in carob tree fruits from different producing countries: A short review. Heliyon 2024, 10, e30922. [Google Scholar] [CrossRef]
- Zahorec, J.; Šoronja-Simović, D.; Petrović, J.; Nikolić, I.; Pavlić, B.; Bijelić, K.; Bojanić, N.; Fišteš, A. Fortification of Bread with Carob Extract: A Comprehensive Study on Dough Behavior and Product Quality. Foods 2025, 14, 1821. [Google Scholar] [CrossRef]
- Zahorec, J.; Šoronja-Simović, D.; Petrović, J.; Šereš, Z.; Pavlić, B.; Sterniša, M.; Smole Možina, S.; Ačkar, Đ.; Šubarić, D.; Jozinović, A. The effect of carob extract on antioxidant, antimicrobial and sensory properties of bread. Appl. Sci. 2024, 14, 3603. [Google Scholar] [CrossRef]
- Benito-Vázquez, I.; Garrido-Romero, M.; Hontoria-Caballo, G.; García-García, C.; Díez-Municio, M.; Moreno, F.J. Carob (Ceratonia siliqua) flour as source of bioactive compounds: Production, characterization and nutraceutical value. Foods 2024, 13, 3024. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Zhang, Y. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar]
- Zahorec, J.; Šoronja-Simović, D.; Petrović, J.; Šereš, Z.; Pavlić, B.; Božović, D.; Perović, L.; Martić, N.; Bulut, S.; Kocić-Tanackov, S. Development of functional bread: Exploring the nutritional, bioactive and microbial potential of carob (Ceratonia siliqua) pulp powder. Processes 2024, 12, 2882. [Google Scholar] [CrossRef]
- Ghanemi, F.Z.; Belarbi, M. Phytochemical compounds and biological properties of carob pods (Ceratonia siliqua L.) extracts at different ripening stages. Waste Biomass Valorization 2023, 14, 2271–2283. [Google Scholar]
- ICC. Standard Methods of the International Association for Cereal Science and Technology; ICC: Vienna, Austria, 1995. [Google Scholar]
- American Association of Cereal Chemists, AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Eraslan, H.; Wehbeh, J.; Ermis, E. Effect of sourdough prepared with the combination of chickpea and carob on bread properties. Int. J. Gastron. Food Sci. 2023, 32, 100753. [Google Scholar] [CrossRef]
- Messia, M.C.; Reale, A.; Maiuro, L.; Candigliota, T.; Sorrentino, E.; Marconi, E. Effects of pre-fermented wheat bran on dough and bread characteristics. J. Cereal Sci. 2016, 69, 138–144. [Google Scholar] [CrossRef]
- CIE. International Commission on Illumination, Colorimetry: Official Recommendation of the International Commission on Illumination; Publication CIE No. (E-1.31); Bureau Central de la CIE: Paris, France, 1976. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier: California, CA, USA; Academic Press: California, CA, USA, 2004; p. 377. [Google Scholar]
- American Association of Cereal Chemists, AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2008. [Google Scholar]
- American Association of Cereal Chemists, AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Kotsiou, K.; Sacharidis, D.D.; Matsakidou, A.; Biliaderis, C.G.; Lazaridou, A. Impact of roasted yellow split pea flour on dough rheology and quality of fortified wheat breads. Foods 2021, 10, 1832. [Google Scholar] [CrossRef]
- Associazione delle Industrie del Dolce e della Pasta Italiane. Decree of the President of the Republic, 9 February 2001, n. 187 Regulation for the Revision of the Legislation on the Production and Marketing of Flours and Pasta, Pursuant to Article 50 of Law 22 February 1994, n. 146; Associazione delle Industrie del Dolce e della Pasta Italiane: Rome, Italy, 2001. [Google Scholar]
- Khelouf, I.; Jabri Karoui, I.; Abderrabba, M. Chemical composition, in vitro antioxidant and antimicrobial activities of carob pulp (Ceratonia siliqua) from Tunisia. Chem. Pap. 2023, 77, 6125–6134. [Google Scholar] [CrossRef]
- Petkova, N.; Petrova, I.; Ivanov, I.; Mihov, R.; Hadjikinova, R.; Ognyanov, M.; Nikolova, V. Nutritional and antioxidant potential of carob (Ceratonia siliqua) flour and evaluation of functional properties of its polysaccharide fraction. J. Pharm. Sci. Res. 2017, 9, 2189–2195. [Google Scholar]
- El Batal, H.; Hasib, A.; Dehbi, F.; Zaki, N.; Ouatmane, A.; Boulli, A. Assessment of nutritional composition of Carob pulp (Ceratonia siliqua) collected from various locations in Morocco. J. Mater. Environ. Sci 2016, 7, 3278–3285. [Google Scholar]
- Iacovino, S.; Trivisonno, M.C.; Messia, M.C.; Cuomo, F.; Lopez, F.; Marconi, E. Combination of empirical and fundamental rheology for the characterization of dough from wheat flours with different extraction rate. Food Hydrocoll. 2024, 148, 109446. [Google Scholar] [CrossRef]
- Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Maiuro, L.; Sturchio, M.; Coppola, R.; Tremonte, P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2018, 266, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Mom, M.P.; Romero, S.M.; Larumbe, A.G.; Iannone, L.; Comerio, R.; Smersu, C.S.S.; Simón, M.; Vaamonde, G. Microbiological quality, fungal diversity and aflatoxins contamination in carob flour (Prosopis flexuosa). Int. J. Food Microbiol. 2020, 326, 108655. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 2447–2479. [Google Scholar] [CrossRef] [PubMed]
- Reale, A.; Di Renzo, T.; Succi, M.; Tremonte, P.; Coppola, R.; Sorrentino, E. Identification of lactobacilli isolated in traditional ripe wheat sourdoughs by using molecular methods. World J. Microbiol. Biotechnol. 2011, 27, 237–244. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Qiao, N.; Bechtner, J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int. J. Food Microbiol. 2023, 407, 110421. [Google Scholar] [CrossRef]
- Karlidağ, S.; Arici, M.; Özülkü, G. Carob Flour Addition to Sourdough: Effect of Sourdough Fermentation, Dough Rheology and Bread Quality. Tekirdağ Ziraat Fakültesi Derg. 2022, 19, 541–553. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Succi, M.; Tremonte, P.; Coppola, R.; Sorrentino, E. Microbiological and fermentative properties of baker’s yeast starter used in breadmaking. J. Food Sci. 2013, 78, M1224–M1231. [Google Scholar]
- Sahin, M.; Ozgolet, M.; Cankurt, H.; Dertli, E. Harnessing the Role of Three Lactic Acid Bacteria (LAB) Strains for Type II Sourdough Production and Influence of Sourdoughs on Bread Quality and Maillard Reaction Products. Foods 2024, 13, 1801. [Google Scholar] [CrossRef] [PubMed]
- Novotni, D.; Mutak, N.; Nanjara, L.; Drakula, S.; Čukelj Mustač, N.; Voučko, B.; Ćurić, D. Sourdough fermentation of carob flour and its application in wheat bread. Food Technol. Biotechnol. 2020, 58, 465–474. [Google Scholar] [CrossRef]
- Iacovino, S.; Quiquero, M.; De Arcangelis, E.; Cuomo, F.; Trivisonno, M.C.; Messia, M.C.; Marconi, E. Physico-chemical and nutritional properties of different high-amylose wheat breads. J. Cereal Sci. 2024, 117, 103919. [Google Scholar]
- Dagnas, S.; Onno, B.; Membré, J.M. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH. Int. J. Food Microbiol. 2014, 186, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Czajkowska-González, Y.A.; Alvarez-Parrilla, E.; del Rocío Martínez-Ruiz, N.; Vázquez-Flores, A.A.; Gaytán-Martínez, M.; de la Rosa, L.A. Addition of phenolic compounds to bread: Antioxidant benefits and impact on food structure and sensory characteristics. Food Prod. Process. Nutr. 2021, 3, 25. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
- Song, M.K.; Guo, X.N.; Zhu, K.X. Unraveling the impacts of fermentation methods on the protein structural, foaming and air-water interfacial properties of buckwheat steamed bread dough liquor. Food Biosci. 2024, 59, 104026. [Google Scholar] [CrossRef]
- Su, X.; Wu, F.; Zhang, Y.; Yang, N.; Chen, F.; Jin, Z.; Xu, X. Effect of organic acids on bread quality improvement. Food Chem. 2019, 278, 267–275. [Google Scholar] [CrossRef]
- Verdonck, C.; De Bondt, Y.; Pradal, I.; Bautil, A.; Langenaeken, N.A.; Brijs, K.; Goos, P.; De Vuyst, L.; Courtin, C.M. Impact of process parameters on the specific volume of wholemeal wheat bread made using sourdough-and baker’s yeast-based leavening strategies. Int. J. Food Microbiol. 2023, 396, 110193. [Google Scholar]
- Li, M.; Zhang, H.; Lyu, L.; Deng, Q.; Fan, H.; Xu, X.; Xu, D. Effects of sourdough on bread staling rate: From the perspective of starch retrogradation and gluten depolymerization. Food Biosci. 2024, 59, 103877. [Google Scholar] [CrossRef]
Sample | Moisture | Protein | Ash | Fat | Fiber | Carbohydrates * |
---|---|---|---|---|---|---|
Carob flour | 4.10 ± 0.01 c | 4.90 ± 0.30 c | 2.96 ± 0.02 a | 5.60 ± 0.04 a | 31.0 ± 0.2 a | 51.44 c |
Wheat flour | 14.0 ± 0.01 a | 12.0 ± 0.02 a | 0.47 ± 0.04 c | 1.60 ± 0.05 c | 3.0 ± 0.3 c | 68.93 a |
CB10 blend | 13.6 ± 0.02 b | 11.1 ± 0.03 b | 0.72 ± 0.01 b | 2.00 ± 0.08 b | 5.8 ± 0.4 b | 66.91 b |
Farinograph Parameters | Alveograph Parameters | ||||||
---|---|---|---|---|---|---|---|
Flours | WA | DDT | DS | P | L | P/L | W |
% | min | min | (mm H2O) | (mm) | (−) | (10−4 J) | |
Wheat Flour | 56.3 ± 0.10 | 2.3 ± 0.09 | 11.3 ± 0.15 | 72 ± 1.20 | 129 ± 0.70 | 0.56 ± 0.15 | 279 ± 6.20 |
CB10 blend | 56.5 ± 0.12 | 5.9 ± 0.10 | 7.7 ± 0.20 | 76 ± 1.40 | 125 ± 0.85 | 0.61 ± 0.10 | 236 ± 5.10 |
Time Points | LB | LI | LS |
---|---|---|---|
T0 | 5.34 ± 0.02 A,a | 5.11 ± 0.02 B,a | 5.12 ± 0.02 B,a |
T1 | 5.21 ± 0.02 A,b | 4.65 ± 0.05 B,b | 4.55 ± 0.05 B,b |
T2 | 5.06 ± 0.04 A,c | 4.05 ± 0.03 B,c | 3.75 ± 0.04 C,c |
Bread (t1) | 5.12 ± 0.01 A,d | 4.12 ± 0.05 B,c | 3.68 ± 0.07 C,c |
L* | a* | b* | C* | h | ΔE | ||
---|---|---|---|---|---|---|---|
Crust | LB | 36.90 ± 1.84 c | +13.93 ± 0.49 a | +18.17 ± 1.57 c | 22.90 ± 1.45 b | 52.48 ± 1.95 c | |
LI | 48.26 ± 1.77 b | +10.52 ± 0.38 b | +23.71 ± 0.96 a | 25.94 ± 1.02 a | 66.18 ± 0.34 b | 13.1 | |
LS | 55.88 ± 2.18 a | +8.70 ± 0.67 c | +22.33 ± 0.51 b | 23.96 ± 0.65 b | 68.80 ± 1.31 a | 20.1 | |
Crumb | LB | 49.37 ± 2.09 a | +8.66 ± 0.26 a | +21.59 ± 0.60 a | 23.25 ± 0.62 a | 68.22 ± 0.51 a | |
LI | 44.10 ± 1.15 b | +7.74 ± 0.19 b | +19.65 ± 0.27 b | 21.11 ± 0.31 b | 68.58 ± 0.30 a | 5.7 | |
LS | 44.00 ± 2.46 b | +7.82 ± 0.36 b | +19.35 ± 0.75 b | 20.87 ± 0.79 b | 68.08 ± 0.72 a | 5.6 |
Bread Batch | Parameter | t1 | t3 | t7 | Δ (t7 − t1) | %Δ vs. t1 |
---|---|---|---|---|---|---|
LB | Moisture (%) | 30.7 ± 0.42 aB | 30.5 ± 0.60 aB | 22.6 ± 1.21 bB | −8.1 | −26.4% |
aw (−) | 0.94 ± 0.00 aB | 0.92 ± 0.00 aB | 0.88 ± 0.00 bB | −0.06 | −6.4% | |
Volume (mL) | 667 ± 22 aB | 620 ± 8 bB | 507 ± 15 cB | −160 | −24.0% | |
Specific vol. (mL/g) | 2.21 ± 0.09 aB | 2.23 ± 0.05 aB | 1.90 ± 0.07 bB | −0.31 | −14.0% | |
LI | Moisture (%) | 29.6 ± 1.87 aA | 28.4 ± 0.39 aA | 21.2 ± 0.76 bA | −8.4 | −28.4% |
aw (−) | 0.91 ± 0.01 aA | 0.89 ± 0.20 aA | 0.89 ± 0.00 aA | −0.02 | −2.2% | |
Volume (mL) | 615 ± 24 aA | 610 ± 7 aA | 553 ± 18 bA | −62 | −10.1% | |
Specific vol. (mL/g) | 2.08 ± 0.10 aA | 2.21 ± 0.04 aA | 2.10 ± 0.09 aA | +0.02 | +1.0% | |
LS | Moisture (%) | 30.9 ± 0.63 aB | 29.4 ± 0.54 aB | 22.0 ± 2.33 bB | −8.9 | −28.8% |
aw (−) | 0.91 ± 0.00 aB | 0.90 ± 0.00 aB | 0.85 ± 0.02 bB | −0.06 | −6.6% | |
Volume (mL) | 615 ± 20 aA | 608 ± 20 aA | 554 ± 21 bA | −61 | −9.9% | |
Specific vol. (mL/g) | 2.08 ± 0.08 aA | 2.24 ± 0.05 aA | 2.06 ± 0.09 aA | −0.02 | −1.0% |
Parameter | LB | LI | LS | |
---|---|---|---|---|
Hardness (g) | t1 | 75.87 ± 11.44 A,a | 172.63 ± 25.85 B,a | 164.75 ± 14.48 C,a |
t3 | 97.62 ± 15.16 A,b | 260.74 ± 34.50 B,b | 239.16 ± 28.18 C,b | |
t7 | 145.57 ± 27.79 A,c | 424.42 ± 46.57 B,c | 376.25 ± 64.78 C,c | |
Springiness | t1 | 0.808 ± 0.04 A,a | 0.869 ± 0.02 B,a | 0.886 ± 0.01 C,a |
t3 | 0.662 ± 0.10 A,b | 0.812 ± 0.09 B,a | 0.826 ± 0.03 C,b | |
t7 | 0.649 ± 0.03 A,b | 0.865 ± 0.17 B,a | 0.780 ± 0.08 C,b | |
Cohesiveness | t1 | 0.726 ± 0.04 A,a | 0.603 ± 0.06 B,a | 0.694 ± 0.06 C,a |
t3 | 0.434 ± 0.05 A,b | 0.437 ± 0.05 B,b | 0.488 ± 0.06 C,b | |
t7 | 0.454 ± 0.06 A,b | 0.345 ± 0.05 B,c | 0.440 ± 0.09 C,b | |
Gumminess (g) | t1 | 54.94 ± 7.76 A,a | 103.57 ± 15.27 B,a | 114.16 ± 12.03 C,a |
t3 | 42.64 ± 9.33 A,b | 113.47 ± 14.63 B,b | 116.62 ± 18.26 C,b | |
t7 | 65.40 ± 10.82 A,c | 147.22 ± 32.64 B,c | 166.60 ± 48.07 C,c | |
Chewiness (g) | t1 | 44.52 ± 7.42 A,a | 90.17 ± 14.54 B,a | 101.09 ± 10.18 C,a |
t3 | 28.77 ± 9.33 A,b | 92.41 ± 17.92 B,b | 96.62 ± 17.27 C,b | |
t7 | 42.53 ± 8.07 A,a | 127.35 ± 39.41 B,c | 128.52 ± 36.42 C,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosati, S.; Gaeta, I.; Maiuro, L.; Trivisonno, M.C.; Messia, M.C.; Sorrentino, E. Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties. Life 2025, 15, 1571. https://doi.org/10.3390/life15101571
Rosati S, Gaeta I, Maiuro L, Trivisonno MC, Messia MC, Sorrentino E. Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties. Life. 2025; 15(10):1571. https://doi.org/10.3390/life15101571
Chicago/Turabian StyleRosati, Sebastiano, Ilenia Gaeta, Lucia Maiuro, Maria Carmela Trivisonno, Maria Cristina Messia, and Elena Sorrentino. 2025. "Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties" Life 15, no. 10: 1571. https://doi.org/10.3390/life15101571
APA StyleRosati, S., Gaeta, I., Maiuro, L., Trivisonno, M. C., Messia, M. C., & Sorrentino, E. (2025). Carob Pulp Flour as a Sustainable and Functional Ingredient in the Bakery: Effects of Leavening Typologies on Dough and Bread Properties. Life, 15(10), 1571. https://doi.org/10.3390/life15101571