Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Physicochemical Analyses
2.3. Flavor Compound Analysis
2.3.1. Semi-Quantitative Analysis
2.3.2. Quantitative Analysis
2.4. Enumeration of Culturable Microorganisms
2.5. Identification of Culturable Microorganisms
2.6. Microbial Community Analysis by High-Throughput Sequencing
2.7. Data Analysis and Visualization
3. Results and Discussions
3.1. Dynamics of Cultivable Microbial Populations
3.2. Physicochemical Changes During Fermentation
3.3. Enzyme Activities and Fermentation Capacity
3.4. Dynamics of Flavor Compounds
3.5. Microbial Community Structure and Diversity
3.5.1. Alpha and Beta Diversity Analysis
3.5.2. Phylum-Level and Genus-Level Community Composition
3.5.3. Canonical Correspondence Analysis (CCA) of Microbial–Environmental Interactions
3.6. Correlation Between Microbial Taxa, Flavor Compounds, and Fermentation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, F.; Tan, Y.; Lv, X.; Chen, L.; Yang, F.; Wang, H.; Xu, Y. Microbial community succession and its environment driving factors during initial fermentation of Maotai-flavor Baijiu. Front. Microbiol. 2021, 12, 669201. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H.; Wu, Y.; Zhao, D. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- Niu, Y.; Yao, Z.; Xiao, Q.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of the key aroma compounds in different light aroma type Chinese liquors by GC-olfactometry, GC-FPD, quantitative measurements, and aroma recombination. Food Chem. 2017, 233, 204–215. [Google Scholar] [CrossRef]
- Niu, J.; Yang, S.; Shen, Y.; Cheng, W.; Li, H.; Sun, J.; Sun, B. What are the main factors that affect the flavor of sauce-aroma baijiu. Foods 2022, 11, 3534. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.W.; Tabrizi, M.R.; Nout, M.R.; Han, B.Z. Daqu—A traditional Chinese liquor fermentation starter. J. Inst. Brew. 2011, 117, 82–90. [Google Scholar] [CrossRef]
- Tian, N.; Guo, X.; Wang, M.; Chen, C.; Cui, H.; Zhang, L.; Tang, H. Bacterial community diversity of shilixiang baijiu Daqu based on metagenomics. J. Food Biochem. 2020, 44, e13410. [Google Scholar] [CrossRef]
- Shi, W.; Chai, L.J.; Fang, G.Y.; Mei, J.L.; Lu, Z.M.; Zhang, X.J.; Xu, Z.H. Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res. Int. 2022, 156, 111298. [Google Scholar] [CrossRef]
- Yang, L.; Xian, C.; Li, P.; Wang, X.; Song, D.; Zhao, L.; Zhang, C. The spatio-temporal diversity and succession of microbial community and its environment driving factors during stacking fermentation of Maotai-flavor baijiu. Food Res. Int. 2023, 169, 112892. [Google Scholar] [CrossRef]
- Dai, Y.; Tian, Z.; Meng, W.; Li, C.; Li, Z. Changes in microbial diversity, physicochemical characteristics, and flavor substances during Maotai-flavored liquor fermentation and their correlations. J. Biobased Mater. Bioenergy 2019, 13, 290–307. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Y.; Ma, D.; Zhang, S.; Dong, Y.; Zhang, X.; Mao, J. Environment microorganism and mature Daqu powder shaped microbial community formation in mechanically strong-flavor Daqu. Food Biosci. 2023, 52, 102467. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Cheng, W.; Wang, X.; Xue, Y.; Chen, X.; Han, B.Z. Understanding the shifts of microbial community and metabolite profile from wheat to mature Daqu. Front. Microbiol. 2021, 12, 714726. [Google Scholar] [CrossRef]
- Yang, J.G.; Dou, X.; Ma, Y.Y. Diversity and dynamic succession of microorganisms during Daqu preparation for Luzhou-flavour liquor using second-generation sequencing technology. J. Inst. Brew. 2018, 124, 498–507. [Google Scholar] [CrossRef]
- Ali, A.; Wu, Y.; Li, W.; Duan, Z.; Zhang, R.; Liu, J.; Li, X. Insight into microorganisms and flavor substances in traditional Chinese fermented food starter: Daqu. Process Biochem. 2024, 146, 433–450. [Google Scholar] [CrossRef]
- Mao, F.; Huang, J.; Zhou, R.; Qin, H.; Zhang, S.; Cai, X.; Qiu, C. Effects of different Daqu on microbial community domestication and metabolites in Nongxiang baijiu brewing microecosystem. Front. Microbiol. 2022, 13, 939904. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Wei, X.; Qiu, X.; Liu, Y.; Yu, J.; Hou, R.; Xiang, S. Precipitation and temperature drive microbial community changes affecting flavor quality of Nongxiangxing Daqu. Food Chem. X 2024, 24, 102063. [Google Scholar] [CrossRef] [PubMed]
- QB/T 4257-2011; Fermentation Starter for Baijiu—Determination of Moisture, Acidity and Enzyme Activities. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2011.
- Zhang, Y.; Chen, Q. Improving measurement of reducing sugar content in carbonated beverages using Fehling’s reagent. J. Emerg. Investig. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Tian, J.; Jiang, X.; Luo, H.; Huang, D. Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging. J. Food Compos. Anal. 2021, 101, 103970. [Google Scholar] [CrossRef]
- SB/T 10317-1999; Method for Analysis of Fermentation Starters. Ministry of Commerce of the People’s Republic of China: Beijing, China, 1999.
- Dong, W.; Shen, H.; Liu, H.; Song, F.; Li, P.; Peng, N.; Zhao, S. Unraveling the microbial community and succession during zha-chili fermentation and their relationships with flavor formation. Food Res. Int. 2022, 157, 111239. [Google Scholar] [CrossRef]
- GB/T 10345-2007; Method of Analysis for Baijiu. Standardization Administration of China (SAC): Beijing, China, 2007.
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; Dougherty, M.K. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019, 47, e103. [Google Scholar] [CrossRef]
- Kuang, J.; Han, S.; Chen, Y.; Bates, C.T.; Wang, P.; Shu, W. Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME Commun. 2021, 1, 65. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Wang, T.; Wang, J.; Li, L.; Wang, X.; Liu, L.; Wen, T. Adaptive mechanisms of Bacillus to near space extreme environments. Sci. Total Environ. 2023, 886, 163952. [Google Scholar] [CrossRef]
- Wong, H.C.; Chen, Y.L. Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Appl. Environ. Microbiol. 1988, 54, 2179–2184. [Google Scholar] [CrossRef]
- Ward, O.P.; Moo-Young, M.; Venkat, K. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 1989, 8, 237–274. [Google Scholar] [CrossRef]
- Benabda, O.; M’hir, S.; Kasmi, M.; Mnif, W.; Hamdi, M. Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J. Chem. 2019, 2019, 3738181. [Google Scholar] [CrossRef]
- Xiao, C.; Lu, Z.M.; Zhang, X.J.; Wang, S.T.; Ao, L.; Shen, C.H.; Xu, Z.H. Bio-heat is a key environmental driver shaping the microbial community of medium-temperature Daqu. Appl. Environ. Microbiol. 2017, 83, e01550-17. [Google Scholar] [CrossRef]
- Wu, S.; Du, H.; Xu, Y. Daqu microbiota adaptability to altered temperature determines the formation of characteristic compounds. Int. J. Food Microbiol. 2023, 385, 109995. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, M.S.; Yu, H.; Shi, W.; Chai, L.J.; Lu, Z.M.; Shi, J.S. Exploring the contribution of temperature-adapted microbiota to enzyme profile of saccharification in Daqu using metagenomics and metaproteomics. LWT 2024, 197, 115916. [Google Scholar] [CrossRef]
- Song, X.; Li, Z.; Song, C.; Dai, H.; Shao, Y.; Luo, H.; Huang, D. Rare taxa as the microbial taxa more sensitive to environmental changes drive alterations of Daqu microbial community structure and function. Food Biosci. 2024, 59, 103983. [Google Scholar] [CrossRef]
- Deng, L.; Mao, X.; Liu, D.; Ning, X.Q.; Shen, Y.; Chen, B.; Luo, H.B. Comparative analysis of physicochemical properties and microbial composition in high-temperature Daqu with different colors. Front. Microbiol. 2020, 11, 588117. [Google Scholar] [CrossRef] [PubMed]
- Barz, W.; Hoesel, W. Metabolism and degradation of phenolic compounds in plants. In Biochemistry of Plant Phenolics; Springer: Boston, MA, USA, 1979; pp. 339–369. [Google Scholar]
- Jung, S.T.; Kim, M.H.; Shin, D.H.; Kim, Y.S. Isolation and identification of Bacillus sp. with high protease and amylase activity from Sunchang traditional kochujang. Food Sci. Biotechnol. 2008, 17, 519–526. [Google Scholar]
- Shi, W.; Chai, L.J.; Zhao, H.; Song, Y.N.; Mei, J.L.; He, Y.X.; Xu, Z.H. Deciphering the effects of different types of high-temperature Daqu on the fermentation process and flavor profiles of sauce-flavor Baijiu. Food Biosci. 2024, 61, 104917. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, K.; Song, Y.; Wang, Z.; Fu, Z.; Wang, Y.; Xing, X. Exploring the diversity of the fungal community in Chinese traditional Baijiu Daqu starters made at low-, medium- and high-temperatures. LWT 2022, 162, 113408. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, L.; Xu, Y. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 2013, 166, 323–330. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Liu, Y.; Hui, M.; Pan, C. Functional microorganisms in Baijiu Daqu: Research progress and fortification strategy for application. Front. Microbiol. 2023, 14, 1119675. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Luo, H.; Zhao, D.; Qiao, Z.; Zheng, J.; An, M.; Huang, D. Environmental factors and interactions among microorganisms drive microbial community succession during fermentation of Nongxiangxing Daqu. Bioresour. Technol. 2022, 345, 126549. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, Y.; Cai, W.; Che, X.; Peng, H.; Fu, G. Study on the mechanism on synthesis of higher alcohols in Wickerhamomyces anomalus under ethanol stress. Flavour Fragr. J. 2024, 39, 10–22. [Google Scholar] [CrossRef]
- Dong, W.; Yu, X.; Wang, L.; Zou, M.; Ma, J.; Liu, J.; Chen, S. Unveiling the microbiota of sauce-flavor Daqu and its relationships with flavors and color during maturation. Front. Microbiol. 2024, 15, 1345772. [Google Scholar] [CrossRef]
- Tie, Y.; Wang, L.; Ding, B.; Deng, Z.; Yang, Q.; Zhu, M.; Zhang, W. Investigating the main contributors to esterification activity and identifying the aqueous-phase ester synthases in Daqu. Food Biosci. 2025, 66, 106227. [Google Scholar] [CrossRef]
- Mortzfeld, F.B.; Hashem, C.; Vranková, K.; Winkler, M.; Rudroff, F. Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol. J. 2020, 15, 2000064. [Google Scholar] [CrossRef]
- Gan, S.H.; Yang, F.; Sahu, S.K.; Luo, R.Y.; Liao, S.L.; Wang, H.Y.; Liu, H. Deciphering the composition and functional profile of the microbial communities in Chinese Moutai liquor starters. Front. Microbiol. 2019, 10, 1540. [Google Scholar] [CrossRef]
- Jayachandra, Y.A.; Sulochana, M.B.; Merja, K.H.; Parameshwar, A.B.; Dayanand, A. The occurrence of potential and novel isolates of Oceanobacillus sp. JAS12 and Salinicoccus sp. JS20 recovered from West Coast of Arabian Sea, India. Res. J. Biotechnol. 2020, 15, 133–140. [Google Scholar]
- Mishra, S.; Joghee, N.N.; Jayaraman, G. Virgibacillus dokdonensis VITP14 produces α-amylase and protease with a broader operational range but with differential thermodynamic stability. Biotechnol. Appl. Biochem. 2022, 69, 92–100. [Google Scholar] [CrossRef]
- Zhu, C.; Cheng, Y.; Shi, Q.; Ge, X.; Yang, Y.; Huang, Y. Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces. Food Res. Int. 2023, 172, 113076. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, L.; Ao, J.; Wang, R. Analyzing the differences and correlations between key metabolites and dominant microorganisms in different regions of Daqu based on off-target metabolomics and high-throughput sequencing. Heliyon 2024, 10, e36944. [Google Scholar] [CrossRef]
- Merheb, C.W.; Cabral, H.; Gomes, E.; Da-Silva, R. Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem. 2007, 104, 127–131. [Google Scholar] [CrossRef]
- De Oliveira, A.P.A.; Silvestre, M.A.; Garcia, N.F.L.; Alves-Prado, H.F.; Rodrigues, A.; Paz, M.F.D.; Leite, R.S.R. Production and catalytic properties of amylases from Lichtheimia ramosa and Thermoascus aurantiacus by solid-state fermentation. Sci. World J. 2016, 2016, 7323875. [Google Scholar] [CrossRef]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Quan, S.; Wang, Y.; Ran, M.; Zhang, R.; Luo, X.; Wang, W.; Zhang, W. Contrasting the microbial community and non-volatile metabolites involved in ester synthesis between Qing-flavor Daqu and Nong-flavor Daqu. J. Biosci. Bioeng. 2023, 136, 213–222. [Google Scholar] [CrossRef]
- Xia, Y.; Luo, H.; Zhou, P.; Huang, D.; Deng, B.; Shen, C.; Wu, J. Comparison of fungal communities in Daqu with different treatments. J. Inst. Brew. 2018, 124, 166–172. [Google Scholar]
- Zeng, H.; Jiang, X.; Wang, Z.; Zeng, X.; Xin, B.; Wang, Y.; Zhang, J. Environmental and physicochemical characterization and fungal community of two batches of Chinese Luzhou-Flavored Daqu. J. Am. Soc. Brew. Chem. 2023, 81, 190–197. [Google Scholar] [CrossRef]
- Tsegaye, B.; Balomajumder, C.; Roy, P. Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. Environ. Sci. Pollut. Res. 2018, 25, 30585–30596. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Deng, Z.; Wang, M.; Tie, Y.; Zhang, W.; Wu, Z.; Gomi, K. Decoding the synergistic mechanisms of functional microbial agents on the microecology and metabolic function in medium-high temperature Daqu starter for enhancing aromatic flavor. Food Chem. X 2025, 26, 102304. [Google Scholar] [CrossRef]
- Ghareib, M.; Fawzi, E.M.; Aldossary, N.A. Thermostable alkaline protease from Thermomyces lanuginosus: Optimization, purification and characterization. Ann. Microbiol. 2014, 64, 859–867. [Google Scholar] [CrossRef]
- Sang, Y.; Jin, L.; Zhu, R.; Yu, X.Y.; Hu, S.; Wang, B.T.; Lee, H.G. Phosphorus-solubilizing capacity of Mortierella species isolated from rhizosphere soil of a poplar plantation. Microorganisms 2022, 10, 2361. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Aki, T.; Hidaka, Y.; Furuya, Y.; Kawamoto, S.; Shigeta, S.; Suzuki, O. Purification and characterization of a novel fungal α-glucosidase from Mortierella alliacea with high starch-hydrolytic activity. Biosci. Biotechnol. Biochem. 2002, 66, 2415–2423. [Google Scholar] [CrossRef]
- Puyam, A.; Pannu, P.P.S.; Kaur, J.; Sethi, S. Variability in production of gibberellic acid and fusaric acid by Fusarium moniliforme and their relationship. J. Plant Pathol. 2017, 99, 103–108. [Google Scholar] [CrossRef]
- Nwagu, T.N.; Okolo, B.N. Extracellular amylase production of a thermotolerant Fusarium sp. isolated from Eastern Nigerian soil. Braz. Arch. Biol. Technol. 2011, 54, 649–658. [Google Scholar] [CrossRef]
- Zhang, Q.; Huo, N.; Wang, Y.; Zhang, Y.; Wang, R.; Hou, H. Aroma-enhancing role of Pichia manshurica isolated from Daqu in the brewing of Shanxi Aged Vinegar. Int. J. Food Prop. 2017, 20, 2169–2179. [Google Scholar] [CrossRef]
- Bañeras, L.; Trias, R.; Godayol, A.; Cerdán, L.; Nawrath, T.; Schulz, S.; Anticó, E. Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks. Food Chem. 2013, 138, 2382–2389. [Google Scholar] [CrossRef]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.W.; Ling, T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef]
Fermentation Days | Bacillus (cfu/g) | ||||||||
H1 | M1 | L1 | H4 | M4 | L4 | H6 | M6 | L6 | |
0d | (3.85 ± 0.08) × 108 | ||||||||
10d | (9.71 ± 0.20) × 108 | (9.42 ± 0.20) × 108 | (4.32 ± 0.08) × 108 | (5.97 ± 0.14) × 108 | (1.09 ± 0.07) × 108 | (4.32 ± 0.01) × 107 | (2.53 ± 0.08) × 108 | (1.22 ± 0.01) × 107 | (1.47 ± 0.01) × 107 |
21d | (3.44 ± 0.08) × 108 | (5.04 ± 0.08) × 108 | (4.47 ± 0.16) × 108 | (2.85 ± 0.01) × 107 | (3.18 ± 0.15) × 108 | (6.58 ± 0.10) × 108 | (6.15 ± 0.12) × 108 | (2.52 ± 0.01) × 108 | (1.34 ± 0.01) × 108 |
52d | (1.25 ± 0.08) × 108 | (2.07 ± 0.06) × 108 | (4.46 ± 0.05) × 108 | (1.70 ± 0.01) × 108 | (3.06 ± 0.01) × 107 | (1.49 ± 0.00) × 107 | (8.33 ± 0.19) × 108 | (1.74 ± 0.08) × 108 | (3.27 ± 0.08) × 108 |
Fermentation days | LABS (cfu/g) | ||||||||
H1 | M1 | L1 | H4 | M4 | L4 | H6 | M6 | L6 | |
0d | (5.13 ± 0.01) × 106 | ||||||||
10d | (5.49 ± 0.82) × 106 | (2.87 ± 0.08) × 107 | (7.91 ± 0.82) × 106 | (4.64 ± 0.01) × 106 | (2.95 ± 0.16) × 107 | (3.50 ± 0.08) × 107 | (5.12 ± 0.82) × 106 | (1.65 ± 0.08) × 107 | (2.72 ± 0.08) × 107 |
21d | (6.41 ± 0.82) × 106 | (8.56 ± 0.82) × 106 | (6.20 ± 0.82) × 106 | (6.17 ± 0.14) × 107 | (5.68 ± 0.08) × 107 | (6.09 ± 0.82) × 106 | (4.57 ± 0.01) × 106 | (9.06 ± 0.82) × 106 | (6.10 ± 0.82) × 106 |
52d | (4.54 ± 0.01) × 106 | (6.12 ± 0.82) × 106 | (4.06 ± 0.87) × 106 | (3.38 ± 0.01) × 106 | (6.21 ± 0.16) × 107 | (4.32 ± 0.08) × 107 | (3.28 ± 0.01) × 106 | (4.44 ± 0.16) × 107 | (3.40 ± 0.01) × 106 |
Fermentation days | Yeasts (cfu/g) | ||||||||
H1 | M1 | L1 | H4 | M4 | L4 | H6 | M6 | L6 | |
0d | (1.49 ± 0.08) × 105 | ||||||||
10d | (1.94 ± 0.25) × 104 | (3.00 ± 0.00) × 102 | (1.65 ± 0.16) × 104 | (1.93 ± 0.16) × 104 | (0.00 ± 0.00) × 104 | (0.00 ± 0.00) × 104 | (1.90± 0.01) × 105 | (0.00 ± 0.00) × 104 | (0.00 ± 0.00) × 104 |
21d | (6.90 ± 0.74) × 104 | (8.57 ± 0.48) × 104 | (1.01 ± 0.01) × 106 | (6.47 ± 0.08) × 105 | (0.00 ± 0.00) × 104 | (1.48 ± 0.33) × 104 | (2.69 ± 0.49) × 104 | (1.83 ± 0.02) × 106 | (8.70 ± 0.00) × 103 |
52d | (2.88 ± 0.33) × 104 | (1.08 ± 0.01) × 104 | (2.70 ± 0.01) × 103 | (2.86 ± 0.33) × 104 | (0.00 ± 0.00) × 104 | (1.08 ± 0.01) × 103 | (2.43 ± 0.33) × 104 | (1.83 ± 0.33) × 104 | (6.70 ± 0.01) × 103 |
Fermentation days | Molds (cfu/g) | ||||||||
H1 | M1 | L1 | H4 | M4 | L4 | H6 | M6 | L6 | |
0d | (6.90 ± 0.01) × 103 | ||||||||
10d | (1.05 ± 0.08) × 106 | (8.41 ± 0.82) × 104 | (3.51 ± 0.08) × 105 | (8.92 ± 0.08) × 105 | (6.00 ± 0.00) × 103 | (6.00 ± 0.00) × 103 | (1.95 ± 0.37) × 105 | (1.44 ± 0.00) × 103 | (1.11 ± 0.00) × 103 |
21d | (1.77 ± 0.41) × 105 | (3.69 ± 0.49) × 105 | (1.35 ± 0.08) × 106 | (1.53 ± 0.08) × 105 | (4.38 ± 0.00) × 104 | (6.12 ± 0.82) × 105 | (1.68 ± 0.45) × 105 | (6.60 ± 0.00) × 103 | (1.44 ± 0.82) × 105 |
52d | (3.53 ± 0.08) × 106 | (3.87 ± 0.08) × 106 | (6.89 ± 0.25) × 106 | (7.08 ± 0.82) × 105 | (3.21 ± 0.82) × 106 | (5.91 ± 0.00) × 104 | (6.72 ± 0.00) × 104 | (1.56 ± 0.41) × 105 | (6.00 ± 0.00) × 103 |
Fermentation Days | ID | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|---|
Samples | Chao1 | Shannon | Good Coverage | Chao1 | Shannon | Good Coverage | |
10d | H1 | 76.75 | 3.13 | 0.999 | 741.96 | 5.05 | 0.978 |
M1 | 72.13 | 2.31 | 0.999 | 114.14 | 2.58 | 0.998 | |
L1 | 336.79 | 4.91 | 0.997 | 139.44 | 2.19 | 0.998 | |
H4 | 67.60 | 2.53 | 0.999 | 381.84 | 6.03 | 0.997 | |
M4 | 806.30 | 8.48 | 0.991 | 87.00 | 4.59 | 1.000 | |
L4 | 444.94 | 6.21 | 0.996 | 485.66 | 3.96 | 0.990 | |
H6 | 82.75 | 1.23 | 0.997 | 286.06 | 2.47 | 0.995 | |
M6 | 488.02 | 5.58 | 0.989 | 210.94 | 3.29 | 0.995 | |
L6 | 796.48 | 6.91 | 0.989 | 156.00 | 2.37 | 0.998 | |
21d | H1 | 54.50 | 2.01 | 0.999 | 539.37 | 3.71 | 0.987 |
M1 | 239.11 | 2.42 | 0.996 | 532.06 | 1.87 | 0.989 | |
L1 | 106.17 | 2.86 | 0.998 | 402.40 | 2.88 | 0.991 | |
H4 | 323.27 | 3.74 | 0.990 | 467.58 | 5.97 | 0.993 | |
M4 | 296.14 | 2.38 | 0.990 | 428.18 | 2.60 | 0.992 | |
L4 | 55.00 | 1.72 | 0.999 | 512.76 | 2.88 | 0.988 | |
H6 | 71.60 | 2.96 | 0.999 | 439.09 | 2.14 | 0.986 | |
M6 | 146.00 | 3.39 | 0.997 | 19.33 | 1.39 | 0.999 | |
L6 | 71.33 | 2.70 | 0.999 | 312.13 | 4.04 | 0.996 | |
52d | H1 | 213.37 | 3.23 | 0.999 | 466.74 | 3.76 | 0.988 |
M1 | 156.38 | 2.00 | 0.999 | 435.82 | 4.09 | 0.986 | |
L1 | 223.64 | 3.39 | 0.999 | 354.97 | 2.81 | 0.999 | |
H4 | 205.58 | 2.79 | 0.999 | 255.33 | 2.18 | 0.998 | |
M4 | 371.84 | 3.99 | 0.998 | 360.46 | 1.28 | 0.989 | |
L4 | 150.86 | 1.94 | 1.000 | 183.42 | 2.08 | 0.999 | |
H6 | 317.41 | 3.66 | 0.999 | 89.53 | 1.64 | 0.999 | |
M6 | 217.33 | 3.09 | 1.000 | 248.70 | 2.95 | 0.998 | |
L6 | 313.73 | 2.47 | 0.996 | 97.39 | 2.21 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zou, L.; Wang, L.; Dong, W.; Feng, Y.; Yu, X.; Liu, J.; Zhang, Y.; Hu, Y.; Chen, S. Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu. Biology 2025, 14, 1324. https://doi.org/10.3390/biology14101324
Chen Y, Zou L, Wang L, Dong W, Feng Y, Yu X, Liu J, Zhang Y, Hu Y, Chen S. Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu. Biology. 2025; 14(10):1324. https://doi.org/10.3390/biology14101324
Chicago/Turabian StyleChen, Youwei, Limei Zou, Luyao Wang, Weiwei Dong, Yanli Feng, Xiang Yu, Jun Liu, Yu Zhang, Yuanliang Hu, and Shenxi Chen. 2025. "Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu" Biology 14, no. 10: 1324. https://doi.org/10.3390/biology14101324
APA StyleChen, Y., Zou, L., Wang, L., Dong, W., Feng, Y., Yu, X., Liu, J., Zhang, Y., Hu, Y., & Chen, S. (2025). Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu. Biology, 14(10), 1324. https://doi.org/10.3390/biology14101324