Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Materials
2.3. Spore Preparation
2.3.1. Aerobic Spores
2.3.2. Anaerobic Spores
2.4. Cheddar Cheese Manufacturing
2.4.1. Lab-Scale Cheese Manufacturing Process Standardization
2.4.2. Pilot Scale Cheese Manufacturing
2.5. Microbial Analysis
2.5.1. Total Plate Counts (TPC) and Spore Counts (SC) of Pasteurized Milk Used for Cheese Manufacturing
2.5.2. Sample Preparation of Cheese for Microbial Enumeration
2.5.3. Total Plate Counts of Cheese Samples During Ripening
2.5.4. Spore Counts of Cheese Samples During Ripening
2.5.5. Starter and Non-Starter Lactic Acid Bacteria (NSLAB) Counts of Cheese Samples During Ripening
2.5.6. Identification of NSLAB Isolates Using MALDI-TOF
2.6. Physicochemical Analysis
2.6.1. Moisture Content
- where
- W3—the weight of the dish with the dried sample (g)
- W2—the weight of the empty dish (g)
- W—the weight of the sample (g)
2.6.2. Protein Content
- where
- N—normality of HCl
- Vs—volume of HCl used for sample (ml)
- Vb—volume of HCl used for blank (ml)
- W—weight of sample (g)
2.6.3. Fat Content
- W3—the weight of the dish with the dried sample (g)
- W2—the weight of the empty dish (g)
- W—the weight of the sample (g)
2.6.4. pH
2.6.5. Free Fatty Acids (FFA)
- where
- V—volume of NaOH used for titration (in mL)
- N—normality of NaOH solution
- W—weight of the sample (in grams)
- 28.2—milliequivalent weight of oleic acid
2.6.6. Visual Inspection of Cheese Samples for Bloating/Slits/Holes
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microbial Analyses
3.1.1. Total Plate Counts and Spore Counts of Pasteurized Milk Used for Cheese Manufacturing
3.1.2. Total Plate Counts (TPC) of Cheese Samples During Ripening
3.1.3. Changes in Spore Counts of Cheese Samples and Observing Spoilage in Cheese Samples During Ripening
3.1.4. Starter and NSLAB Counts of Cheese Samples During Ripening
3.1.5. Shifts in NSLAB Population and Emergence of Dominant NSLAB
3.2. Physicochemical Analysis
3.2.1. Moisture Content During Cheese Ripening
3.2.2. Protein Content During Cheese Ripening
3.2.3. Fat Content During Cheese Ripening
3.2.4. Free Fatty Acids and pH During Cheese Ripening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SLAB | Starter lactic acid bacteria |
NSLAB | Nonstarter lactic acid bacteria |
LBD | Late-blowing defect |
TPC | Total plate counts |
References
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Forde, A.; Fitzgerald, G.F. Biotechnological approaches to the understanding and improvement of mature cheese flavour. Curr. Opin. Biotechnol. 2000, 11, 484–489. [Google Scholar] [CrossRef]
- Blaya, J.; Barzideh, Z.; LaPointe, G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the cheese environment. J. Dairy Sci. 2018, 101, 3611–3629. [Google Scholar] [CrossRef]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C. Lactic acid bacteria in raw-milk cheeses: From starter cultures to probiotic functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef] [PubMed]
- Levante, A.; De Filippis, F.; La Storia, A.; Gatti, M.; Neviani, E.; Ercolini, D.; Lazzi, C. Metabolic gene-targeted monitoring of non-starter lactic acid bacteria during cheese ripening. Int. J. Food Microbiol. 2017, 257, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef]
- Guo, L.; Liu, B. Nonstarter Lactic Acid Bacteria in Cheese. In Handbook of Cheese Chemistry; Royal Society of Chemistry (RSC): Cambridge, UK, 2023; Volume 40, p. 48. [Google Scholar]
- Gobbetti, M.; Di Cagno, R.; Calasso, M.; Neviani, E.; Fox, P.F.; De Angelis, M. Drivers that establish and assemble the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 2018, 78, 244–254. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- FDA. US Cheddar Cheese, Code of Federal Regulation, Food and Drug Administration. 2024. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-133/subpart-B/section-133.113 (accessed on 12 April 2025).
- Rosa, M.C.; Carmo, M.R.; Balthazar, C.F.; Guimarães, J.T.; Esmerino, E.A.; Freitas, M.Q.; Silva, M.C.; Pimentel, T.C.; Cruz, A.G. Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. Int. Dairy J. 2021, 117, 105009. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Effect of prebiotics on growth behavior of Lactobacillus plantarum and their impact on adherence of strict anaerobic pathogens to intestinal cell lines. J. Food Saf. 2018, 38, e12384. [Google Scholar] [CrossRef]
- Khanal, S.N.; Anand, S.; Muthukumarappan, K. Evaluation of high-intensity ultrasonication for the inactivation of endospores of 3 bacillus species in nonfat milk. J. Dairy Sci. 2014, 97, 5952–5963. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, M.; Choi, J.; Goddik, L.; Park, S.H. Microbial and chemical composition of Cheddar cheese supplemented with prebiotics from pasteurized milk to aging. J. Dairy Sci. 2022, 105, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Ryser, E.T.; Kornacki, J.L. Standard Methods. In Standard Methods for the Examination of Dairy Products, 18th ed.; American Public Health Association: Washington, DC, USA, 2024. [Google Scholar]
- Kornacki, J.L.; Ryser, E.T.; Mangione, C.M.; Wehr, H.M. Standard Methods for the Examination of Dairy Products, 18th ed.; American Public Health Association: Washington, DC, USA, 2024. [Google Scholar]
- Gómez-Torres, N.; Garde, S.; Peirotén, Á.; Ávila, M. Impact of Clostridium spp. on cheese characteristics: Microbiology, color, formation of volatile compounds and off-flavors. Food Control 2015, 56, 186–194. [Google Scholar] [CrossRef]
- Gómez-Torres, N.; Ávila, M.; Gaya, P.; Garde, S. Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct. Food Microbiol. 2014, 42, 82–88. [Google Scholar] [CrossRef]
- Barzideh, Z.; Siddiqi, M.; Mohamed, H.M.; LaPointe, G. Dynamics of starter and non-starter lactic acid bacteria populations in long-ripened cheddar cheese using propidium monoazide (PMA) treatment. Microorganisms 2022, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Lay, J.O., Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 2001, 20, 172–194. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- ISO 8968-1, IDF 20-1; IDF Milk: Determination of Nitrogen Content (Kjeldahal Method). IDF Standard 20-A; IDF: Brussels, Belgium, 2001.
- AOAC. AOAC Official Method 989.05Fat in Milk: Modified MojonnierEther Extraction Method. In Official Methods of Analysis of AOAC International; Latimer, G.W., Jr., Ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- British Standard 770-5:1976; Chemical Analysis of Cheese. Part 5. Determination of pH Value, Methods for Chemical Analysis of Cheese. British Standards Institution: London, UK, 1976.
- Asif, M.; Nadeem, M.; Imran, M.; Ullah, R.; Tayyab, M.; Khan, F.A.; Al-Asmari, F.; Rahim, M.A.; Rocha, J.M.; Korma, S.A. Effect of fat contents of buttermilk on fatty acid composition, lipolysis, vitamins and sensory properties of cheddar-type cheese. Front. Microbiol. 2023, 14, 1209509. [Google Scholar] [CrossRef]
- Gopal, N.; Hill, C.; Ross, P.R.; Beresford, T.P.; Fenelon, M.A.; Cotter, P.D. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol. 2015, 6, 1418. [Google Scholar] [CrossRef]
- Silva, C.B.; Ferreira, L.M.; Lima, A.R.; Araújo, K.G.; Souza, R.M.; Fonseca, A.B.M.; Gonzalez, A.G. Microbiological quality and cultivable bacterial community of fresh and ripened Minas cheeses made from raw and pasteurised milk. Int. Dairy J. 2023, 143, 105662. [Google Scholar] [CrossRef]
- Franciosi, E.; Settanni, L.; Cologna, N.; Cavazza, A.; Poznanski, E. Microbial analysis of raw cows’ milk used for cheese-making: Influence of storage treatments on microbial composition and other technological traits. World J. Microbiol. Biotechnol. 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Beresford, T.P.; Fitzsimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent advances in cheese microbiology. Int. Dairy J. 2001, 11, 259–274. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.; Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Microbiology of cheese ripening. In Fundamentals of Cheese Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 333–390. [Google Scholar] [CrossRef]
- Ávila, M.; Sánchez, C.; Calzada, J.; Mayer, M.J.; Berruga, M.I.; López-Díaz, T.M.; Narbad, A.; Garde, S. Isolation and characterization of new bacteriophages active against Clostridium tyrobutyricum and their role in preventing the late blowing defect of cheese. Food Res. Int. 2023, 163, 112222. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Brea, S.G.; Gómez-Torres, N.; Arribas, M.Á. Spore-forming bacteria in dairy products. In Microbiology in Dairy Processing: Challenges and Opportunities; Wiley: Hoboken, NJ, USA, 2017; pp. 11–36. [Google Scholar] [CrossRef]
- Carminati, D.; Bonvini, B.; Francolino, S.; Ghiglietti, R.; Locci, F.; Tidona, F.; Mariut, M.; Abeni, F.; Zago, M.; Giraffa, G. Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese. Foods 2023, 12, 1880. [Google Scholar] [CrossRef] [PubMed]
- Bezie, A.; Regasa, H. The role of starter culture and enzymes/rennet for fermented dairy products manufacture—A Review. Nutr. Food Sci. Int. J. 2019, 9, 21–27. [Google Scholar]
- Williams, A.G.; Withers, S.E.; Banks, J.M. Energy sources of non-starter lactic acid bacteria isolated from Cheddar cheese. Int. Dairy J. 2000, 10, 17–23. [Google Scholar] [CrossRef]
- Bansal, V.; Veena, N. Understanding the role of pH in cheese manufacturing: General aspects of cheese quality and safety. J. Food Sci. Technol. 2024, 61, 16–26. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Mukdsi, M.A.; McSweeney, P.L.; Wilkinson, M.G.; Spinnler, H.E. Lipolysis and metabolism of fatty acids in cheese. In Cheese; Elsevier: Amsterdam, The Netherlands, 2017; pp. 423–444. [Google Scholar]
- Coolbear, T.; Crow, V.; Harnett, J.; Harvey, S.; Holland, R.; Martley, F. Developments in cheese microbiology in New Zealand—Use of starter and non-starter lactic acid bacteria and their enzymes in determining flavour. Int. Dairy J. 2008, 18, 705–713. [Google Scholar] [CrossRef]
- Bove, C.G.; Angelis, M.D.; Gatti, M.; Calasso, M.; Neviani, E.; Gobbetti, M. Metabolic and proteomic adaptation of L actobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de M an, R ogosa, and S harpe medium. Proteomics 2012, 12, 3206–3218. [Google Scholar] [CrossRef]
- Decadt, H.; De Vuyst, L. Insights into the microbiota and defects of present-day Gouda cheese productions. Curr. Opin. Food Sci. 2023, 52, 101044. [Google Scholar] [CrossRef]
- Banks, J.M.; Williams, A. The role of the nonstarter lactic acid bacteria in Cheddar cheese ripening. Int. J. Dairy Technol. 2004, 57, 145–152. [Google Scholar] [CrossRef]
- Wouters, J.T.; Ayad, E.H.; Hugenholtz, J.; Smit, G. Microbes from raw milk for fermented dairy products. Int. Dairy J. 2002, 12, 91–109. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Minervini, F.; Conte, A.; Del Nobile, M.A.; Gobbetti, M.; De Angelis, M. Dietary fibers and protective lactobacilli drive burrata cheese microbiome. Appl. Environ. Microbiol. 2017, 83, e01494-17. [Google Scholar] [CrossRef] [PubMed]
- de Souza Oliveira, R.P.; Perego, P.; de Oliveira, M.N.; Converti, A. Effect of inulin on the growth and metabolism of a probiotic strain of Lactobacillus rhamnosus in co-culture with Streptococcus thermophilus. LWT 2012, 47, 358–363. [Google Scholar] [CrossRef]
- Abed, S.M.; Ali, A.H.; Noman, A.; Niazi, S.; Ammar, A.; Bakry, A. Inulin as prebiotics and its applications in food industry and human health; a review. Int. J. Agric. Innov. Res. 2016, 5, 88–97. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Fundamentals of Cheese Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Tabla, R.; Gómez, A.; Rebollo, J.E.; Molina, F.; Roa, I. Effectiveness of a bacteriophage cocktail in reducing cheese early blowing caused by Escherichia coli. LWT 2022, 153, 112430. [Google Scholar] [CrossRef]
- Murtaza, M.S.; Sameen, A.; Rehman, A.; Huma, N.; Hussain, F.; Hussain, S.; Cacciotti, I.; Korma, S.A.; Ibrahim, S.A.; Ma, Y.K. Physicochemical, techno-functional, and proteolytic effects of various hydrocolloids as fat replacers in low-fat cheddar cheese. Front. Sustain. Food Syst. 2024, 8, 1440310. [Google Scholar] [CrossRef]
- Ávila, M.; Gómez-Torres, N.; Delgado, D.; Gaya, P.; Garde, S. Application of high pressure processing for controlling Clostridium tyrobutyricum and late blowing defect on semi-hard cheese. Food Microbiol. 2016, 60, 165–173. [Google Scholar] [CrossRef]
- Falentin, H.; Postollec, F.; Parayre, S.; Henaff, N.; Le Bivic, P.; Richoux, R.; Thierry, A.; Sohier, D. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. Int. J. Food Microbiol. 2010, 144, 10–19. [Google Scholar] [CrossRef]
- Doyle, C.J.; Gleeson, D.; Jordan, K.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. Anaerobic sporeformers and their significance with respect to milk and dairy products. Int. J. Food Microbiol. 2015, 197, 77–87. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Dreier, M.; Meola, M.; Berthoud, H.; Shani, N.; Wechsler, D.; Junier, P. High-throughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota. BMC Microbiol. 2022, 22, 48. [Google Scholar] [CrossRef] [PubMed]
Pasteurized Milk | TPC Log10CFU/mL | SC Log10CFU/mL |
---|---|---|
Batch 1 | 2.75 ± 0.03 | BDL |
Batch 2 | 2.75 ± 0.03 | BDL |
Batch 3 | 2.83 ± 0.02 | BDL |
Batch 4 | 2.83 ± 0.02 | BDL |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
0 | 8.35 ± 0.24 B | 8.22 ± 0.02 B | 8.43 ± 0.05 B | 8.44 ± 0.06 B |
1 | 9.95 ± 0.72 A | 10.01 ± 0.82 A | 9.44 ± 0.02 A | 9.92 ± 0.72 A |
2 | 9.44 ± 0.04 A | 9.53 ± 0.06 A | 9.46 ± 0.10 A | 9.52 ± 0.02 A |
3 | 9.48 ± 0.05 A | 9.45 ± 0.12 A | 9.50 ± 0.05 A | 9.51 ± 0.03 A |
4 | 9.43 ± 0.01 A | 9.49 ± 0.09 A | 9.51 ± 0.04 A | 9.42 ± 0.04 A |
5 | 9.43 ± 0.03 A | 9.46 ± 0.01 A | 9.45 ± 0.03 A | 9.40 ± 0.01 A |
6 | 9.41 ± 0.01 A | 9.38 ± 0.01 A | 9.37 ± 0.01 A | 9.36 ± 0.03 A |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
0 | 7.94 ± 0.04 aA | 7.33 ± 0.32 bA | 7.44 ± 0.26 bA | 7.90 ± 0.27 aA |
1 | 7.43 ± 0.05 aB | 6.92 ± 0.77 bB | 6.92 ± 0.77 bB | 6.90 ± 0.74 bB |
2 | 4.01 ± 0.08 aC | 3.89 ± 0.10 bC | 3.90 ± 0.10 bC | 3.76 ± 0.40 cC |
3 | 2.36 ± 0.09 cD | 2.40 ± 0.04 aD | 2.40 ± 0.04 aD | 3.21 ± 0.81 bD |
4 | 0.91 ± 0.02 aE | 0.87 ± 0.12 aE | 0.84 ± 0.01 aE | 0.68 ± 0.15 bE |
5 | 0.23 ± 0.02 aF | 0.20 ± 0.06 aF | 0.22 ± 0.13 aF | 0.22 ± 0.08 aF |
6 | 0.11 ± 0.13 aF | 0.10 ± 0.04 aF | 0.10 ± 0.08 aF | 0.13 ± 0.11 aF |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
0 | 1.55 ± 0.10 D | 1.44 ± 0.10 D | 1.54 ± 0.10 D | 2.75 ± 0.10 D |
1 | 3.75 ± 0.09 C | 3.90 ± 0.14 C | 3.77 ± 0.03 C | 3.85 ± 0.09 C |
2 | 7.02 ± 0.79 B | 6.49 ± 0.08 B | 7.01 ± 0.75 B | 6.58 ± 1.31 B |
3 | 8.41 ± 0.01 A | 8.37 ± 0.04 A | 7.89 ± 0.74 A | 8.05 ± 0.49 A |
4 | 8.38 ± 0.02 A | 8.45 ± 0.05 A | 8.37 ± 0.01 A | 8.37 ± 0.01 A |
5 | 8.38 ± 0.02 A | 8.41 ± 0.04 A | 8.35 ± 0.04 A | 8.34 ± 0.01 A |
6 | 8.38 ± 0.04 A | 8.36 ± 0.01 A | 8.34 ± 0.01 A | 8.33 ± 0.01 A |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
1 | 38.09 ± 0.64 A | 37.57 ± 1.04 A | 38.25 ± 0.06 A | 37.32 ± 0.25 A |
2 | 37.50 ± 0.27 A | 36.99 ± 0.45 A | 37.24 ± 0.04 A | 37.21 ± 0.14 A |
3 | 37.19 ± 0.06 A | 38.09 ± 0.22 A | 37.22 ± 0.82 A | 37.10 ± 0.37 A |
4 | 35.39 ± 0.57 B | 33.94 ± 0.72 B | 35.72 ± 2.44 B | 35.62 ± 0.64 B |
5 | 34.68 ± 0.52 B | 34.19 ± 0.01 B | 33.95 ± 1.54 B | 34.95 ± 0.08 B |
6 | 34.49 ± 0.17 B | 34.21 ± 0.53 B | 35.40 ± 1.68 B | 34.40 ± 0.41 B |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
1 | 24.16 ± 0.17 B | 24.83 ± 0.32 B | 23.72 ± 0.77 B | 24.13 ± 0.76 B |
2 | 24.22 ± 0.49 B | 24.32 ± 0.53 B | 24.52 ± 0.18 B | 24.10 ± 0.02 B |
3 | 24.43 ± 0.02 B | 24.37 ± 0.19 B | 24.42 ± 0.19 B | 24.43 ± 0.09 B |
4 | 25.25 ± 0.09 A | 25.18 ± 0.17 A | 25.35 ± 0.24 A | 25.18 ± 0.13 A |
5 | 25.11 ± 0.88 A | 25.13 ± 0.41 A | 25.23 ± 0.22 A | 25.12 ± 0.45 A |
6 | 25.26 ± 0.10 A | 25.16 ± 0.19 A | 25.08 ± 1.14 A | 25.30 ± 0.31 A |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
1 | 33.90 ± 0.15 | 34.02 ± 0.72 | 34.49 ± 0.40 | 34.48 ± 0.62 |
2 | 33.92 ± 0.34 | 33.87 ± 0.56 | 34.43 ± 0.51 | 34.19 ± 0.98 |
3 | 33.76 ± 0.69 | 35.02 ± 0.99 | 33.25 ± 0.01 | 35.40 ± 0.13 |
4 | 34.16 ± 1.61 | 34.52 ± 0.13 | 33.45 ± 0.79 | 34.14 ± 0.12 |
5 | 34.02 ± 0.24 | 34.60 ± 0.41 | 33.94 ± 0.04 | 33.90 ± 0.20 |
6 | 33.72 ± 0.21 | 33.36 ± 0.17 | 34.36 ± 0.82 | 33.73 ± 0.82 |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
1 | 0.66 ± 0.01 B | 0.65 ± 0.03 B | 0.66 ± 0.05 B | 0.66 ± 0.03 B |
2 | 0.72 ± 0.00 A | 0.73 ± 0.04 A | 0.74 ± 0.03 A | 0.72 ± 0.00 A |
3 | 0.78 ± 0.01 A | 0.80 ± 0.03 A | 0.77 ± 0.03 A | 0.77 ± 0.02 A |
4 | 0.79 ± 0.00 A | 0.83 ± 0.00 A | 0.83 ± 0.01 A | 0.84 ± 0.05 A |
5 | 0.75 ± 0.12 A | 0.83 ± 0.20 A | 0.84 ± 0.20 A | 0.78 ± 0.23 A |
6 | 0.84 ± 0.07 A | 0.91 ± 0.01 A | 0.93 ± 0.05 A | 0.92 ± 0.08 A |
Duration | Treatments | |||
---|---|---|---|---|
(Months) | Control | T1 (BL) | T2 (CT) | T3 (BL+CT) |
1 | 5.00 ± 0.04 | 4.96 ± 0.00 | 4.99 ± 0.01 | 4.98 ± 0.04 |
2 | 4.99 ± 0.00 | 5.00 ± 0.04 | 4.98 ± 0.04 | 5.05 ± 0.04 |
3 | 4.96 ± 0.00 | 4.95 ± 0.01 | 4.99 ± 0.03 | 4.99 ± 0.00 |
4 | 4.97 ± 0.05 | 5.05 ± 0.04 | 5.03 ± 0.03 | 4.97 ± 0.05 |
5 | 5.01 ± 0.03 | 4.96 ± 0.02 | 4.99 ± 0.03 | 5.00 ± 0.04 |
6 | 4.99 ± 0.00 | 5.00 ± 0.00 | 5.02 ± 0.05 | 4.96 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushik, R.; Anand, S. Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening. Appl. Microbiol. 2025, 5, 65. https://doi.org/10.3390/applmicrobiol5030065
Kaushik R, Anand S. Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening. Applied Microbiology. 2025; 5(3):65. https://doi.org/10.3390/applmicrobiol5030065
Chicago/Turabian StyleKaushik, Rakesh, and Sanjeev Anand. 2025. "Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening" Applied Microbiology 5, no. 3: 65. https://doi.org/10.3390/applmicrobiol5030065
APA StyleKaushik, R., & Anand, S. (2025). Studying the Population Dynamics of NSLAB and Their Influence on Spores During Cheese Ripening. Applied Microbiology, 5(3), 65. https://doi.org/10.3390/applmicrobiol5030065