Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = metro station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10793 KiB  
Article
Research on Spatial Characteristics and Influencing Factors of Urban Vitality at Multiple Scales Based on Multi-Source Data: A Case Study of Qingdao
by Yanjun Wang, Yawen Wang, Zixuan Liu and Chunsheng Liu
Appl. Sci. 2025, 15(16), 8767; https://doi.org/10.3390/app15168767 (registering DOI) - 8 Aug 2025
Abstract
Urban vitality serves as an important indicator for evaluating the level of urban quality development and sustainability. In response to a series of urban challenges arising from rapid urban expansion, enhancing urban quality and fostering urban vitality have become key objectives in contemporary [...] Read more.
Urban vitality serves as an important indicator for evaluating the level of urban quality development and sustainability. In response to a series of urban challenges arising from rapid urban expansion, enhancing urban quality and fostering urban vitality have become key objectives in contemporary urban planning and development. This study summarizes the spatial distribution patterns of urban vitality at the street and neighborhood levels in the central area of Qingdao, and analyzes their spatial characteristics. A 5D built environment indicator system is constructed, and the effects of the built environment on urban vitality are explored using the Optimal Parameter Geographic Detector (OPGD) and the Multi-Scale Geographically Weighted Regression (MGWR) model. The aim is to propose strategies for enhancing spatial vitality at the street and neighborhood scales in central Qingdao, thereby providing references for the optimal allocation of urban spatial elements in urban regeneration and promoting sustainable urban development. The findings indicate the following: (1) At both the subdistrict and block levels, urban vitality in Qingdao exhibits significant spatial clustering, characterized by a pattern of “weak east-west, strong central, multi-center, cluster-structured,” with vitality cores closely aligned with urban commercial districts; (2) The interaction between the three factors of functional density, commercial facilities accessibility and public facilities accessibility and other factors constitutes the primary determinant influencing urban vitality intensity at both scales; (3) Commercial facilities accessibility and cultural and leisure facilities accessibility and building height exert a positive influence on urban vitality, whereas the resident population density appears to have an inhibitory effect. Additionally, factors such as building height, functional mixing degree and public facilities accessibility contribute positively to enhancing urban vitality at the block scale. (4) Future spatial planning should leverage the spillover effects of high-vitality areas, optimize population distribution, strengthen functional diversity, increase the density of metro stations and promote the coordinated development of the economy and culture. Full article
Show Figures

Figure 1

16 pages, 19063 KiB  
Article
Numerical Analysis of Diaphragm Wall Deformation and Surface Settlement Caused by Dewatering and Excavation at Center and End Positions in a Subway Foundation Pit
by Kaifang Yang, Mingdong Jiang, Minliang Chi and Guohui Feng
Buildings 2025, 15(15), 2796; https://doi.org/10.3390/buildings15152796 - 7 Aug 2025
Abstract
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation [...] Read more.
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation pit project, in this study, we employ three-dimensional numerical software to simulate the process of dewatering and excavation. A refined model is used to investigate groundwater seepage, the deformation of the retaining structure, and surface settlement under spatial effects. The finite element model accounts for stratified excavation and applied prestress conditions for the support system within the foundation pit. Its accuracy is validated through a comparison and analysis with measured data from the actual foundation pit. The results indicate that foundation pit excavation leads to significant groundwater drawdown around the pit and the formation of a characteristic “funnel-shaped” drawdown curve. Moreover, extending the diaphragm wall length contributes to maintaining a higher external groundwater level surrounding the foundation pit. The horizontal displacement of the diaphragm wall increases progressively during dewatering and excavation, and the bending moment of the diaphragm wall exhibits a trend consistent with its horizontal displacement. Surface settlement decreases as the length of the diaphragm wall increases. Full article
Show Figures

Figure 1

32 pages, 2702 KiB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 - 2 Aug 2025
Viewed by 332
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Viewed by 312
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 387
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

7 pages, 1190 KiB  
Proceeding Paper
Influence of Selective Security Check on Heterogeneous Passengers at Metro Stations
by Zhou Mo, Maricar Zafir and Gueta Lounell Bahoy
Eng. Proc. 2025, 102(1), 3; https://doi.org/10.3390/engproc2025102003 - 22 Jul 2025
Viewed by 251
Abstract
Security checks (SCs) at metro stations are regarded as an effective measure to address the heightened security risks associated with high ridership. Introducing SCs without exacerbating congestion requires a thorough understanding of their impact on passenger flow. Most existing studies were conducted where [...] Read more.
Security checks (SCs) at metro stations are regarded as an effective measure to address the heightened security risks associated with high ridership. Introducing SCs without exacerbating congestion requires a thorough understanding of their impact on passenger flow. Most existing studies were conducted where SCs are mandatory and fixed at certain locations. This study presents a method for advising the scale and placement for SCs under a more relaxed security setting. Using agent-based simulation with heterogeneous profiles for both inbound and outbound passenger flow, existing bottlenecks are first identified. By varying different percentages of passengers for SCs and locations to deploy SCs, we observe the influence on existing bottlenecks and suggest a suitable configuration. In our experiments, key bottlenecks are identified before tap-in fare gantries. When deploying SCs near tap-in fare gantries as seen in current practices, a screening percentage of beyond 10% could exacerbate existing bottlenecks and also create new bottlenecks at SC waiting areas. Relocating the SC to a point beyond the fare gantries helps alleviate congestion. This method provides a reference for station managers and transport authorities for balancing security and congestion. Full article
Show Figures

Figure 1

29 pages, 5923 KiB  
Article
Activity Spaces in Multimodal Transportation Networks: A Nonlinear and Spatial Analysis Perspective
by Kuang Guo, Rui Tang, Haixiao Pan, Dongming Zhang, Yang Liu and Zhuangbin Shi
ISPRS Int. J. Geo-Inf. 2025, 14(8), 281; https://doi.org/10.3390/ijgi14080281 - 22 Jul 2025
Viewed by 344
Abstract
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces [...] Read more.
Activity space offers a valuable perspective for analyzing urban travel behavior and evaluating the performance of transportation systems in increasingly complex urban environments. However, the research on measuring activity spaces in multimodal transportation contexts remains limited. This study investigates multimodal transportation activity spaces in Hangzhou using 2023 smart card data. Multimodal travel chains are extracted, and residents’ activity spaces are quantified using 95% confidence ellipses. By applying the XGBoost and GeoShapley models, this study reveals the nonlinear effects and geospatial heterogeneity in how built environment and socioeconomic factors influence activity spaces. The key findings show that the distance to the nearest metro station, commercial POIs, and GDP significantly shape activity spaces through nonlinear relationships. Moreover, the interaction between the distance to the nearest metro station and geographical location generates pronounced geospatial effects. The results highlight the importance of multimodal integration in urban transport planning and provide empirical insights for enhancing system efficiency and sustainability. Full article
Show Figures

Figure 1

18 pages, 3004 KiB  
Article
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction
by Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song and Lunming Qin
Mathematics 2025, 13(14), 2316; https://doi.org/10.3390/math13142316 - 21 Jul 2025
Viewed by 310
Abstract
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, [...] Read more.
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting. Full article
Show Figures

Figure 1

20 pages, 8592 KiB  
Article
Spatial Differentiation in the Contribution of Innovation Influencing Factors: An Empirical Study in Nanjing from the Perspective of Nonlinear Relationships
by Chengyu Wang, Renchao Luo and Lingchao Zhou
Buildings 2025, 15(14), 2565; https://doi.org/10.3390/buildings15142565 - 21 Jul 2025
Viewed by 277
Abstract
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central [...] Read more.
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central urban area as a case study, this research applied gradient boosting regression trees (GBRT) and multiscale geographically weighted regression (MGWR) models to explore the contributions of influencing factors to innovation space agglomeration and its spatial differentiation. Findings demonstrated that (1) Innovation platforms and patents emerged as the most significant driving factors, collectively accounting for 54.8% of the relative contributions; (2) The contributions of influencing factors to innovation space agglomeration exhibited marked nonlinear characteristics, specifically categorized into five distinct patterns: Sustained Growth Pattern, Growth-Stabilization Pattern, Growth-Decline Pattern, Global Stabilization Pattern, and Global Decline Pattern. The inflection thresholds of marginal effects across factors ranged from approximately 12% to 55% (e.g., 40% for metro stations, 13% for integrated commercial hubs); (3) Each influence factor’s contribution mechanism showed pronounced spatial heterogeneity across different regions. Based on these discoveries, governments should optimize innovation resource allocation according to regional characteristics and enhance spatial quality to promote efficient resource integration and transformation. This research provides a novel perspective for understanding innovation space agglomeration mechanisms and offers actionable references for urban policymakers to implement context-specific innovation economic development strategies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 7152 KiB  
Article
Comprehensive Substantiation of the Impact of Pre-Support Technology on a 50-Year-Old Subway Station During the Construction of Undercrossing Tunnel Lines
by Bin Zhang, Shaohui He, Jianfei Ma, Jiaxin He, Yiming Li and Jinlei Zheng
Infrastructures 2025, 10(7), 183; https://doi.org/10.3390/infrastructures10070183 - 11 Jul 2025
Viewed by 203
Abstract
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, [...] Read more.
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, methods such as laboratory tests, numerical simulation, and field tests were adopted to systematically analyze the tunnel mechanics during the undercrossing of existing metro lines. First, field tests were carried out on the existing Line 2 and Line 3 tunnels during the construction period. It was found that the close-fitting construction based on pre-support technology caused small deformation displacement in the subway tunnels, with little impact on the smoothness of the existing subway rail surface. The fluctuation range was −1 to 1 mm, ensuring the safety of existing subway operations. Then, a refined finite difference model for the close-fitting undercrossing construction process based on pre-support technology was established, and a series of field and laboratory tests were conducted to obtain calculation parameters. The reliability of the numerical model was verified by comparing the monitored deformation of existing structures with the simulated structural forces and deformations. The influence of construction methods on the settlement changes of existing line tracks, structures, and deformation joints was discussed. The research results show that this construction method effectively controls the settlement deformation of existing lines. The settlement deformation of existing lines is controlled within 1~3 cm. The deformation stress of the existing lines is within the concrete strength range of the existing structure, and the tensile stress is less than 3 MPa. The maximum settlement and maximum tensile stress of the station in the pre-support jacking scheme are −5.27 mm and 2.29 MPa. The construction scheme with pre-support can more significantly control structural deformation, reduce stress variations in existing line structures, and minimize damage to concrete structures. Based on the monitoring data and simulation results, some optimization measures were proposed. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

19 pages, 3586 KiB  
Article
Safety Analysis of Partial Downward Fire Evacuation Mode in Underground Metro Stations Based on Integrated Assessment of Harmful Factors
by Heng Yu, Yijing Huang and Haiyan He
Systems 2025, 13(7), 549; https://doi.org/10.3390/systems13070549 - 7 Jul 2025
Viewed by 327
Abstract
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the [...] Read more.
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the remaining individuals evacuate upward to the ground level through station exits. A novel safety assessment methodology is established to evaluate fire evacuation efficacy, incorporating the cumulative effects of smoke, elevated temperatures, carbon dioxide, and reduced oxygen levels. Employing an actual underground metro station in Guangzhou, China, as a case study, fire and evacuation models were developed to compare the traditional upward evacuation method with the proposed partial downward evacuation strategy. The analysis reveals that both evacuation strategies are effective under the assessed fire scenario. However, the partial downward evacuation is completed more swiftly—in 385.5 s compared to 494.8 s for upward evacuation—thereby mitigating smoke inhalation risks, as the smoke height remains above the critical threshold of 1.8 m for a longer duration than observed in the upward evacuation scenario. Simulations further indicate that neither high temperatures nor carbon monoxide concentrations reach hazardous levels in either evacuation mode, ensuring evacuee safety. The study concludes that, with appropriate training arrangements and under specific fire and evacuation conditions, the partial downward evacuation strategy is safer and more efficient than upward evacuation. Full article
Show Figures

Figure 1

23 pages, 7247 KiB  
Article
Pit Collapse Risk Fusion Early-Warning Method Based on Machine Learning and Improved Cloud Dempster–Shafer
by Jiajia Zeng, Bo Wu and Cong Liu
Appl. Sci. 2025, 15(13), 7571; https://doi.org/10.3390/app15137571 - 5 Jul 2025
Viewed by 355
Abstract
Considering the complexity of the metro pit construction environment, the existing risk early-warning methods cannot ensure high-precision early warning. A high-accuracy metro pit collapse risk fusion early-warning method is proposed in present study. The main contributions include (1) presenting a new input to [...] Read more.
Considering the complexity of the metro pit construction environment, the existing risk early-warning methods cannot ensure high-precision early warning. A high-accuracy metro pit collapse risk fusion early-warning method is proposed in present study. The main contributions include (1) presenting a new input to the fusion model by optimizing the machine learning model through a multi-step rolling method, and then using the basic probability assignment values obtained from the cloud model as input to the fusion model and (2) developing an improved methodology to address the paradoxical results of the fusion of traditional Dempster–Shafer evidence theory when there is a high level of conflict in multi-source risk prediction data. The proposed method is successfully applied to the Guangzhou Metro station project. By analyzing the early-warning results of 240 moments in 6 monitoring points, compared with the single information source method and the traditional D-S method, the early-warning accuracy of this method is increased by 15.8% and 10.8% respectively, the false alarm rate is reduced by 6.3% and 5.5%, respectively, and the missed alarm rate is reduced by 9.5% and 5.3%, respectively. The high-accuracy fusion early-warning method proposed in this paper has good universality and effectiveness in the early warning of subway foundation pit collapse risk. Full article
Show Figures

Figure 1

23 pages, 4982 KiB  
Article
Analysis of Influence of Cut-and-Cover Method on Retaining Structures and Differential Settlement in Subway Foundation Pit Construction
by Yi Liu, Lei Huang, Xiaolin Tang, Yanbin Xue, Wenbin Ke, Yang Luo and Lingxiao Guan
Appl. Sci. 2025, 15(13), 7520; https://doi.org/10.3390/app15137520 - 4 Jul 2025
Viewed by 291
Abstract
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between [...] Read more.
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between the diaphragm wall and the lattice columns across various construction stages. A comparison with the cut-and-cover method prompted the adoption of a strategy that integrates segmental pouring of the main structure and the installation of internal supports to optimize the original scheme. The results indicated that as the foundation pit was excavated, both the horizontal displacement of diaphragm wall and the ground surface settlement gradually increased, while the differential settlement between the diaphragm wall and the lattice columns shows exhibited an initial decrease followed by an increase. In comparison to the cut-and-cover method, the cover-and-cut method demonstrated greater efficacy in controlling foundation pit deformation and minimizing disturbances to surrounding environment. As the number of segmental pouring layers and support levels increased, the overall deformation of the foundation pit showed a gradual decreasing trend, and the differential settlement between the diaphragm wall and the lattice columns continued to fluctuate. When each floor slab was poured in three layers with two supports placed in the middle, the maximum horizontal displacement of the diaphragm wall could be reduced by 22.47%, and the maximum ground surface settlement could be decreased by 19.01%. The findings in this research can provide valuable basis and reference for the design and construction of similar projects. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

18 pages, 4676 KiB  
Article
Integrated Leakage Control Technology for Underground Structures in Karst Terrains: Multi-Stage Grouting and Zoned Remediation at Guangzhou Baiyun Metro Station
by Yanhong Wang, Wentian Xu, Shi Zheng, Jinsong Liu, Muyu Li and Yili Yuan
Buildings 2025, 15(13), 2239; https://doi.org/10.3390/buildings15132239 - 26 Jun 2025
Viewed by 367
Abstract
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively [...] Read more.
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively mitigates water inflow risks in structurally heterogeneous karst environments. Key innovations include the “one-trench two-drilling” exploration-grouting system for karst cave detection and filling, a multi-stage emergency water-gushing control protocol combining cofferdam sealing and dual-fluid grouting, and a zoned epoxy resin injection scheme for structural fissure remediation. Implementation at Baiyun Station achieved quantifiable outcomes: karst cave filling rates increased from 35.98% to 82.6%, foundation pit horizontal displacements reduced by 67–68%, and structural seepage repair rates reached 96.4%. The treatment system reduced construction costs by CNY 12 million and shortened schedules by 45 days through optimized pile formation efficiency (98% qualification rate) and minimized rework. While demonstrating superior performance in sealing > 0.2 mm fissures, limitations persist in addressing sub-micron fractures and ensuring long-term epoxy resin durability. This research establishes a replicable framework for underground engineering in karst regions, emphasizing real-time monitoring, multi-technology synergy, and environmental sustainability. Full article
Show Figures

Figure 1

37 pages, 12672 KiB  
Article
Optimized Design of Cultural Space in Wuhan Metro: Analysis and Reflection Based on Multi-Source Data
by Zhengcong Wei, Yangxue Hu, Yile Chen and Tianjia Wang
Buildings 2025, 15(13), 2201; https://doi.org/10.3390/buildings15132201 - 23 Jun 2025
Viewed by 675
Abstract
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an [...] Read more.
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an urban public space with huge passenger flow, the metro (or subway) cultural space has also become a public cultural space, serving communal welfare and representing the image of the city. It is currently attracting more and more attention from the academic community. Wuhan, located in central China, has many subway lines and its engineering construction has set several national firsts, which is a typical sample of urban subway development in China. In this study, we use Python 3.13.0 crawler technology to capture the public’s comments on cultural space of Wuhan metro in social media and adopt SnowNLP sentiment score and LDA thematic clustering analysis to explore the overall quality, distinct characteristics, and deficiencies of Wuhan metro cultural space construction, and propose targeted design optimization strategies based on this study. The main findings are as follows: (1) The metro cultural space is an important window for the public to perceive the city culture, and the public in general shows positive perception of emotions: among the 16,316 data samples, 47.7% are positive comments, 17.8% are neutral comments, and 34.5% are negative comments. (2) Based on the frequency of content in the sample data for metro station exit and entrance space, metro train space, metro concourse and platform space, they are ranked as weak cultural spaces (18%), medium cultural spaces (33%), and strong cultural spaces (49%) in terms of the public’s perception of urban culture. (3) At present, there are certain deficiencies in Wuhan metro cultural space: the circulation paths in concourses and platforms are overly dominant, leaving little space for rest or interaction; the cultural symbols of metro train space are fragmented; the way of articulation between cultural and functional space in the metro station exit and entrance space is weak, and the space is single in form. (4) Wuhan metro cultural space needs to be based on locality landscape expression, functional zoning reorganization, innovative scene creation to optimize the visual symbol system and behavioral symbol system in the space, to establish a good image of the space, and to strengthen the public’s cultural identity and emotional resonance. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

Back to TopTop