Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = methyl Orange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2787 KiB  
Article
Rapid Biodecolorization of Azo Dyes by Shewanella oneidensis MR-1 Under Aerobic Conditions
by Yuelei Wang, Yuqi Liu, Xiaojun Zhang, Lu Cheng, Daizong Cui, Min Zhao and Xianchun Zong
Catalysts 2025, 15(8), 796; https://doi.org/10.3390/catal15080796 - 21 Aug 2025
Abstract
This study investigated the aerobic biodecolorization of azo dyes by Shewanella oneidensis MR-1. S. oneidensis MR-1 can rapidly degrade azo dyes under aerobic conditions, even at high concentrations of up to 270 mg/L, demonstrating remarkable dye decolorization capabilities. This decolorization efficiency persists even [...] Read more.
This study investigated the aerobic biodecolorization of azo dyes by Shewanella oneidensis MR-1. S. oneidensis MR-1 can rapidly degrade azo dyes under aerobic conditions, even at high concentrations of up to 270 mg/L, demonstrating remarkable dye decolorization capabilities. This decolorization efficiency persists even under high concentrations of oxygen. The introduction of different environmental metal ions led to either inhibitory or stimulatory effects on the decolorization of Methyl Orange and Amaranth. Furthermore, the addition of extracellular electron shuttles and electron scavengers confirmed that dyes were being reduced via electron transfer, and the decolorization capability of S. oneidensis MR-1 correlated with electron density. Our study unveils the rapid degradation ability of S. oneidensis MR-1 for dyes under aerobic conditions, which is closely linked to its electron transfer capacity. This research holds significant implications for a deeper understanding of the biodegradation mechanisms of azo dyes under aerobic conditions. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

12 pages, 2161 KiB  
Article
Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion
by Zhaoning Yang, Zihao Yang, Xiaoxin Shu, Wenshuai Chen, Jiaolong Liu, Keqing Chen and Yanmin Jia
ChemEngineering 2025, 9(4), 90; https://doi.org/10.3390/chemengineering9040090 - 15 Aug 2025
Viewed by 227
Abstract
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and [...] Read more.
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and hydroxyl radicals, respectively, to generate reactive oxygen species to degrade organic pollutants. Currently, while organic piezoelectric catalysts theoretically offer significant advantages such as low cost and high processability, there has been a notable lack of research in this area, which presents an innovative opportunity for the exploration of new organic piezoelectric catalytic materials. In this study, new research using natural nanocellulose (FC) suspension as an efficient organic piezoelectric catalyst is reported for the first time. The experimental results showed that the catalyst exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W): the degradation rates reached 95.4%, 72.4%, and 31.2%, respectively, for 150 min, and the corresponding first-order reaction kinetic constants were 0.0205, 0.00858, and 0.00249 min−1, respectively. It is noteworthy that the RhB solution can achieve the optimal degradation efficiency without adjustment under neutral initial pH conditions, which significantly enhances the practical application feasibility. The experimental results showed that the catalyst, with a measurable piezoelectric coefficient (d33 = 4.4 pm/V), exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W). This organic piezoelectric catalyst, based on renewable biomass, innovatively converts mechanical vibration energy in the environment into the power to degrade pollutants. It not only expands the application boundaries of organic piezoelectric materials but also provides a new solution for sustainable water treatment technology, demonstrating extremely promising application prospects in the field of green and environmentally friendly water treatment. Full article
Show Figures

Figure 1

16 pages, 4340 KiB  
Article
Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus
by Jianhui Wang, Zhihong Li, Weiqing Guo, Zhihan Liu, Mingfu Xu, Yan Sun, Dayu Liu and Ying Chen
Horticulturae 2025, 11(8), 966; https://doi.org/10.3390/horticulturae11080966 - 14 Aug 2025
Viewed by 196
Abstract
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this [...] Read more.
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this study, mRNA levels of the transcription factors Ruby and TT8 were found to be upregulated in the juice vesicle tissues of a variety with higher concentrations of anthocyanins in the pulp compared with another variety with a lower anthocyanin content. In contrast, comparative analysis of the two varieties using two-dimensional electrophoresis and mass spectrometry did not identify differentially expressed proteins related to anthocyanin biosynthesis in the juice vesicle tissues. Furthermore, higher anthocyanin contents were observed in various tissues of transgenic Arabidopsis thaliana overexpressing the Ruby gene from blood orange compared with the wildtype plant. Moreover, the long terminal repeat (LTR) region of a retrotransposon inserted upstream of the Ruby locus exhibited the ability to drive reporter expression through histochemical assay in a transgenic seedling. Thus, a PCR-based molecular marker was developed, targeting the upstream sequence of the Ruby locus to identify Citrus hybrids with the unique trait of red-fleshed fruit. Intriguingly, bisulfite sequencing revealed differentially methylated regions within a Gag-Pol polyprotein-encoding sequence of a retrotransposon adjacent to Ruby locus when comparing two varieties with different anthocyanin contents. A higher average level of methylation status was observed in the fruit with a lower anthocyanin content. In conclusion, methylation modifications at specific upstream positions on the Ruby locus may influence anthocyanin production in blood oranges. Full article
Show Figures

Figure 1

13 pages, 2770 KiB  
Article
Tribocatalytic Degradation of Organic Dyes by Disk-Shaped PTFE and Titanium: A Powder-Free Catalytic Technology for Wastewater Treatment
by Hanze Zhu, Zeren Zhou, Senhua Ke, Chenyue Mao, Jiannan Song and Wanping Chen
Catalysts 2025, 15(8), 754; https://doi.org/10.3390/catal15080754 - 7 Aug 2025
Viewed by 372
Abstract
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as [...] Read more.
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as magnetic rotary disks and then driven to rotate through magnetic stirring in dye solutions in beakers with PTFE, Ti, and Al2O3 disks coated on bottoms separately. PTFE and Ti generated dynamic friction with the disks on the beaker bottoms in the course of magnetic stirring, from which some interesting dye degradations resulted. Among those dynamic frictions generated, 40 mg/L rhodamine b (RhB), 30 mg/L methyl orange (MO), and 20 mg/L methylene blue (MB) were effectively degraded by the one between PTFE and PTFE, the one between Ti and Ti, and the one between PTFE and Ti, respectively. Hydroxyl radicals and superoxide radicals were detected for two frictions, one between PTFE and PTFE and the other between Ti and Ti. It is proposed that Ti in friction increases the pressure in blocked areas through deformation and then catalyzes reactions under high pressure. Mechano-radicals are formed by PTFE through deformation, and are responsible for dye degradation. This work demonstrates a powder-free tribocatalysis for organic pollutant degradation and suggests an especially eco-friendly catalytic technology to wastewater treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 440
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 376
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Cited by 1 | Viewed by 419
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

34 pages, 3624 KiB  
Article
Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes
by Tomás Soteras, Ignacio Manuel Argento Arruñada, Leila María Saleh Medina, Natalie Malikova, Koro de la Caba, Pedro Guerrero, Norma Beatriz D’Accorso and R. Martín Negri
Polymers 2025, 17(15), 2008; https://doi.org/10.3390/polym17152008 - 23 Jul 2025
Viewed by 487
Abstract
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels [...] Read more.
Aerogel sponges of bio-based polymers loaded with metal–organic frameworks (MOFs) are highly promising for environmental applications, but a central challenge is to improve their stability and efficiency for removal processes. Here, the effective incorporation of the MOFs MIL-100(Fe) and ZIF-8 in composite aerogels of chitosan–pectin–lactic acid is reported. The presence of pectin was critical to loading the MOFs efficiently and homogeneously, while the incorporation of lactic acid induced a large increase in the Young’s modulus and provided structural preservation in aqueous solutions. The presence of MOFs enhanced the removal of two dyes, methyl orange (MO) and methylene blue (MB), under batch and flow conditions, with removal efficiencies of methyl orange of about 85% and 90% when loaded with ZIF-8 and MIL-100(Fe), respectively. Bentonite, celite 545, and two ionenes were loaded for comparison. Factors beyond charge-to-charge electrostatic interactions influenced the removal, since no correlations were obtained between the electrical charges of dyes, fillers, and polymers. The kinetic data were analyzed by adapting the Langmuir kinetic model, incorporating absorption and desorption processes, which allowed the recovery of the respective rate constants. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

39 pages, 18290 KiB  
Article
Turning Construction, Renovation, and Demolition (CRD) Wood Waste into Biochar: A Scalable and Sustainable Solution for Energy and Environmental Applications
by Aravind Ganesan, Simon Barnabé, Younès Bareha, Simon Langlois, Olivier Rezazgui and Cyrine Boussabbeh
Energies 2025, 18(15), 3902; https://doi.org/10.3390/en18153902 - 22 Jul 2025
Viewed by 468
Abstract
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were [...] Read more.
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were varied to evaluate their effects on biochar properties. High-temperature biochars (B800) showed the highest fixed carbon (FC) (87%) and thermostable fraction (TSF) (96%) and the lowest volatile carbon (VC) (9%), with a high carbon content (92%), a large BET surface area (300 m2/g), and a high micropore volume (0.146 cm3/g). However, the hydrogen (0.9%) and oxygen (2.2%) content, Van-Krevelen parameters (H/C: 0.1; O/C: 0.02), and biochar yield (21%) decreased with increasing temperature. Moderate-temperature biochars (B600) have balanced physicochemical properties and yields, making them suitable for adsorption applications. Methyl orange dye removal exceeded 90% under the optimal conditions, with B600 fitting well with the Freundlich isotherm model (R2 = 0.97; 1/n = 0.5) and pseudo-second-order kinetic model (R2 = 1). The study highlights biochar’s suitability for varied applications, emphasizing the need for scalability in CRD wood pyrolysis. Full article
Show Figures

Figure 1

12 pages, 2384 KiB  
Article
Ultrahigh Water Permeance of a Reduced Graphene Oxide Membrane for Separation of Dyes in Wastewater
by Chengju Wu, Shouyuan Hu, Shoupeng Li, Hangxiang Zhuge, Liuhua Mu, Jie Jiang, Pei Li and Liang Chen
Inorganics 2025, 13(8), 251; https://doi.org/10.3390/inorganics13080251 - 22 Jul 2025
Viewed by 442
Abstract
Membrane separation technology has shown significant potential in the treatment of mixed dye wastewater. In this study, a reduced graphene oxide (AH-rGO) membrane was prepared using an amino-hydrothermal method and applied for the first time in mixed dye separation. These membranes can selectively [...] Read more.
Membrane separation technology has shown significant potential in the treatment of mixed dye wastewater. In this study, a reduced graphene oxide (AH-rGO) membrane was prepared using an amino-hydrothermal method and applied for the first time in mixed dye separation. These membranes can selectively recover high-value dyes while addressing the technical challenges of balancing permeability and selectivity in traditional membrane materials, which are often at odds with each other in the treatment of mixed dye wastewater. We simulated actual dye wastewater using four dyes: methyl orange (MO), methyl blue (MB), rhodamine B (RB), and Victoria Blue B (VBB). The four combinations of mixed dyes were MO/VBB, RB/VBB, MO/MB, and RB/MB, all of which demonstrated high water permeability and separation efficiency. Notably, the MO/VBB combination achieved a maximum water permeability rate of 118.79 L m2 h−1 bar−1 and a separation factor of 24.2. The AH-rGO membrane is currently the highest-permeability membrane available, achieving excellent separation results with typical mixed dye wastewater. Additionally, it demonstrates good stability. The experimental results indicate that the overall performance of the AH-rGO membrane is superior to that ofother graphene oxide (GO) membranes, which reveals the significant application potential of this membrane in the field of mixed dye wastewater treatment. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 4332 KiB  
Article
Powerful Tribocatalytic Degradation of Methyl Orange Solutions with Concentrations as High as 100 mg/L by BaTiO3 Nanoparticles
by Mingzhang Zhu, Zeren Zhou, Yanhong Gu, Lina Bing, Yuqin Xie, Zhenjiang Shen and Wanping Chen
Nanomaterials 2025, 15(14), 1135; https://doi.org/10.3390/nano15141135 - 21 Jul 2025
Cited by 1 | Viewed by 357
Abstract
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high [...] Read more.
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high concentrations through magnetic stirring. With BTO nanoparticles and home-made PTFE magnetic rotary disks in 50 mg/L MO solutions, 10 h of magnetic stirring resulted in 91.4% and 98.1% degradations in an as-received glass beaker and in a beaker with a PTFE disk coated on its bottom, respectively. Even for 100 mg/L MO solutions, nearly complete degradation was achieved by magnetic-stirring-stimulated BTO nanoparticles in beakers with the following four kinds of bottom: 97.3% degradation in 30 h for a glass bottom, 97.4% degradation in 20 h for a PTFE coating, 97.9% degradation in 42 h for a Ti coating, and 97.4% degradation in 74 h for an Al2O3 coating. Electron paramagnetic resonance (EPR) analyses revealed that the generation of reactive oxygen species (ROS) by magnetic-stirring-stimulated BTO nanoparticles is dramatically affected by the bottom material of beakers. These findings suggest an appealing prospect for BTO nanoparticles to utilize mechanical energy for sustainable water remediation. Full article
Show Figures

Graphical abstract

16 pages, 2901 KiB  
Article
SiO2-Al2O3-ZrO2-Ag Composite and Its Signal Enhancement Capacity on Raman Spectroscopy
by Jesús Alberto Garibay-Alvarado, Pedro Pizá-Ruiz, Armando Erasto Zaragoza-Contreras, Francisco Espinosa-Magaña and Simón Yobanny Reyes-López
Chemosensors 2025, 13(7), 266; https://doi.org/10.3390/chemosensors13070266 - 21 Jul 2025
Viewed by 370
Abstract
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. [...] Read more.
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. The enhancement substrates were made of fibers of cylindric morphology with an average diameter of approximately 190 nm, a smooth surface, and 9 nm spherical particles decorating the surface of the fibers. The enhancement capacity of the substrates was tested using pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at different concentrations with Raman spectroscopy to determine whether the size and complexity of the analyte has an impact on the enhancement capacity. Enhancement factors of 2.53 × 102, 3.06 × 101, 2.97 × 103, 4.66 × 103, and 1.45 × 103 times were obtained for the signal of pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at concentrations of 1 nM. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Graphical abstract

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 349
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

23 pages, 7174 KiB  
Article
Enhancing Wastewater Treatment Through Python ANN-Guided Optimization of Photocatalysis with Boron-Doped ZnO Synthesized via Mechanochemical Route
by Vladan Nedelkovski, Milan Radovanović, Dragana Medić, Sonja Stanković, Iosif Hulka, Dejan Tanikić and Milan Antonijević
Processes 2025, 13(7), 2240; https://doi.org/10.3390/pr13072240 - 14 Jul 2025
Viewed by 477
Abstract
This study explores the enhanced photocatalytic performance of boron-doped zinc oxide (ZnO) nanoparticles synthesized via a scalable mechanochemical route. Utilizing X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), the structural and morphological properties of these nanoparticles were assessed. Specifically, nanoparticles [...] Read more.
This study explores the enhanced photocatalytic performance of boron-doped zinc oxide (ZnO) nanoparticles synthesized via a scalable mechanochemical route. Utilizing X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), the structural and morphological properties of these nanoparticles were assessed. Specifically, nanoparticles with 1 wt%, 2.5 wt%, and 5 wt% boron doping were analyzed after calcination at temperatures of 500 °C, 600 °C, and 700 °C. The obtained results indicate that 1 wt% B-ZnO nanoparticles calcined at 700 °C show superior photocatalytic efficiency of 99.94% methyl orange degradation under UVA light—a significant improvement over undoped ZnO. Furthermore, the study introduces a predictive model using the artificial neural network (ANN) technique, developed in Python, which effectively forecasts photocatalytic performance based on experimental conditions with R2 = 0.9810. This could further enhance wastewater treatment processes, such as heterogeneous photocatalysis, through ANN-guided optimization. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 442
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

Back to TopTop