Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Synthesis and Characterization of ZIF-8
2.4. Synthesis and Characterization of MIL-100(Fe)
2.5. Characterization of Pectin
2.6. Characterization of Chitosan
2.7. Preparation of the Lyophilized Sponges
2.8. Elasticity Tests (Texturometry)
2.9. Method of ∆pH for the Determination of Proton Zero-Charge Point
2.10. Kinetics of Dye Removal in Batches
2.11. Flow Tests
3. Results and Discussion
3.1. Morphological, Thermal, and Elastic Characterization of the Sponges
3.2. Protonation–Deprotonation Equilibrium in the Sponges
3.3. Removal of Methyl Orange (MO) in Batches
3.4. Removal of Methylene Blue (MB) in Batches
3.5. Analysis of the Kinetic Removal of MO and MB
3.6. Effect of Ionenes and Influence of Ionic Strength (I)
3.7. Preliminary Flow Tests with MO and MB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nour, A.; Iqbal, W.; Navarro-Alapont, J.; Ferrando-Soria, J.; Magarò, P.; Elliani, R.; Tagarelli, A.; Maletta, C.; Mastropietro, T.F.; Pardo, E.; et al. Efficient Nickel and Cobalt Recovery by Metal–Organic Framework-Based Mixed Matrix Membranes (MMM-MOFs). ACS Sustain. Chem. Eng. 2024, 12, 12014–12028. [Google Scholar] [CrossRef] [PubMed]
- Keshta, B.E.; Yu, H.; Wang, L.; Gemeay, A.H. Cutting-edge in the green synthesis of MIL-101(Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye. Sep. Purif. Technol. 2024, 332, 125744. [Google Scholar] [CrossRef]
- Yu, L.; Ji, J.; Chen, R.; Jia, Q. Stable Superhydrophobic MOF-5@polydopamine@melamine Sponge for Efficient Continuous Oil–Water Separation and Emulsion Purification. ACS Appl. Polym. Mater. 2024, 6, 11538–11548. [Google Scholar] [CrossRef]
- Sosa, M.D.; Alvares, C.M.S.; Soteras, T.; Levy, I.K.; Semino, R.; Negri, R.M. Preparation and Comparison of Merit Parameters of Hydrophobic Membranes on Metal Meshes based on ZIF-8/PVDF and in situ Formation of ZIF-8 by Secondary Growth and Electrochemical Synthesis. ACS Appl. Polym. Mater. 2024, 6, 13552–13566. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Hsiao, Y.-Y.; Negi, S.; Matsagar, B.M.; Wu, K.C.-W. Green Synthesis of Waste-Derived Metal–Organic Frameworks for Organic Substance Extraction from Piggery Wastewater as Biofertilizers. ACS Sustain. Chem. Eng. 2024, 12, 17793–17805. [Google Scholar] [CrossRef]
- Kaur, H.; Devi, N.; Siwal, S.S.; Alsanie, W.F.; Thakur, M.K.; Thakur, V.K. Metal–Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS Omega 2023, 8, 9004–9030. [Google Scholar] [CrossRef] [PubMed]
- Karami, K.; Beram, S.M.; Bayat, P.; Siadatnasab, F.; Ramezanpour, A. A novel nanohybrid based on metal–organic framework MIL101−Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. J. Mol. Struct. 2022, 1247, 131352. [Google Scholar] [CrossRef]
- Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; et al. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. Engl. 2021, 60, 23975–24001. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D.; et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total. Environ. 2021, 800, 149662. [Google Scholar] [CrossRef] [PubMed]
- Parmar, B.; Bisht, K.K.; Rajput, G.; Suresh, E. Recent advances in metal–organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Trans. 2021, 50, 3083–3108. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, B.; Huang, H.; Zou, C.; Tang, L.; Liu, J.; Wang, C.; Liang, J. Efficient elimination of organic contaminants via a non-radical pathway involving activation of sulfite by synergistic adsorption-catalysis bifunctional chitosan-modified MOF derivative. Sep. Purif. Technol. 2025, 354, 129259. [Google Scholar] [CrossRef]
- Salazar, H.; Rosales, M.; Zarandona, I.; Serra, J.; Gonçalves, B.F.; Valverde, A.; Cavalcanti, L.P.; Lanceros-Mendez, S.; García, A.; de la Caba, K.; et al. Metal-Organic Framework Functionalized Chitosan/Pectin Membranes for Solar-Driven Photo-Oxidation and Adsorption of Arsenic. Chem. Eng. J. 2024, 497, 154417. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, H.; Chen, X.; Jiang, Z.; Lu, J.; Xin, F. Incorporating MXene@MOF-303 Composites into Poly(vinyl alcohol) (PVA) to Fabricate Pervaporation Membranes for Desalination. ACS Appl. Polym. Mater. 2024, 6, 8277–8290. [Google Scholar] [CrossRef]
- Zhang, A.; Shan, F.; Zhang, Z.; Wang, J.; Zhang, T.; Liu, M. Efficient decontamination of tetracycline via fenton-like process mediated by chitosan-based Fe-MOFs under wide pH range. Sep. Purif. Technol. 2024, 344, 127212. [Google Scholar] [CrossRef]
- Duan, J.; Li, Q.; Xu, W.; Hu, X.; Wang, Y.; Valdez, S.M.; Qiang, Z.; Liao, Y.; Wen, J.; Ye, C.; et al. Mechanically Flexible and Weavable Hybrid Aerogel Fibers with Ultrahigh Metal–Organic Framework Loadings for Versatile Applications. ACS Appl. Polym. Mater. 2024, 6, 1900–1910. [Google Scholar] [CrossRef]
- Wang, A.; Ni, J.; Wang, W.; Liu, D.; Zhu, Q.; Xue, B.; Chang, C.-C.; Ma, J.; Zhao, Y. MOF Derived Co−Fe nitrogen doped graphite carbon@crosslinked magnetic chitosan Micro−nanoreactor for environmental applications: Synergy enhancement effect of adsorption−PMS activation. Appl. Catal. B Environ. 2022, 319, 121926. [Google Scholar] [CrossRef]
- Chen, M.; Long, A.; Zhang, W.; Wang, Z.; Xiao, X.; Gao, Y.; Zhou, L.; Li, Y.; Wang, J.; Sun, S.; et al. Recent advances in alginate-based hydrogels for the adsorption–desorption of heavy metal ions from water: A review. Sep. Purif. Technol. 2025, 353, 128265. [Google Scholar] [CrossRef]
- Li, J.; Lin, G.; Liang, H.; Wang, S.; Hu, T.; Zhang, L. Adsorptive removal of Pb(II) using magnetic MOFs-modified chitosan composite: Preparation, performance and mechanism. Sep. Purif. Technol. 2025, 362, 131850. [Google Scholar] [CrossRef]
- Xue, T.; Wang, M.; Man, J.; Yang, Y.; Miao, H.; Li, X. Construction and Regulation of a Superhydrophobic Sponge via In Situ Anchoring of a Hyper-Cross-Linked Polymer for Efficient Oil/Water Separation. ACS Appl. Polym. Mater. 2024, 6, 3864–3874. [Google Scholar] [CrossRef]
- Striz, R.; Minisy, I.M.; Bober, P.; Taboubi, O.; Smilek, J.; Kovalcik, A. Free-Standing Bacterial Cellulose/Polypyrrole Composites for Eco-Friendly Remediation of Hexavalent Chromium Ions. ACS Appl. Polym. Mater. 2024, 6, 6383–6392. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Li, Q.; Dong, Z. Surface Functionalization Strategy for Cellulose Membranes Based on Silanization and Thiol–Ene Click Chemistry. ACS Appl. Polym. Mater. 2024, 6, 12992–13001. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Zhang, C.; Yuan, Z.; Chi, H. Real-Time Uranyl Ion Adsorption Monitoring Based on Cellulose Hydrogels. ACS Appl. Polym. Mater. 2024, 6, 13193–13201. [Google Scholar] [CrossRef]
- Ahmadian, M.; Jaymand, M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord. Chem. Rev. 2023, 486, 215152. [Google Scholar] [CrossRef]
- Pandey, S.; Makhado, E.; Kim, S.; Kang, M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—A review. Environ. Res. 2023, 217, 114909. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramírez, C.; Tasqué, J.E.; Garcia, N.L.; D’ACcorso, N.B. Hemicelluloses hydrogel: Synthesis, characterization, and application in dye removal. Int. J. Biol. Macromol. 2023, 253, 127010. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, R.; Lee, N.Y. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere 2022, 286, 131890. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, H.; Gao, J.; Hu, G.; Zhao, Y.; Tang, X.; Han, X. Efficient Removal of Methylene Blue by Bio-Based Sodium Alginate/Lignin Composite Hydrogel Beads. Polymers 2022, 14, 2917. [Google Scholar] [CrossRef] [PubMed]
- Sirajudheen, P.; Poovathumkuzhi, N.C.; Vigneshwaran, S.; Chelaveettil, B.M.; Meenakshi, S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydr. Polym. 2021, 273, 118604. [Google Scholar] [CrossRef] [PubMed]
- Roa, K.; Tapiero, Y.; Thotiyl, M.O.; Sánchez, J. Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers 2021, 13, 2265. [Google Scholar] [CrossRef] [PubMed]
- Bahrudin, N.N.; Nawi, M.A.; Jawad, A.H.; Sabar, S. Adsorption Characteristics and Mechanistic Study of Immobilized Chitosan-Montmorillonite Composite for Methyl Orange removal. J. Polym. Environ. 2020, 28, 1901–1913. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef]
- Zeng, L.; Xie, M.; Zhang, Q.; Kang, Y.; Guo, X.; Xiao, H.; Peng, Y.; Luo, J. Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydr. Polym. 2015, 123, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Auta, M.; Hameed, B. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014, 237, 352–361. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Ou, L. Kinetic, Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2011, 57, 412–419. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 2012, 215–216, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kuldeep; Yadav, S.; Singh, N.; Basheed, G. Enhanced adsorption of congo red dye using dried chitosan functionalized MnFe2O4 viscoelastic fluid. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136166. [Google Scholar] [CrossRef]
- Foroutan, R.; Tutunchi, A.; Foroughi, M.; Ramavandi, B. Efficient fluoride removal from water and industrial wastewater using magnetic chitosan/β-cyclodextrin aerogel enhanced with biochar and MOF composites. Sep. Purif. Technol. 2025, 363, 132128. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, M.; Liu, H.; Zhang, J.; Hu, Z.; Zhang, Y.; Pang, X. Robust and anti-biofouling bio-based aerogel with Schiff base network stabilized MOFs for efficient removal of tartrazine dye and U(VI) ions. Sep. Purif. Technol. 2024, 361, 131277. [Google Scholar] [CrossRef]
- Dubovenko, R.; Kuzminova, A.; Dmitrenko, M.; Stepanova, A.; Selyutin, A.; Su, R.; Penkova, A. Enhanced Sodium Alginate Membranes Modified with Metal–Organic Frameworks Based on Zirconium for Energy-Efficient Isopropanol Dehydration by Pervaporation. ACS Appl. Polym. Mater. 2024, 6, 12675–12690. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, H.; Huo, T.; Liu, D.; Yan, Z.; Zhang, J. Superhydrophobic PDMS/MOF-74@PU sponge with photothermal property for efficient oil/water separation. Sep. Purif. Technol. 2025, 364, 132525. [Google Scholar] [CrossRef]
- Bera, P.; Mukherjee, S.; Venturi, D.M.; Ruser, N.; Biswas, S. Reusable MOF-Coated Chitosan@Paper Strip Composite for Real-Time Monitoring of Pesticide Pendimethalin and Organoarsenic Feed Additive Roxarsone Levels in Environmental Water, Food, and Vegetable Samples. ACS Appl. Mater. Interfaces 2024, 16, 35245–35254. [Google Scholar] [CrossRef] [PubMed]
- Sacourbaravi, R.; Ansari-Asl, Z.; Hoveizi, E.; Darabpour, E. Poly(vinyl alcohol)/Chitosan Hydrogel Containing Gallic Acid-Modified Fe, Cu, and Zn Metal–Organic Frameworks (MOFs): Preparation, Characterization, and Biological Applications. ACS Appl. Mater. Interfaces 2024, 16, 61609–61620. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mal, D.; Mukherjee, S.; Biswas, S. Sustainable Fabrication of an Eco-Friendly, Reusable Chitosan@Cotton@MOF Composite Sensor for 2,4-Dichlorophenoxyacetic Acid Herbicide and Nitroxoline Antibiotic. ACS Sustain. Chem. Eng. 2023, 11, 13179–13186. [Google Scholar] [CrossRef]
- Valadi, F.M.; Shahsavari, S.; Akbarzadeh, E.; Gholami, M.R. Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr. Polym. 2022, 288, 119383. [Google Scholar] [CrossRef] [PubMed]
- Karakaş, A.; Topçu, E.; Erçarıkcı, E.; Kıranşan, K.D. MOF-containing graphene sponge for efficient solar desalination and water purification. Sep. Purif. Technol. 2025, 363, 132058. [Google Scholar] [CrossRef]
- Tran, D.T.; Lei, L.; Song, M.-H.; Cui, L.; Mao, J.; Lin, X.; Yun, Y.-S. Polyethyleneimine-functionalized pectin fibers as effective adsorbents for the removal of mercury ions from aqueous solution: Characterization, performance, and mechanism. Sep. Purif. Technol. 2025, 369, 133116. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, Z.; Liu, R.; Yan, Z.; Yu, J.; Chen, L.; Li, X.; Cao, C.; Yao, F.; Zhang, H.; et al. Water-Triggered Self-Expanding Agarose/Chitosan-Gallate Hemostatic Sponge for Incompressible Wounds. ACS Appl. Polym. Mater. 2024, 6, 4114–4126. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, Z.; Wang, T.; Wang, J.; Wang, T.; Hu, Z.; Ao, Y.; Wang, Y.; Li, M. Cellulose Nanofibers/PEDOT:PSS Conductive Aerogel for Pressure Sensing Prepared by a Facile Freeze-Drying Method. ACS Appl. Polym. Mater. 2023, 5, 3938–3948. [Google Scholar] [CrossRef]
- Liu, J.; Xie, X.; Wang, T.; Chen, H.; Fu, Y.; Cheng, X.; Wu, J.; Li, G.; Liu, C.; Liimatainen, H.; et al. Promotion of Wound Healing Using Nanoporous Silk Fibroin Sponges. ACS Appl. Mater. Interfaces 2023, 15, 12696–12707. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, H.N.; Cha, H.J.; Yang, Y.J. Microporous Hemostatic Sponge Based on Silk Fibroin and Starch with Increased Structural Retentivity for Contact Activation of the Coagulation Cascade. Biomacromolecules 2023, 24, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Gan, J.; Zhao, Z.; Li, N.; Chen, Y.; Jin, T. Chitosan Sponge/Cu–WO3–x Composite for Photodynamic Therapy of Wound Infection. Langmuir 2023, 39, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; You, D.; Fang, Y.; Luo, J.; Pan, Q.; Liu, Y.; Wang, F.; Yang, W. Confined growth of MOF in chitosan matrix for removal of trace Pb(II) from reclaimed water. Sep. Purif. Technol. 2022, 294, 121223. [Google Scholar] [CrossRef]
- He, P.; Gu, G.; Xu, Y.; Wei, G.; Xu, M. Injectable and self-healing dual-network chitosan/hyaluronic acid/polypeptide (CHP) antibacterial hydrogels for wound healing. Polymer 2025, 319, 128064. [Google Scholar] [CrossRef]
- Xue, X.; Miao, X.; Liu, J.; Ding, Y.; Zhang, Y.; Sun, Y.; Huang, W.; Jiang, Q.; Jiang, B.; Komarneni, S. Investigating the pH-Dependence of gelation process in chitosan-glutaraldehyde hydrogels with diffusing wave spectroscopy. Polymer 2025, 316, 127827. [Google Scholar] [CrossRef]
- Luo, X.; Wang, C.; Huang, G.; Tan, Y.; Tang, W.; Kong, J.; Li, Z. Bio-inspired chitosan aerogel decorated with MOF-on-COF heterostructure hybrid as recyclable scavenger of herbicides in water. Sep. Purif. Technol. 2022, 298, 121616. [Google Scholar] [CrossRef]
- Sam, E.K.; Liu, J.; Lv, X. Surface Engineering Materials of Superhydrophobic Sponges for Oil/Water Separation: A Review. Ind. Eng. Chem. Res. 2021, 60, 2353–2364. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Li, K.; Li, X.; Deng, S.; Liu, Y.; Zhu, G. Porous Cu-BTC Metal–Organic Frameworks Anchored on Dialdehyde Wood Sponge as Material for CO2 Capture and Separation. ACS Appl. Nano Mater. 2024, 7, 14213–14222. [Google Scholar] [CrossRef]
- Sun, X.; Yu, Q.; Wang, F.; Sun, M.; Hu, S.; Zhu, J.; Li, C.; Yang, Z.; Liu, Y.; Zhou, J.; et al. Eco-Friendly Tourmaline@MOF Lignocellulose Aerogel with Favorable Fire Retardancy and Smoke Suppression for Insulation Materials. ACS Sustain. Chem. Eng. 2024, 12, 10517–10527. [Google Scholar] [CrossRef]
- Cao, K.; Yang, X.; Zhao, R.; Xue, W. Fabrication of an Ultralight Ni-MOF-rGO Aerogel with Both Dielectric and Magnetic Performances for Enhanced Microwave Absorption: Microspheres with Hollow Structure Grow onto the GO Nanosheets. ACS Appl. Mater. Interfaces 2023, 15, 9685–9696. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, J.; Sun, J.; Liu, X.; Zhao, X.; Yu, S.; Yuan, Z.; Liu, S.; Yi, X. Hierarchically Porous Mg-MOF-74/Sodium Alginate Composite Aerogel for CO2 Capture. ACS Appl. Nano Mater. 2023, 6, 16694–16701. [Google Scholar] [CrossRef]
- Habibi, N.; Faraji, S.; Pourjavadi, A. Nano graphite platelets/Cu (BDC) MOF coating on polyurethane sponge: A superhydrophobic self-extinguishing adsorbent for static and continuous oil/water separation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132186. [Google Scholar] [CrossRef]
- He, Z.; Wu, H.; Shi, Z.; Duan, X.; Ma, S.; Chen, J.; Kong, Z.; Chen, A.; Sun, Y.; Liu, X. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129142. [Google Scholar] [CrossRef]
- Jeyaseelan, A.; Viswanathan, N.; Naushad, M. Design and development of rare earth elements anchored pectin/chitosan integrated magnesia hybrid composite for effective defluoridation of water. Sep. Purif. Technol. 2025, 352, 128137. [Google Scholar] [CrossRef]
- Kloster, M.; Marcovich, N.E.; Mosiewicki, M.A. Microcrystalline cellulose modified chitosan aerogels to enhance Congo Red dye adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2024, 707, 135823. [Google Scholar] [CrossRef]
- Rajendran, J.; Panneerselvam, A.; Ramasamy, S.; Palanisamy, P. Methylene blue and methyl orange removal from wastewater by magnetic adsorbent based on activated carbon synthesised from watermelon shell. Desalination Water Treat. 2024, 317, 100040. [Google Scholar] [CrossRef]
- Kloster, M.; Mosiewicki, M.A.; Marcovich, N.E. Removal of dyes from aqueous media using environmentally friendly aerogels based on chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133597. [Google Scholar] [CrossRef]
- İpek, Ö.; Taşar, Ş.; Duranay, N. Removal of basic yellow dye molecules with chitosan-based magnetic field-sensitive particles from the aqueous solution. ACS Polymer 2025, 316, 127895. [Google Scholar] [CrossRef]
- Rahul; Jindal, R. Efficient removal of toxic dyes malachite green and fuchsin acid from aqueous solutions using Pullulan/CMC hydrogel. ACS Polymer 2024, 307, 127203. [Google Scholar] [CrossRef]
- Dong, Y.; Abbasi, A.; Mohammadnejad, S.; Nasrollahzadeh, M.; Sheibani, R.; Otadi, M. Recent progresses in bentonite/lignin or polysaccharide composites for sustainable water treatment. Int. J. Biol. Macromol. 2024, 278, 134747. [Google Scholar] [CrossRef] [PubMed]
- Jabli, M.; Almalki, S.G.; Agougui, H. An insight into methylene blue adsorption characteristics onto functionalized alginate bio-polymer gel beads with λ-carrageenan-calcium phosphate, carboxymethyl cellulose, and celite 545. Int. J. Biol. Macromol. 2020, 156, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hocken, A.; Green, M.D. Advances in the molecular design of ionenes for a diverse range of applications. Mol. Syst. Des. Eng. 2021, 6, 334–354. [Google Scholar] [CrossRef]
- Hotton, C.; Ducouret, G.; Sirieix-Plénet, J.; Bizien, T.; Porcar, L.; Malikova, N. Tuning Structure and Rheological Properties of Polyelectrolyte-Based Hydrogels through Counterion-Specific Effects. Macromolecules 2023, 56, 923–933. [Google Scholar] [CrossRef]
- Malikova, N.; Rollet, A.-L.; Čebašek, S.; Tomšič, M.; Vlachy, V. On the crossroads of current polyelectrolyte theory and counterion-specific effects. Phys. Chem. Chem. Phys. 2015, 17, 5650–5658. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Tanaka, Y. A Simple Step toward Enhancing Hydrothermal Stability of ZIF-8. ACS Omega 2019, 4, 19905–19912. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.U.; Othman, M.H.D.; Jilani, A.; Ismail, A.; Hashim, H.; Jaafar, J.; Rahman, M.A.; Rehman, G.U. Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arab. J. Chem. 2018, 11, 1072–1083. [Google Scholar] [CrossRef]
- James, J.B.; Lin, Y.S. Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments. J. Phys. Chem. C 2016, 120, 14015–14026. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Simon, M.A.; Anggraeni, E.; Soetaredjo, F.E.; Santoso, S.P.; Irawaty, W.; Thanh, T.C.; Hartono, S.B.; Yuliana, M.; Ismadji, S. Hydrothermal Synthesize of HF-Free MIL-100(Fe) for Isoniazid-Drug Delivery. Sci. Rep. 2019, 9, 16907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 2015, 259, 183–190. [Google Scholar] [CrossRef]
- Monge, M.E.; Negri, R.M.; Kolender, A.A.; Erra-Balsells, R. Structural Characterization of Native High-Methoxylated Pectin using NMR Spectroscopy and UV-MALDI-TOF Mass Spectrometry. Comparative use of 2,5-Dihydroxybenzoic Acid and n-Harmane as UV-MALDI Matrices. Rapid Commun. Mass Spectrom. 2007, 21, 2638–2646. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J. Priyanka A facile approach for the determination of degree of deacetylation of chitosan using acid-base titration. Heliyon 2022, 8, e09924. [Google Scholar] [CrossRef] [PubMed]
- Kasaai, M.R. Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydr. Polym. 2007, 68, 477–488. [Google Scholar] [CrossRef]
- Baik, M.H.; Lee, S.Y. Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength. J. Ind. Eng. Chem. 2010, 16, 837–841. [Google Scholar] [CrossRef]
- Alves, F.F.C.; Morais, A.Í.S.; Lima, L.C.B.; Santos, A.M.S.; Lima, I.S.; Silva, A.S.; Garcia, R.R.P.; Braga, A.N.S.; Cuevas, M.D.M.O.; Carrasco, S.M.; et al. A new composite based on gellan gum/chitosan and hydroxyapatite contains gallium for removing the anionic dyes remazol blue and remazol red. J. Polym. Environ. 2024, 32, 560–572. [Google Scholar] [CrossRef]
- Ben Seghir, B.; Benhamza, M.H. Preparation, optimization and characterization of chitosan polymer from shrimp shells. J. Food Meas. Charact. 2017, 11, 1137–1147. [Google Scholar] [CrossRef]
- Sousa, J.M.; Vieira, A.C.; Costa, M.P.; Rizzo, M.S.; Chaves, L.L.; Braz, E.M.; Bezerra, R.D.; Leal, R.C.; Barreto, H.M.; Osajima, J.A.; et al. Chitosan grafted with maleic anhydride and ethylenediamine: Preparation, characterization, computational study, antibacterial and cytotoxic properties. Mater. Chem. Phys. 2022, 287, 126301. [Google Scholar] [CrossRef]
- Marudova, M.; MacDougall, A.J.; Ring, S.G. Pectin–chitosan interactions and gel formation. Carbohydr. Res. 2004, 339, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Chang, K. Swelling behavior and the release of protein from chitosan–pectin composite particles. Carbohydr. Polym. 2000, 43, 163–169. [Google Scholar] [CrossRef]
- Yao, K.D.; Liu, J.; Cheng, G.X.; Lu, X.D.; Tu, H.L.; Lopes da Silva, J.A. Swelling behavior of pectin/chitosan complex films. J. Appl. Polym. Sci. 1996, 60, 279–283. [Google Scholar] [CrossRef]
- Hoagland, P.D.; Parris, N. Chitosan/Pectin Laminated Films. J. Agric. Food Chem. 1996, 44, 1915–1919. [Google Scholar] [CrossRef]
- Ralet, M.-C.; Dronnet, V.; Buchholt, H.C.; Thibault, J.-F. Enzymatically and chemically de-esterified lime pectins: Characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydr. Res. 2001, 336, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ström, A.; Schuster, E.; Goh, S.M. Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydr. Polym. 2014, 113, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Maciel, V.B.V.; Yoshida, C.M.; Franco, T.T. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr. Polym. 2015, 132, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Sahebjamee, N.; Soltanieh, M.; Mousavi, S.M.; Heydarinasab, A. Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance. React. Funct. Polym. 2020, 154, 104681. [Google Scholar] [CrossRef]
- Tan, F.; Liu, M.; Li, K.; Wang, Y.; Wang, J.; Guo, X.; Zhang, G.; Song, C. Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem. Eng. J. 2015, 281, 360–367. [Google Scholar] [CrossRef]
- Huo, S.-H.; Yan, X.-P. Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22, 7449–7455. [Google Scholar] [CrossRef]
- Oh, S.; Lee, S.; Lee, G.; Oh, M. Enhanced adsorption capacity of ZIF-8 for chemical warfare agent simulants caused by its morphology and surface charge. Sci. Rep. 2023, 13, 12250. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Li, L.; Sun, Z.; Li, J.; Jiang, H. Facet engineering of a metal–organic framework support modulates the microenvironment of palladium nanoparticles for selective hydrogenation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202211216. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ouyang, L.; Deng, G.; Deng, Z.; Wang, S. DNA adsorption on nanoscale zeolitic imidazolate framework-8 enabling rational design of a DNA-based nanoprobe for gene detection and regulation in living cells. RSC Adv. 2020, 10, 31012–31021. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xu, Y.; Ding, B.; Li, Z.; Xie, F.; Zhang, F.; Wang, H.; Liu, J.; Wang, X. Structure induced selective adsorption performance of ZIF-8 nanocrystals in water. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 661–667. [Google Scholar] [CrossRef]
- Hsu, C.H.; Tsai, S.W. Improvements of Acinetobacter Radioresistens Lipase Adsorption on Celite 535 by Adding Salts. J. Appl. Eng. Sci. 2001, 4, 133–139. [Google Scholar] [CrossRef]
- Oulman, C.S.; Baumann, E.R. Streaming Potentials in Diatomite Filtration of Water. J. AWWA 1964, 56, 915–930. [Google Scholar] [CrossRef]
- Ullah, I.; Xiang, F.; Li, Y.; Huang, J.; Ans, M.; Iqbal, J.; Zhang, Z.; Xiang, S.; Khan, E. Crystal Structure, Spectroscopic Studies and Supramolecular Chemistry, DFT Based Electronic and Optical Properties of Salts of Methylene Blue with Tetrahedral Anions. ChemistrySelect 2023, 8, e202301680. [Google Scholar] [CrossRef]
- You, K.; Kwon, O.; Kim, D. Effects of the protonation and the polar solvation on the molecular properties of methyl orange: A density functional theory study. Bull. Korean Chem. Soc. 2023, 44, 523–527. [Google Scholar] [CrossRef]
- Şenol, Z.M.; Ertap, H.; Fernine, Y.; El Messaoudi, N. Adsorptive removal of synthetic dye from its aqueous solution by using chitosan-bentonite composite: DFT and experimental studies. Polym. Bull. 2024, 81, 12795–12817. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, L. From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmuir 2008, 24, 11625–11630. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef] [PubMed]
Filler | Langmuir Kinetics for MO Removal (Equation (10)) | |||
---|---|---|---|---|
(min−1) | (g mg−1 min−1) | /1000 (M−1 min−1) | R2 | |
MIL-100(Fe) | 3.4 ± 0.5 | 7 ± 2 | 8 ± 2 | 0.9998 |
ZIF-8 | 3.8 ± 0.4 | 2.6 ± 0.5 | 2.8 ± 0.5 | 0.9997 |
Bentonite | 3.7 ± 0.4 | 3.0 ± 0.5 | 3.3 ± 0.5 | 0.9997 |
Celite 545 | 4.2 ± 0.5 | 8 ± 3 | 9 ± 3 | 0.9996 |
Base Sponge | 3.6 ± 0.8 | 5 ± 2 | 5 ± 2 | 0.9990 |
Ionene 3,3′ | 2 ± 1 | 9 ± 7 | 10 ± 8 | 0.9974 |
Ionene 6,6′ | 3 ± 1 | 6 ± 3 | 7 ± 3 | 0.9964 |
Langmuir Kinetics for MB Removal (Equation (10)) | ||||
---|---|---|---|---|
Filler | × 102 (min−1) | × 102 (g mg−1min−1) | /1000 (M−1 min−1) | R2 |
MIL-100(Fe) | 4.6 ± 0.8 | 7 ± 2 | 8 ± 2 | 0.9986 |
Bentonite | 2.1 ± 0.9 | 10 ± 3 | 11 ± 3 | 0.9984 |
Filler | Dye | First-Order Kinetics | Second-Order Kinetics | Langmuir Kinetics |
---|---|---|---|---|
MIL-100(Fe) | MO | 0.8727 | 0.9694 | 0.9998 |
ZIF-8 | 0.9720 | 0.5836 | 0.9997 | |
Bentonite | 0.9554 | 0.8373 | 0.9997 | |
Celite | 0.8378 | 0.9962 | 0.9996 | |
Base sponge | 0.9766 | 0.7764 | 0.9990 | |
Ionene 3,3′ | 0.9105 | 0.9897 | 0.9974 | |
Ionen 6,6′ | 0.9629 | 0.9729 | 0.9964 | |
MIL-100(Fe) | MB | 0.9602 | 0.9739 | 0.9986 |
Bentonite | 0.9660 | 0.7986 | 0.9984 |
Reference | Dye | Matrix | Filler | k2 or k2nd (gmg−1min−1) | qmax (mg g−1) | KL (Lmg−1) |
---|---|---|---|---|---|---|
This work | MO | Chitosan–pectin– lactic acid | MIL-100(Fe) | 0.07 (k2) | 53 | 0.15 |
Zeng et al. [32] | Chitosan | Rectorite–Fe3O4- | 0.02 (k2nd) | 6 | 0.1 | |
Bahrudin et al. [30] | Chitosan | Montmorinollite | 0.02 (k2nd) | 25 | 0.02 | |
This work | MB | Chitosan–pectin– lactic acid | Bentonite | 0.02 (k2) | 21 | 0.2 |
Fan et al. [35] | Chitosan | Graphene oxide–Fe3O4 | 0.1 (k2nd) | 50 | 0.3 | |
Zeng et al. [32] | Chitosan- | Rectorite–Fe3O4 | 0.03 (k2nd) | 25 | 0.2 | |
Albadarian et al. [31] | Chitosan–lignin | - | 0.2 (k2nd) | 36 | - | |
Lee et al. [70] | Alginate | Celite 545 | 0.02 (k2nd) | 28 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soteras, T.; Argento Arruñada, I.M.; Saleh Medina, L.M.; Malikova, N.; de la Caba, K.; Guerrero, P.; D’Accorso, N.B.; Negri, R.M. Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes. Polymers 2025, 17, 2008. https://doi.org/10.3390/polym17152008
Soteras T, Argento Arruñada IM, Saleh Medina LM, Malikova N, de la Caba K, Guerrero P, D’Accorso NB, Negri RM. Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes. Polymers. 2025; 17(15):2008. https://doi.org/10.3390/polym17152008
Chicago/Turabian StyleSoteras, Tomás, Ignacio Manuel Argento Arruñada, Leila María Saleh Medina, Natalie Malikova, Koro de la Caba, Pedro Guerrero, Norma Beatriz D’Accorso, and R. Martín Negri. 2025. "Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes" Polymers 17, no. 15: 2008. https://doi.org/10.3390/polym17152008
APA StyleSoteras, T., Argento Arruñada, I. M., Saleh Medina, L. M., Malikova, N., de la Caba, K., Guerrero, P., D’Accorso, N. B., & Negri, R. M. (2025). Aerogels of Chitosan–Pectin–Lactic Acid Loaded with MOFs: Performance and Kinetics in Removal of Dyes. Polymers, 17(15), 2008. https://doi.org/10.3390/polym17152008