Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Extract
2.3. Eco-Friendly Synthesis of AgNPs
2.4. Nitrophenol to Aminophenol
2.5. Common Method for the Decrease in Organic Dyes
3. Results and Discussion
3.1. Characterization of AgNPs
3.2. Catalytic Reduction of Dyes
3.3. Catalytic Reduction of MO Dye
3.4. Catalytic Reduction of CR Dye
3.5. Catalytic Reduction of MB Dye
3.6. Catalytic Reduction of Nitrophenol to Aminophenol
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Yahyai, W.A.S.; Al Isai, A.A.S.; Alotibi, M.F.; Reddy, B.; Al-Abri, M.; Pejjai, B.; Devunuri, N.; Kumar, N.S.; Al-Fatesh, A.S.; Osman, A.I.; et al. Green synthesis of Mesona Blumes gum capped silver nanoparticles and their antioxidant, antibacterial and catalytic studies. Mater. Adv. 2023, 4, 5273–5281. [Google Scholar] [CrossRef]
- Minisy, I.M.; Salahuddin, N.A.; Ayad, M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021, 203. [Google Scholar] [CrossRef]
- Sherugar, P.; Padaki, M.; Naik, N.S.; George, S.D.; Murthy, D.H. Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics. Chemosphere 2022, 287, 132085. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Lakkaboyana, S.K.; Soontarapa, K.; Asmel, N.K.; Kumar, V.; Marella, R.K.; Yuzir, A.; Yaacob, W.Z.W. Synthesis and characterization of Cu(OH)2-NWs-PVA-AC Nano-composite and its use as an efficient adsorbent for removal of methylene blue. Sci. Rep. 2021, 11, 5686. [Google Scholar] [CrossRef]
- Joga, S.B.; Korabandi, D.; Lakkaboyana, S.K.; Kumar, V. Synthesis of iron nanoparticles on lemon peel carbon dots (LP-CDs@ Fe3O4) applied in Photo-Catalysis, Antioxidant, Antidiabetic, and Hemolytic activity. Inorg. Chem. Commun. 2025, 174, 113960. [Google Scholar] [CrossRef]
- Azarbani, F.; Shiravand, S. Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their anti-bacterial, antifungal and toxic effects. Green Chem. Lett. Rev. 2020, 13, 41–49. [Google Scholar] [CrossRef]
- Sifonte, E.P.; Castro-Smirnov, F.A.; Jimenez, A.A.S.; Diez, H.R.G.; Martínez, F.G. Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells. J. Nanoparticle Res. 2021, 23, 161. [Google Scholar] [CrossRef]
- Sinha, A.; Behera, A. Nanotechnology in the space industry. In Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention; Micro and Nano Technologies: Barcelona, Spain, 2022. [Google Scholar] [CrossRef]
- Movahedi, R.; Razmjoue, D.; Movahedpour, A.; Varma, R.S.; Bahmani, M. Synthesis of Silver Nanoparticles Using Haplophyllum robustum Bge. Extract: Antibacterial, Antifungal, and Scolicidal Activity against Echinococcus granulosus Protoscolices. Curr. Nanosci. 2025, 21, 333–344. [Google Scholar] [CrossRef]
- Jebril, S.; Jenana, R.K.B.; Dridi, C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their anti-fungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020, 248, 122898. [Google Scholar] [CrossRef]
- Khatami, M.; Varma, R.S.; Zafarnia, N.; Yaghoobi, H.; Sarani, M.; Kumar, V.G. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 2018, 10, 9–15. [Google Scholar] [CrossRef]
- Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomed. Eng. 2012, 4. [Google Scholar] [CrossRef]
- Maddinedi, S.B.; Mandal, B.K.; Maddili, S.K. Biofabrication of size controllable silver nanoparticles—A green approach. J. Photochem. Photobiol. B Biol. 2017, 167, 236–241. [Google Scholar] [CrossRef]
- Okuda, M.; Kobayashi, Y.; Suzuki, K.; Sonoda, K.; Kondoh, T.; Wagawa, A.; Kondo, A.; Yoshimura, H. Self-Organized Inorganic Nanoparticle Arrays on Protein Lattices. Nano Lett. 2005, 5, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Bruening, M.L. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films. Nano Lett. 2002, 2, 497–501. [Google Scholar] [CrossRef]
- Roy, K.; Sarkar, C.K.; Ghosh, C.K. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl. Nanosci. 2014, 5, 953–959. [Google Scholar] [CrossRef]
- Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 2014, 5, 499–504. [Google Scholar] [CrossRef]
- Sajadi, S.M.; Nasrollahzadeh, M.; Akbari, R. Cyanation of aryl and heteroaryl aldehydes using in-situ-synthesized Ag na-noparticles in Crocus sativus L. Extract. Chem. Sel. 2019, 4, 1127–1130. [Google Scholar] [CrossRef]
- Pawliszak, P.; Malina, D.; Sobczak-Kupiec, A. Rhodiola rosea extract mediated green synthesis of silver nanoparticles supported by nanosilica carrier. Mater. Chem. Phys. 2019, 234, 390–402. [Google Scholar] [CrossRef]
- Dutta, T.; Ghosh, N.N.; Das, M.; Adhikary, R.; Mandal, V.; Chattopadhyay, A.P. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J. Environ. Chem. Eng. 2020, 8. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, V.; Singh, P.P.; Matharu, A.S.; Zhang, W.; Kim, K.-H.; Singh, J.; Rawat, M. Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 2020, 143, 105924. [Google Scholar] [CrossRef] [PubMed]
- Mahiuddin, M.; Saha, P.; Ochiai, B. Green Synthesis and Catalytic Activity of Silver Nanoparticles Based on Piper chaba Stem Extracts. Nanomaterials 2020, 10, 1777. [Google Scholar] [CrossRef] [PubMed]
- Al-Senani, G.M.; Al-Kadhi, N. The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions. Appl. Sci. 2020, 10, 4840. [Google Scholar] [CrossRef]
- Veisi, H.; Azizi, S.; Mohammadi, P. Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 2018, 170, 1536–1543. [Google Scholar] [CrossRef]
- Bordón, D.L.; Herrera, E.; González, M.L.; Rossi, L.I.; Aimar, M.L.; Vázquez, A.M.; Granados, A.M. Catalytic and biocidal activity of silver and gold nanoparticles obtained by green synthesis using aqueous extracts of glossy privet (Ligustrum lucidum) dry fruits. J. Mol. Liq. 2024, 415, 126378. [Google Scholar] [CrossRef]
- Bianca, M.; Vladislav, S.; Maria, P.-S.; Luminita, D. Biosynthesis of Silver Nanoparticles Using Ligustrum Ovalifolium Fruits and Their Cytotoxic Effects. Nanomaterials 2018, 8, 627. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J. Chemical Constituents from the Fruits of Ligustrum lucidum W.T.Aiton and Their Role on the Medicinal Treatment. Nat. Prod. Commun. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Suriyakala, G.; Sathiyaraj, S.; Babujanarthanam, R.; Alarjani, K.M.; Hussein, D.S.; Rasheed, R.A.; Kanimozhi, K. Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. J. King Saud Univ. Sci. 2022, 34, 101830. [Google Scholar] [CrossRef]
- Somasekhara Reddy, M.C.; Sivarama Krishna, L.; Varada Reddy, A. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J. Hazard. Mater. 2012, 203, 118–127. [Google Scholar] [CrossRef]
- Losetty, V.; Devanesan, S.; AlSalhi, M.S.; Velu, P.P.; Muthupillai, D.; Kumar, K.A.; Lakkaboyana, S.K. Green synthesis of silver nanoparticles using Malachra alceifolia (wild okra) for wastewater treatment and biomedical applications with molecular docking approach. Environ. Sci. Pollut. Res. 2024, 31, 55562–55576. [Google Scholar] [CrossRef]
- Raj, S.; Singh, H.; Trivedi, R.; Soni, V. Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Sci. Rep. 2020, 10, 9616. [Google Scholar] [CrossRef] [PubMed]
- Githala, C.K.; Raj, S.; Dhaka, A.; Mali, S.C.; Trivedi, R. Phyto-fabrication of silver nanoparticles and their catalytic dye deg-radation and antifungal efficacy. Front. Chem. 2022, 10, 994721. [Google Scholar] [CrossRef] [PubMed]
- Beniwal, A.; Singh, S.; Rani, J.; Moond, M.; Kakkar, S.; Sangwan, S.; Kumari, S. Waste upcycling of Sapota peels as a green route for the synthesis of silver nanoparticles and their application as catalytic and colorimetric detection of Co2+ and Hg2+. Nanoscale Res. Lett. 2024, 19, 191. [Google Scholar] [CrossRef] [PubMed]
- Pawar, J.S.; Patil, R.H. Green synthesis of silver nanoparticles using Eulophia herbacea (Lindl.) tuber extract and evaluation of its biological and catalytic activity. SN Appl. Sci. 2019, 2, 52. [Google Scholar] [CrossRef]
- Asmare, Z.G.; Aragaw, B.A.; Atlabachew, M. Facile Synthesis of Natural Kaolin-Based CuO Catalyst: An Efficient Heterogeneous Catalyst for the Catalytic Reduction of 4-Nitrophenol. ACS Omega 2024, 9, 48014–48031. [Google Scholar] [CrossRef]
Plant Name | Catalyst | Reaction Time (min) | References | ||
---|---|---|---|---|---|
MO | CR | MB | |||
Terminalia arjuna | AgNPs | 16 | 14 | 19 | [32] |
Plantago ovata | AgNPs | - | 18 | 20 | [33] |
Sapota peels | AgNPs | 24 | - | - | [34] |
Eulophiaherbacea | AgNPs | - | 30 | 30 | [35] |
L. ovalifolium | AgNPs | 8 | 18 | 10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliraja, T.; Kalla, R.M.N.; Al-Zahrani, F.A.M.; Vattikuti, S.V.P.; Lee, J. Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications. Nanomaterials 2025, 15, 1087. https://doi.org/10.3390/nano15141087
Kaliraja T, Kalla RMN, Al-Zahrani FAM, Vattikuti SVP, Lee J. Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications. Nanomaterials. 2025; 15(14):1087. https://doi.org/10.3390/nano15141087
Chicago/Turabian StyleKaliraja, Thangamani, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti, and Jaewoong Lee. 2025. "Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications" Nanomaterials 15, no. 14: 1087. https://doi.org/10.3390/nano15141087
APA StyleKaliraja, T., Kalla, R. M. N., Al-Zahrani, F. A. M., Vattikuti, S. V. P., & Lee, J. (2025). Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications. Nanomaterials, 15(14), 1087. https://doi.org/10.3390/nano15141087