Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,076)

Search Parameters:
Keywords = metal oxide semiconductors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 492 KiB  
Article
Ultra-Small Temperature Sensing Units with Fitting Functions for Accurate Thermal Management
by Samuel Heikens and Degang Chen
Metrology 2025, 5(3), 46; https://doi.org/10.3390/metrology5030046 - 1 Aug 2025
Viewed by 141
Abstract
Thermal management is an area of study in electronics focused on managing temperature to improve reliability and efficiency. When temperatures are too high, cooling systems are activated to prevent overheating, which can lead to reliability issues. To monitor the temperatures, sensors are often [...] Read more.
Thermal management is an area of study in electronics focused on managing temperature to improve reliability and efficiency. When temperatures are too high, cooling systems are activated to prevent overheating, which can lead to reliability issues. To monitor the temperatures, sensors are often placed on-chip near hotspot locations. These sensors should be very small to allow them to be placed among compact, high-activity circuits. Often, they are connected to a central control circuit located far away from the hot spot locations where more area is available. This paper proposes sensing units for a novel temperature sensing architecture in the TSMC 180 nm process. This architecture functions by approximating the current through the sensing unit at a reference voltage, which is used to approximate the temperature in the digital back end using fitting functions. Sensing units are selected based on how well its temperature–current relationship can be modeled, sensing unit area, and power consumption. Many sensing units will be experimented with at different reference voltages. These temperature–current curves will be modeled with various fitting functions. The sensing unit selected is a diode-connected p-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) with a size of W = 400 nm, L = 180 nm. This sensing unit is exceptionally small compared to existing work because it does not rely on multiple devices at the sensing unit location to generate a PTAT or IPTAT signal like most work in this area. The temperature–current relationship of this device can also be modeled using a 2nd order polynomial, requiring a minimal number of trim temperatures. Its temperature error is small, and the power consumption is low. The range of currents for this sensing unit could be reasonably made on an IDAC. Full article
Show Figures

Figure 1

28 pages, 4980 KiB  
Review
Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions
by Heera Jayan, Ruiyun Zhou, Chanjun Sun, Chen Wang, Limei Yin, Xiaobo Zou and Zhiming Guo
Foods 2025, 14(15), 2706; https://doi.org/10.3390/foods14152706 - 1 Aug 2025
Viewed by 282
Abstract
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered [...] Read more.
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered significant interest for their numerous advantages in the development of food safety monitoring systems. The adaptable characteristics of gas sensors make them ideal for integration into production lines, while the flexibility of certain sensor types allows for incorporation into packaging materials. Various types of gas sensors have been developed for their distinct properties and are utilized in a wide range of applications. Metal-oxide semiconductors and optical sensors are widely studied for their potential use as gas sensors in food quality assessments due to their ability to provide visual indicators to consumers. The advancement of new nanomaterials and their integration with advanced data acquisition techniques is expected to enhance the performance and utility of sensors in sustainable practices within the food supply chain. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

12 pages, 5365 KiB  
Article
A 100 MHz 3 dB Bandwidth, 30 V Rail-to-Rail Class-AB Buffer Amplifier for Base Station ET-PA Hybrid Supply Modulator
by Min-Ju Kim, Donghwi Kang, Gyujin Choi, Seong-Jun Youn and Ji-Seon Paek
Electronics 2025, 14(15), 3036; https://doi.org/10.3390/electronics14153036 - 30 Jul 2025
Viewed by 190
Abstract
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm [...] Read more.
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm BCD technology, utilizing Laterally Diffused Metal-Oxide Semiconductor (LDMOS) transistors for high-voltage operation and incorporating shielding MOSFETs to protect the low-voltage devices. The circuit utilizes dual power supply domains (5 V and 30 V) to improve power efficiency. The proposed LA achieves a bandwidth of 100 MHz and a slew rate of +1003/−852 V/μs, with a quiescent power consumption of 0.89 W. Transient simulations using a 50 MHz bandwidth 5G NR envelope input demonstrate that the proposed HSM achieves a power efficiency of 83%. Consequently, the proposed HSM supports high-output (100 W) wideband 5G NR transmission with enhanced efficiency. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

31 pages, 11019 KiB  
Review
A Review of Tunnel Field-Effect Transistors: Materials, Structures, and Applications
by Shupeng Chen, Yourui An, Shulong Wang and Hongxia Liu
Micromachines 2025, 16(8), 881; https://doi.org/10.3390/mi16080881 - 29 Jul 2025
Viewed by 396
Abstract
The development of an integrated circuit faces the challenge of the physical limit of Moore’s Law. One of the most important “Beyond Moore” challenges is the scaling down of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) versus their increasing static power consumption. This is because, at [...] Read more.
The development of an integrated circuit faces the challenge of the physical limit of Moore’s Law. One of the most important “Beyond Moore” challenges is the scaling down of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) versus their increasing static power consumption. This is because, at room temperature, the thermal emission transportation mechanism will cause a physical limitation on subthreshold swing (SS), which is fundamentally limited to a minimum value of 60 mV/decade for MOSFETs, and accompanied by an increase in off-state leakage current with the process of scaling down. Moreover, the impacts of short-channel effects on device performance also become an increasingly severe problem with channel length scaling down. Due to the band-to-band tunneling mechanism, Tunnel Field-Effect Transistors (TFETs) can reach a far lower SS than MOSFETs. Recent research works indicated that TFETs are already becoming some of the promising candidates of conventional MOSFETs for ultra-low-power applications. This paper provides a review of some advances in materials and structures along the evolutionary process of TFETs. An in-depth discussion of both experimental works and simulation works is conducted. Furthermore, the performance of TFETs with different structures and materials is explored in detail as well, covering Si, Ge, III-V compounds and 2D materials, alongside different innovative device structures. Additionally, this work provides an outlook on the prospects of TFETs in future ultra-low-power electronics and biosensor applications. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

22 pages, 10412 KiB  
Article
Design and Evaluation of Radiation-Tolerant 2:1 CMOS Multiplexers in 32 nm Technology Node: Transistor-Level Mitigation Strategies and Performance Trade-Offs
by Ana Flávia D. Reis, Bernardo B. Sandoval, Cristina Meinhardt and Rafael B. Schvittz
Electronics 2025, 14(15), 3010; https://doi.org/10.3390/electronics14153010 - 28 Jul 2025
Viewed by 286
Abstract
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely [...] Read more.
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely used in data-path routing, clock networks, and reconfigurable systems, provides a critical benchmark for assessing radiation-hardened design methodologies. In this context, this work aims to analyze the power consumption, area overhead, and delay of 2:1 multiplexer designs under transient fault conditions, employing the CMOS and Differential Cascode Voltage Switch Logic (DCVSL) logic styles and mitigation strategies. Electrical simulations were conducted using 32 nm high-performance predictive technology, evaluating both the original circuit versions and modified variants incorporating three mitigation strategies: transistor sizing, D-Cells, and C-Elements. Key metrics, including power consumption, delay, area, and radiation robustness, were analyzed. The C-Element and transistor sizing techniques ensure satisfactory robustness for all the circuits analyzed, with a significant impact on delay, power consumption, and area. Although the D-Cell technique alone provides significant improvements, it is not enough to achieve adequate levels of robustness. Full article
Show Figures

Figure 1

14 pages, 2878 KiB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 284
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

10 pages, 4230 KiB  
Article
Enhanced UVC Responsivity of Heteroepitaxial α-Ga2O3 Photodetector with Ultra-Thin HfO2 Interlayer
by SiSung Yoon, SeungYoon Oh, GyuHyung Lee, YongKi Kim, SunJae Kim, Ji-Hyeon Park, MyungHun Shin, Dae-Woo Jeon and GeonWook Yoo
Micromachines 2025, 16(7), 836; https://doi.org/10.3390/mi16070836 - 21 Jul 2025
Viewed by 553
Abstract
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby [...] Read more.
In this study, the influence of HfO2 interlayer thickness on the performance of heteroepitaxial α-Ga2O3 layer-based metal–insulator–semiconductor–insulator–metal (MISIM) ultraviolet photodetectors is examined. A thin HfO2 interlayer enhances the interface quality and reduces the density of interface traps, thereby improving the performance of UVC photodetectors. The fabricated device with a 1 nm HfO2 interlayer exhibited a significantly reduced dark current and higher photocurrent than a conventional metal–semiconductor–metal (MSM). Specifically, the 1 nm HfO2 MISIM device demonstrated a photocurrent of 2.3 μA and a dark current of 6.61 pA at 20 V, whereas the MSM device exhibited a photocurrent of 1.1 μA and a dark current of 73.3 pA. Furthermore, the photodetector performance was comprehensively evaluated in terms of responsivity, response speed, and high-temperature operation. These results suggest that the proposed ultra-thin HfO2 interlayer is an effective strategy for enhancing the performance of α-Ga2O3-based UVC photodetectors by simultaneously suppressing dark currents and increasing photocurrents and ultimately demonstrate its potential for stable operation under extreme environmental conditions. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

13 pages, 2012 KiB  
Article
Electronic Nose System Based on Metal Oxide Semiconductor Sensors for the Analysis of Volatile Organic Compounds in Exhaled Breath for the Discrimination of Liver Cirrhosis Patients and Healthy Controls
by Makhtar War, Benachir Bouchikhi, Omar Zaim, Naoual Lagdali, Fatima Zohra Ajana and Nezha El Bari
Chemosensors 2025, 13(7), 260; https://doi.org/10.3390/chemosensors13070260 - 17 Jul 2025
Viewed by 373
Abstract
The early detection of liver cirrhosis (LC) is crucial due to its high morbidity and mortality in advanced stages. Reliable, non-invasive diagnostic tools are essential for timely intervention. Exhaled human breath, reflecting metabolic changes, offers significant potential for disease diagnosis. This paper focuses [...] Read more.
The early detection of liver cirrhosis (LC) is crucial due to its high morbidity and mortality in advanced stages. Reliable, non-invasive diagnostic tools are essential for timely intervention. Exhaled human breath, reflecting metabolic changes, offers significant potential for disease diagnosis. This paper focuses on the emerging role of sensor array-based volatile organic compounds (VOCs) analysis of exhaled breath, particularly using electronic nose (e-nose) technology to differentiate LC patients from healthy controls (HCs). This study included 55 participants: 27 LC patients and 28 HCs. Sensor’s measurement data were analyzed using machine learning techniques, such as principal component analysis (PCA), discriminant function analysis (DFA), and support vector machines (SVMs) that were utilized to uncover meaningful patterns and facilitate accurate classification of sensor-derived information. The diagnostic accuracy was thoroughly assessed through receiver operating characteristic (ROC) curve analysis, with specific emphasis on assessing sensitivity and specificity metrics. The e-nose effectively distinguished LC from HC, with PCA explaining 92.50% variance and SVMs achieving 100% classification accuracy. This study demonstrates the significant potential of e-nose technology towards VOCs analysis in exhaled breath, as a valuable tool for LC diagnosis. It also explores feature extraction methods and suitable algorithms for effectively distinguishing between LC patients and controls. This research provides a foundation for advancing breath-based diagnostic technologies for early detection and monitoring of liver cirrhosis. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

26 pages, 3771 KiB  
Article
BGIR: A Low-Illumination Remote Sensing Image Restoration Algorithm with ZYNQ-Based Implementation
by Zhihao Guo, Liangliang Zheng and Wei Xu
Sensors 2025, 25(14), 4433; https://doi.org/10.3390/s25144433 - 16 Jul 2025
Viewed by 236
Abstract
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. [...] Read more.
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. Therefore, in order to improve the visibility and signal-to-noise ratio of remote sensing images based on CMOS imaging systems, this paper proposes a low-light remote sensing image enhancement method and a corresponding ZYNQ (Zynq-7000 All Programmable SoC) design scheme called the BGIR (Bilateral-Guided Image Restoration) algorithm, which uses an improved multi-scale Retinex algorithm in the HSV (hue–saturation–value) color space. First, the RGB image is used to separate the original image’s H, S, and V components. Then, the V component is processed using the improved algorithm based on bilateral filtering. The image is then adjusted using the gamma correction algorithm to make preliminary adjustments to the brightness and contrast of the whole image, and the S component is processed using segmented linear enhancement to obtain the base layer. The algorithm is also deployed to ZYNQ using ARM + FPGA software synergy, reasonably allocating each algorithm module and accelerating the algorithm by using a lookup table and constructing a pipeline. The experimental results show that the proposed method improves processing speed by nearly 30 times while maintaining the recovery effect, which has the advantages of fast processing speed, miniaturization, embeddability, and portability. Following the end-to-end deployment, the processing speeds for resolutions of 640 × 480 and 1280 × 720 are shown to reach 80 fps and 30 fps, respectively, thereby satisfying the performance requirements of the imaging system. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

14 pages, 3338 KiB  
Article
Monolithically Integrated GaAs Nanoislands on CMOS-Compatible Si Nanotips Using GS-MBE
by Adriana Rodrigues, Anagha Kamath, Hannah-Sophie Illner, Navid Kafi, Oliver Skibitzki, Martin Schmidbauer and Fariba Hatami
Nanomaterials 2025, 15(14), 1083; https://doi.org/10.3390/nano15141083 - 12 Jul 2025
Viewed by 287
Abstract
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully [...] Read more.
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully relaxed GaAs nanoislands on complementary metal oxide semiconductor (CMOS)-compatible Si(001) nanotip wafers. Nanotip wafers were fabricated using a state-of-the-art 0.13 μm SiGe Bipolar CMOS pilot line on 200 mm wafers. Our investigation focuses on understanding the influence of the growth conditions on the morphology, crystalline structure, and defect formation of the GaAs islands. The morphological, structural, and optical properties of the GaAs islands were characterized using scanning electron microscopy, high-resolution X-ray diffraction, and photoluminescence spectroscopy. For samples with less deposition, the GaAs islands exhibit a monomodal size distribution, with an average effective diameter ranging between 100 and 280 nm. These islands display four distinct facet orientations corresponding to the {001} planes. As the deposition increases, larger islands with multiple crystallographic facets emerge, accompanied by a transition from a monomodal to a bimodal growth mode. Single twinning is observed in all samples. However, with increasing deposition, not only a bimodal size distribution occurs, but also the volume fraction of the twinned material increases significantly. These findings shed light on the growth dynamics of nanoheteroepitaxial GaAs and contribute to ongoing efforts toward CMOS-compatible Si-based nanophotonic technologies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

18 pages, 3042 KiB  
Article
Mapping Morphine’s Antinociceptive Impact on the Ventral Tegmental Area During Nociceptive Stimulation: A Novel Microimaging Approach in a Neuropathic Pain Model
by Austin Ganaway, Airi Kamata, Dunyan Yao, Kazuto Sakoori, Ryoma Okada, Ting Chen, Yasumi Ohta, Jun Ohta, Masahiro Ohsawa, Metin Akay and Yasemin M. Akay
Int. J. Mol. Sci. 2025, 26(13), 6526; https://doi.org/10.3390/ijms26136526 - 7 Jul 2025
Viewed by 410
Abstract
The neurobiology of chronic pain is complex and multifaceted, intertwining with the mesocorticolimbic system to regulate the behavioral and perceptional response to adverse stimuli. Specifically, the ventral tegmental area (VTA), the dopaminergic hub of the reward pathways located deep within the midbrain, is [...] Read more.
The neurobiology of chronic pain is complex and multifaceted, intertwining with the mesocorticolimbic system to regulate the behavioral and perceptional response to adverse stimuli. Specifically, the ventral tegmental area (VTA), the dopaminergic hub of the reward pathways located deep within the midbrain, is crucial for regulating the release of dopamine (DA) throughout the central nervous system (CNS). To better understand the nuances among chronic pain, VTA response, and therapeutics, implementing progressive approaches for mapping and visualizing the deep brain in real time during nociceptive stimulation is crucial. In this study, we utilize a fluorescence imaging platform with a genetically encoded calcium indicator (GCaMP6s) to directly visualize activity in the VTA during acute nociceptive stimulation in both healthy adult mice and adult mice with partial nerve ligation (PNL)-induced neuropathic pain. We also investigate the visualization of the analgesic properties of morphine. Deep brain imaging using our self-fabricated µ-complementary metal–oxide–semiconductor (CMOS) imaging device allows the tracking of the VTA’s response to adverse stimuli. Our findings show that nociceptive stimulation is associated with a reduction in VTA fluorescence activity, supporting the potential of this platform for visualizing pain-related responses in the central nervous system. Additionally, treatment with morphine significantly reduces the neuronal response caused by mechanical stimuli and is observable using the CMOS imaging platform, demonstrating a novel way to potentially assess and treat neuropathic pain. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons, 4th Edition)
Show Figures

Figure 1

38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 638
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

22 pages, 3063 KiB  
Article
High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring
by Aleksei V. Almaev, Zhakyp T. Karipbayev, Askhat B. Kakimov, Nikita N. Yakovlev, Olzhas I. Kukenov, Alexandr O. Korchemagin, Gulzhanat A. Akmetova-Abdik, Kuat K. Kumarbekov, Amangeldy M. Zhunusbekov, Leonid A. Mochalov, Ekaterina A. Slapovskaya, Petr M. Korusenko, Aleksandra V. Koroleva, Evgeniy V. Zhizhin and Anatoli I. Popov
Technologies 2025, 13(7), 286; https://doi.org/10.3390/technologies13070286 - 4 Jul 2025
Viewed by 371
Abstract
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of [...] Read more.
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of combustion systems. To this end, sensors are required that can withstand extreme operating conditions, including temperatures of at least 600 °C, as well as high pressure and gas flow rate. ZnGa2O4, being an ultra-wide bandgap semiconductor with high chemical and thermal stability, is a promising material for such sensors. The synthesis and investigation of the structural and CH4 sensing properties of ceramic pellets made from pure and Er-doped ZnGa2O4 were conducted. Doping with Er leads to the formation of a secondary Er3Ga5O12 phase and an increase in the active surface area. This structural change significantly enhanced the CH4 response, demonstrating an 11.1-fold improvement at a concentration of 104 ppm. At the optimal response temperature of 650 °C, the Er-doped ZnGa2O4 exhibited responses of 2.91 a.u. and 20.74 a.u. to 100 ppm and 104 ppm of CH4, respectively. The Er-doped material is notable for its broad dynamic range for CH4 concentrations (from 100 to 20,000 ppm), low sensitivity to humidity variations within the 30–70% relative humidity range, and robust stability under cyclic gas exposure. In addition to CH4, the sensitivity of Er-doped ZnGa2O4 to other gases at a temperature of 650 °C was investigated. The samples showed strong responses to C2H4, C3H8, C4H10, NO2, and H2, which, at gas concentrations of 100 ppm, were higher than the response to CH4 by a factor of 2.41, 2.75, 3.09, 1.16, and 1.64, respectively. The study proposes a plausible mechanism explaining the sensing effect of Er-doped ZnGa2O4 and discusses its potential for developing high-temperature CH4 sensors for applications such as combustion monitoring systems and determining the ideal fuel/air mixture. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

30 pages, 5199 KiB  
Review
Modification Strategies of g-C3N4-Based Materials for Enhanced Photoelectrocatalytic Degradation of Pollutants: A Review
by Yijie Zhang, Peng Lian, Xinyu Hao, Li Zhang, Lihua Yang, Li Jiang, Kaiyou Zhang, Lei Liao and Aimiao Qin
Inorganics 2025, 13(7), 225; https://doi.org/10.3390/inorganics13070225 - 3 Jul 2025
Viewed by 471
Abstract
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy [...] Read more.
Graphite carbon nitride (g-C3N4) is a low band gap non-metallic polymer semiconductor that has broad application prospects and is an ideal material for absorbing visible light, as g-C3N4 materials have strong oxidation properties and are easy to modify. The structure formation of g-C3N4-based materials makes a series of photocatalytic synthesis reactions possible and improves photocatalytic reaction activity. In this paper, the development history, structures, and performance of g-C3N4 are briefly introduced, and the modification strategies of g-C3N4 are summarized to improve its photocatalytic and photoelectric catalytic properties via doping, heterojunction construction, etc. The light absorption and utilization of the catalysts are also analyzed in terms of light source conditions, and the application of g-C3N4 and its modified materials in photocatalysis and photocatalytic degradation is reviewed. Full article
Show Figures

Graphical abstract

12 pages, 13780 KiB  
Article
Additive Manufacturing of Composite Structures with Transverse Thermoelectricity
by Weixiao Gao, Shuai Yu, Buntong Tan and Fei Ren
J. Compos. Sci. 2025, 9(7), 344; https://doi.org/10.3390/jcs9070344 - 2 Jul 2025
Viewed by 348
Abstract
This study investigates the application of additive manufacturing (AM) in fabricating transverse thermoelectric (TTE) composites, demonstrating the feasibility of this methodology for TTE material synthesis. Zinc oxide (ZnO), a wide-bandgap semiconductor with moderate thermoelectric performance, and copper (Cu), a highly conductive metal, were [...] Read more.
This study investigates the application of additive manufacturing (AM) in fabricating transverse thermoelectric (TTE) composites, demonstrating the feasibility of this methodology for TTE material synthesis. Zinc oxide (ZnO), a wide-bandgap semiconductor with moderate thermoelectric performance, and copper (Cu), a highly conductive metal, were selected as base materials. These were formulated into stable paste-like feedstocks for direct ink writing (DIW). A custom dual-nozzle 3D printer was developed to precisely deposit these materials in pre-designed architectures. The resulting structures exhibited measurable transverse Seebeck effects. Unlike prior TE research primarily focused on longitudinal configurations, this work demonstrates a novel AM-enabled strategy that integrates directional compositional anisotropy, embedded metal–semiconductor interfaces, and scalable multi-material printing to realize TTE behavior. The approach offers a cost-effective and programmable pathway toward next-generation energy harvesting and thermal management systems. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Composites)
Show Figures

Figure 1

Back to TopTop