Design and Synthesis of Nanostructured Catalysts, 3rd Edition

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Nanostructured Catalysts".

Deadline for manuscript submissions: 5 April 2026 | Viewed by 10261

Special Issue Editor


E-Mail Website
Guest Editor
Department of Bionanotechnology and Bioconvergence Engineering, Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea
Interests: plasmonic nanophotonics; heterogeneous catalysis; artificial photosynthesis; renewable energy; biofuels; biomaterials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Following the second successful Special Issue on this topic (available here), we are happy to announce a third edition titled “Design and Synthesis of Nanostructured Catalysts, 3rd Edition”.

Catalytic studies have significantly advanced with the emergence of nanotechnology as a key technology of modern times. Nanotechnology has progressed synthetic techniques so that they may control and maintain uniformity in shape, size, morphology, and composition, as well as excel in catalytic performance. Nanostructured catalysts of metals, oxides, semiconductors, and other compounds transpire at the interface between heterogeneous and homogeneous catalytic processes, and enable high efficiency, better selectivity, great stability, easier recovery, and recycling. The nanostructured catalysts are the focus of this Special Issue, which aims to cover the synthesis of numerous nanostructured catalysts, such as metal oxides (alkali, alkaline, and transition metal oxides), photocatalytic nanomaterials, and nanofibrous materials, in addition to applications in CO2 conversion, hydrogen production, fuel cells, composite solid rocket propellants, energy storage, medicines, dye, bio-fuel production, water purification, and many other chemical reactions, such as electrocatalytic processes, photocatalytic reactions, coupling reactions, hydrogenation, reduction reactions, oxidation reactions, and others.

If you would like to submit papers to this Special Issue or have any questions, please contact the in-house editor, Ms. Rita Lin (rita.lin@mdpi.com).

Dr. Dinesh Kumar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plasmonic nanomaterials
  • metal nano-oxides
  • metal–organic frameworks
  • semiconductor nanostructures
  • 2D materials
  • surface-engineered catalysts
  • defect engineering
  • electrocatalysts
  • photocatalysts

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4631 KB  
Article
Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface
by Chao Song, Phuong Anh Nguyen, Thanh-Truc Pham, Yong Men, Jin Suk Chung and Eun Woo Shin
Catalysts 2026, 16(1), 29; https://doi.org/10.3390/catal16010029 - 31 Dec 2025
Viewed by 382
Abstract
Since Pt cocatalysts play an important role in photocatalytic H2 evolution, it is necessary to track Pt over Pt/g-C3N4 catalysts during the evolution process to understand the associated photocatalytic deactivation behavior. In this study, bulk g-C3N4 [...] Read more.
Since Pt cocatalysts play an important role in photocatalytic H2 evolution, it is necessary to track Pt over Pt/g-C3N4 catalysts during the evolution process to understand the associated photocatalytic deactivation behavior. In this study, bulk g-C3N4 (CN) and oxidized g-C3N4 (OCN) catalysts containing a Pt cocatalyst were prepared to investigate photocatalytic deactivation behavior through tracking changes in the catalytic properties of the Pt cocatalyst and g-C3N4 surface during photocatalytic H2 evolution. While CN catalysts show a lower photocatalytic activity than OCN catalysts, the former exhibit high resistance to catalytic deactivation with a lower deactivation rate than the latter. The high photocatalytic activity of OCN catalysts is caused by the highly dispersed Pt species on chemically oxidized g-C3N4 with abundant O-containing functional groups, relating to the excellent separation efficiency of photogenerated electron/hole pairs. During the evolution process, highly dispersed Pt species over fresh OCN are easily and rapidly agglomerated into large Pt nanoclusters due to its exfoliated thin-layered g-C3N4 structure, whereas the three-dimensional multi-layered g-C3N4 structure of CN catalysts hinders the agglomeration of Pt over the CN catalyst. In addition, during the photocatalytic H2 evolution, the O-containing functional groups on the OCN catalyst significantly disappear, which causes a weak metal/support interaction and, eventually, fast photocatalytic deactivation due to the agglomeration of Pt. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Graphical abstract

21 pages, 4825 KB  
Article
Synergy in Sonogashira Cross-Coupling Reactions with a Magnetic Janus-Type Catalyst
by Majid Vafaeezadeh, Fatemeh Rajabi, Xuanya Qiu, Marco A. M. Tummeley, Paul Hausbrandt, Sven Schaefer, Alina Ouissa, Anna Demchenko, Johannes L’huillier, Volker Schünemann, Wolfgang Kleist and Werner R. Thiel
Catalysts 2025, 15(12), 1123; https://doi.org/10.3390/catal15121123 - 1 Dec 2025
Viewed by 1012
Abstract
This work describes the straightforward synthesis of a novel heterogeneous palladium catalyst immobilized on magnetic Janus-type silica particles coated with an amphiphilic ionic liquid (IL) layer. The material was prepared via a one-pot process wherein TEOS (tetraethoxysilane) and a bis(triethoxysilane) IL precursor are [...] Read more.
This work describes the straightforward synthesis of a novel heterogeneous palladium catalyst immobilized on magnetic Janus-type silica particles coated with an amphiphilic ionic liquid (IL) layer. The material was prepared via a one-pot process wherein TEOS (tetraethoxysilane) and a bis(triethoxysilane) IL precursor are combined to form hollow shells. The IL motifs are selectively located on the outer surface of the hollow particles and serve as centers for the immobilization of palladium species on the material’s surface. The outer surface also hosts magnetic nanoparticles in close proximity to the palladium sites. Thanks to the uniform coverage of the surface with the amphiphilic IL functionality, the material exhibits a well-balanced wettability with reaction components of different polarities. The catalyst’s activity was tested in the Sonogashira cross-coupling reaction of terminal acetylenes and iodobenzene derivatives in water as the solvent. The results show that the mixed palladium–iron oxide catalyst exhibits higher activity than materials containing either immobilized palladium or iron oxide alone, suggesting a synergistic effect in this reaction. Additionally, the reaction proceeds well in the absence of expensive organic ligands and commonly employed additives such as copper co-catalysts or phase transfer catalysts. Furthermore, the material was also used in the oxidative Sonogashira coupling reaction of phenylboronic acid and phenylacetylene. The catalyst can be easily separated using an external magnet and can be reused several times. The feasibility of producing diphenylacetylene on a gram scale via the Sonogashira cross-coupling reaction was also investigated. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 4300 KB  
Article
Synthesis of Plant-Mediated Silver-Doped Metal Oxides Using Catharanthus roseus and Evaluation of Their Catalytic and Biological Activities
by Samira M. Alsawqaee, Eman A. Alzahrani, Esraa M. Bakhsh, Kalsoom Akhtar and Sher Bahadar Khan
Catalysts 2025, 15(10), 1001; https://doi.org/10.3390/catal15101001 - 21 Oct 2025
Viewed by 1190
Abstract
This study explores the green synthesis of silver-doped lanthanum oxide (La/Ag), silver-doped yttrium oxide (Y/Ag), and silver-doped lanthanum–yttrium oxide (La/Y/Ag) nanocomposites using Catharanthus roseus extract as a natural reducing and stabilizing agent. The nanocomposites were characterized using various spectroscopic techniques to confirm their [...] Read more.
This study explores the green synthesis of silver-doped lanthanum oxide (La/Ag), silver-doped yttrium oxide (Y/Ag), and silver-doped lanthanum–yttrium oxide (La/Y/Ag) nanocomposites using Catharanthus roseus extract as a natural reducing and stabilizing agent. The nanocomposites were characterized using various spectroscopic techniques to confirm their morphology, composition, crystallinity, and functional groups. La/Ag, Y/Ag, and La/Y/Ag exhibited significant catalytic activity in the reduction and degradation of methylene blue (MB), methyl orange (MO), acridine orange (AO), and 4-nitrophenol (4-NP). Optimization studies showed that La/Ag achieved complete MB reduction within 3 min, while La/Y/Ag reduced MO in 90 s. Both catalysts maintained high activity over multiple cycles, with only slight efficiency loss. In real water media, La/Ag and La/Y/Ag achieved reduction efficiencies of 98% and 97%, respectively. La/Ag also demonstrated excellent photocatalytic degradation of AO under UV light, achieving complete degradation in 80 min, and 98% degradation in tap and seawater samples. Additionally, the nanocomposites demonstrated broad-spectrum antimicrobial activity against bacterial and fungal pathogens, with varying inhibition levels across species. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

13 pages, 3611 KB  
Article
Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells
by Jaeyoung Kim, Dong-Hyun Lee, Hyun-Soo Kim, Gyungse Park, In-Tae Kim, Md. Masud Rana, Hyoung-Juhn Kim, Ho-Jung Sun and Joongpyo Shim
Catalysts 2025, 15(8), 790; https://doi.org/10.3390/catal15080790 - 19 Aug 2025
Cited by 2 | Viewed by 1751
Abstract
This study examines the effects of several commercial surfactants on the dispersion of catalyst inks for proton exchange membrane fuel cells (PEMFCs). Catalyst inks containing Pt/C were spray-coated and assembled into membrane electrode assemblies (MEAs) by hot pressing. The structural and electrochemical properties [...] Read more.
This study examines the effects of several commercial surfactants on the dispersion of catalyst inks for proton exchange membrane fuel cells (PEMFCs). Catalyst inks containing Pt/C were spray-coated and assembled into membrane electrode assemblies (MEAs) by hot pressing. The structural and electrochemical properties of the resulting catalyst layers were characterized through particle size analysis, zeta potential measurements, contact angle determinations, and single-cell performance tests. Among the formulations evaluated, the ink with non-ionic surfactant Triton X-100 (TX) delivered the best performance, achieving a current density of 1134 mA/cm2 at 0.3 V—substantially higher than that of the surfactant-free control. These findings provide practical guidance for selecting appropriate surfactants to optimize catalyst-ink preparation and enhance PEMFC performance. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

Review

Jump to: Research

41 pages, 15950 KB  
Review
Recent Breakthroughs in Overcoming the Efficiency Limits of Photocatalysis for Hydrogen Generation
by Aira Amin, Ryun Na Kim, Jihun Kim and Whi Dong Kim
Catalysts 2025, 15(11), 1067; https://doi.org/10.3390/catal15111067 - 10 Nov 2025
Cited by 1 | Viewed by 2627
Abstract
For five decades, photocatalysis has promised clean hydrogen from solar energy, yet a persistent “efficiency ceiling”, linked to fundamental challenges including the trade-off between light absorption and redox potential in single-component materials, has hindered its practical application. This review illuminates three key paradigm [...] Read more.
For five decades, photocatalysis has promised clean hydrogen from solar energy, yet a persistent “efficiency ceiling”, linked to fundamental challenges including the trade-off between light absorption and redox potential in single-component materials, has hindered its practical application. This review illuminates three key paradigm shifts overcoming this challenge. First, we examine Z-scheme and S-scheme heterojunctions, which resolve the bandgap dilemma by spatially separating redox sites to achieve both broad light absorption and strong redox power. Second, we discuss replacing the sluggish oxygen evolution reaction (OER) with value-added organic oxidations. This strategy bypasses kinetic bottlenecks and improves economic viability by co-producing valuable chemicals from feedstocks like biomass and plastic waste. Third, we explore manipulating the reaction environment, where synergistic photothermal effects and concentrated sunlight can dramatically enhance kinetics and unlock markedly enhanced solar-to-hydrogen (STH) efficiencies. Collectively, these strategies chart a clear course to overcome historical limitations and realize photocatalysis as an impactful technology for a sustainable energy future. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Graphical abstract

38 pages, 6778 KB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Cited by 3 | Viewed by 2653
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

Back to TopTop