Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = metal fluorides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4614 KB  
Article
Elucidating the Corrosion Mechanism of Graphite Anodes in Fluoride Molten Salt for Rare Earth Electrolysis: A Multiscale Structure-Property Investigation
by Baoling Jia, Yangtao Xu, Feng Liang, Zhenxu Zhu, Boming Chen, Lihong Xu, Peng Gao, Lin Gan, Yangbin Zhu and Mingzhen Li
Processes 2025, 13(11), 3640; https://doi.org/10.3390/pr13113640 - 10 Nov 2025
Viewed by 160
Abstract
Graphite anodes are widely used as consumable electrodes in the high-temperature electrolytic production of rare earth metals within fluoride molten salts. However, their rapid and complex corrosion presents significant economic and operational challenges, including high consumption costs, process instability, greenhouse gas emissions, and [...] Read more.
Graphite anodes are widely used as consumable electrodes in the high-temperature electrolytic production of rare earth metals within fluoride molten salts. However, their rapid and complex corrosion presents significant economic and operational challenges, including high consumption costs, process instability, greenhouse gas emissions, and product contamination. While the corrosion morphology of specific graphite types has been studied, a systematic investigation linking the intrinsic properties of diverse graphite materials to their microstructural and chemical evolution during corrosion is lacking. This study elucidates the corrosion mechanisms of three distinct graphite anodes—fine-grained, isostatically pressed graphite anodes (#1), medium-coarse-grained, extruded graphite anodes (#2), and recycled, extruded graphite anodes (#3) in industrial PrNdF3–LiF molten salt electrolytes at 1050 °C. Through a multifaceted analytical approach encompassing SEM, EDS, XRD, Raman, and FT-IR, we investigated the macro- and microscale corrosion behaviors across multiple scales. The results revealed markedly different degradation patterns: the #1 anode exhibited intergranular corrosion with granular exfoliation; the #2 anode developed a protective but cracked resolidified salt layer; and the #3 anode suffered the most severe uniform and pitting corrosion. Postcorrosion analysis confirmed surface enrichment with fluorine, praseodymium, and neodymium, the formation of PrF3 and NdF3 phases, and substantial degradation of the graphitic structure. Raman spectroscopy specifically revealed a reduction in the crystallite size, introduction of in-plane point defects, and disruption of the interlayer stacking order. On the base of infrared spectroscopy analysis, all key characteristic absorption peaks of the graphite anodes undergo consistent attenuation after corrosion. This work provides critical insights for the informed selection and optimization of graphite anodes to increase the efficiency and sustainability of rare earth electrolysis. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Graphical abstract

16 pages, 2189 KB  
Article
Deep Removal of Fluoride Ions from Spent Ternary Lithium-Ion Batteries Leachate Using Porous La@Zr Adsorbent
by Zaoming Chen, Fupeng Liu, Bin Liao, Tao Zhang, Feixiong Chen, Jie Wang, Chunfa Liao and Shengming Xu
Inorganics 2025, 13(11), 369; https://doi.org/10.3390/inorganics13110369 - 3 Nov 2025
Viewed by 307
Abstract
Hydrometallurgy is currently the mainstream industrial process for recovering valuable components (nickel, cobalt, manganese, lithium, etc.) from spent ternary lithium-ion battery cathode materials. During the crushing of lithium batteries, cathode materials, anode materials (graphite), and electrolytes become mixed. Consequently, fluoride ions inevitably enter [...] Read more.
Hydrometallurgy is currently the mainstream industrial process for recovering valuable components (nickel, cobalt, manganese, lithium, etc.) from spent ternary lithium-ion battery cathode materials. During the crushing of lithium batteries, cathode materials, anode materials (graphite), and electrolytes become mixed. Consequently, fluoride ions inevitably enter the leaching solution during the hydrometallurgical recycling process, with concentrations as high as 100–300 mg/L. These fluoride ions not only adversely affect the quality of the recovered precursor products but also pose environmental risks. To address this issue, this study employs a synthesized lanthanum–zirconium (La@Zr) composite material, with a specific surface area of 67.41 m2/g and a pore size of 2–50 nm, which can reduce the fluoride ion concentration in the leaching solution to below 5 mg/L, significantly lower than the 20 mg/L or higher that is typically achieved with traditional calcium salt defluorination processes, without introducing new impurities. Under optimal adsorption conditions, the lanthanum–zirconium adsorbent exhibits a fluoride ion adsorption capacity of 193.4 mg/g in the leaching solution, surpassing that of many existing metal-based adsorbents. At the same time as the valuable metals, Li, Ni, and Co, are basically not adsorbed, the selective adsorption of fluoride ions can be achieved. Adsorption isotherm studies indicate that the adsorption process follows the Langmuir model, suggesting monolayer adsorption. The secondary adsorption process is primarily governed by chemical adsorption, and elevated temperatures facilitate the removal of fluoride ions. Kinetic studies demonstrate that the adsorption process is well described by the pseudo-second-order model. After desorption and regeneration with NaOH solution, the adsorbent still has a favorable fluoride removal performance, and the adsorption rate of fluoride ions can still reach 95% after four cycles of use. With its high capacity, rapid kinetics, and excellent selectivity, the adsorbent is highly promising for large-scale implementation. Full article
(This article belongs to the Special Issue Novel Materials in Li–Ion Batteries, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 3502 KB  
Article
Developing a Groundwater Quality Assessment in Mexico: A GWQI-Machine Learning Model
by Hector Ivan Bedolla-Rivera and Mónica del Carmen González-Rosillo
Hydrology 2025, 12(11), 285; https://doi.org/10.3390/hydrology12110285 - 30 Oct 2025
Viewed by 299
Abstract
Groundwater represents a critical global resource, increasingly threatened by overexploitation and pollution from contaminants such as arsenic (As), fluoride (F), nitrates (NO3), and heavy metals in arid to semi-arid regions like Mexico. Traditional Water Quality Indices ( [...] Read more.
Groundwater represents a critical global resource, increasingly threatened by overexploitation and pollution from contaminants such as arsenic (As), fluoride (F), nitrates (NO3), and heavy metals in arid to semi-arid regions like Mexico. Traditional Water Quality Indices (WQIs), while useful, suffer from subjectivity in assigning weights, which can lead to misinterpretations. This study addresses these limitations by developing a novel, objective Groundwater Quality Index (GWQI) through the seamless integration of Machine Learning (ML) models. Utilizing a database of 775 wells from the Mexican National Water Commission (CONAGUA), Principal Component Analysis (PCA) was applied to achieve significant dimensionality reduction. We successfully reduced the required monitoring parameters from 13 to only three key indicators: total dissolved solids (TDSs), chromium (Cr), and manganese (Mn). This reduction allows for an 87% decrease in the number of indicators, maximizing efficiency and generating potential savings in monitoring resources without compromising water quality prediction accuracy. Six WQI methods and six ML models were evaluated for quality prediction. The Unified Water Quality Index (WQIu) demonstrated the best performance among the WQIs evaluated and exhibited the highest correlation (R2 = 0.85) with the traditional WQI based on WHO criteria. Furthermore, the ML Support Vector Machine with polynomial kernel (svmPoly) model achieved the maximum predictive accuracy for WQIu (R2 = 0.822). This robust GWQI-ML approach establishes an accurate, objective, and efficient tool for large-scale groundwater quality monitoring across Mexico, facilitating informed decision-making for sustainable water management and enhanced public health protection. Full article
Show Figures

Figure 1

22 pages, 5907 KB  
Article
Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate
by Jinyun Zhao, Yuhuan Su, Jiangyan Song, Ruilai Liu, Fangfang Wu, Jing Xu, Tao Xu, Jilin Mu, Hao Lin and Jiapeng Hu
Nanomaterials 2025, 15(21), 1623; https://doi.org/10.3390/nano15211623 - 24 Oct 2025
Viewed by 471
Abstract
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of [...] Read more.
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of the Fe:Ce molar ratio, (Fe/Ce):PTA ratio, reaction duration, and synthesis temperature on adsorption performance of the Fe–Ce-MOFs were systematically studied. A comprehensive evaluation was conducted on the removal of fluoride and phosphate ions from aqueous solution. Under optimized conditions, the maximum adsorption capacities of Fe–Ce-MOFs for fluoride and phosphate reached 183.82 mg g−1 and 110.74 mg g−1, respectively. Adsorption data correlated strongly with the Langmuir isotherm, were best represented by the pseudo-second-order kinetic model, and were identified as a spontaneous and endothermic reaction. After three regeneration cycles, the adsorbent still maintained high removal efficiencies for fluoride (85.17%) and phosphate (47.34%) removal. In practical wastewater treatment, removal efficiencies of 92.04% for fluoride and 93.87% for phosphate were achieved. Mechanistic studies revealed that fluoride removal was dominated by electrostatic attraction and hydroxyl–fluoride ion exchange, whereas phosphate removal was attributed to the generation of inner-sphere complexes involving PO43− and Fe/Ce active sites. This study not only elucidates the synergistic mechanism of fluoride and phosphate elimination by Fe–Ce-MOFs but also provides theoretical guidance and application prospects for the development of highly efficient and stable bimetallic MOF-based adsorbents for environmental remediation. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

18 pages, 3033 KB  
Article
Self-Sufficient Aflatoxin Decontamination System: MOF-Based Composite Membrane with Peroxidase-Mimic and Controlled H2O2 Generation
by Xiaofei Cheng, Wenzhong Zhu, Xueting Zhu, Jinmin Zhang, Jia Yang, Huali Wang, Xiaoqin Mo, Chi Zhang and Lina Wu
Toxins 2025, 17(10), 516; https://doi.org/10.3390/toxins17100516 - 20 Oct 2025
Viewed by 525
Abstract
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative [...] Read more.
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative polyvinylidene fluoride (PVDF) composite membrane incorporating Fe/Co-based metal-organic frameworks (MOF) (Named Fe/Co-MIL-88B(NH2)) and CaO2 for targeted aflatoxin removal from milk. This system integrates two synergistic mechanisms: (1) hierarchical porous MOF structures enabling superior aflatoxin adsorption capacity and peroxidase-like catalytic activity, and (2) CaO2 acts as a controllable-release H2O2 donor, supplying a steady flux of reactive oxygen species without the addition of exogenous H2O2. Moreover, the PVDF membrane with mechanical stability offers uniform immobilization of active components, which prevents the aggregation of nanozymes. As a result, the integrated membrane achieves high degradation efficiency for AFB1 and AFM1, exceeding 95% within 60 min. By eliminating external oxidant addition and minimizing collateral nutrient damage, the technology demonstrates remarkable operational stability (>10 cycles) and milk quality preservation capability. This breakthrough establishes an efficient and reusable detoxification method, providing new opportunities for mycotoxin mitigation in dairy products through spatiotemporal control of reactive oxygen species. Full article
(This article belongs to the Special Issue Detection, Biosynthesis and Control of Mycotoxins (4th Edition))
Show Figures

Figure 1

16 pages, 2906 KB  
Article
Tailored Synthesis and Profiling of Capped Silver and Selenium Nanoparticles for Topical Applications in Paediatric Dentistry
by Amjad Almuqrin, Chaminda Jayampath Seneviratne, Laurence J. Walsh and Sobia Zafar
Dent. J. 2025, 13(10), 456; https://doi.org/10.3390/dj13100456 - 6 Oct 2025
Viewed by 367
Abstract
Background: Silver fluoride medicaments effectively arrest caries progression but cause permanent staining. Nanoparticles are increasingly utilised in paediatric dentistry due to their antimicrobial properties. Aim: This study reports the synthesis and characterisation of silver and selenium nanoparticles stabilised with natural agents. Methods: Six [...] Read more.
Background: Silver fluoride medicaments effectively arrest caries progression but cause permanent staining. Nanoparticles are increasingly utilised in paediatric dentistry due to their antimicrobial properties. Aim: This study reports the synthesis and characterisation of silver and selenium nanoparticles stabilised with natural agents. Methods: Six silver and selenium nanoparticles were chemically synthesised and stabilised using biocompatible eco-friendly capping agents, including casein, bovine serum albumin, chitosan, citrate, and tannic acid. Characterisation was performed using Tyndall scattering, UV-Vis spectroscopy, transmission electron microscopy, and ICP-OES. Results: The synthesised particles were spherical in shape, ranging in size from 2.5 to 24 nm for silver and 35 to 43 nm for selenium. Elemental analysis confirmed the absence of heavy metals. Conclusions: These findings highlight the successful synthesis of capped silver and selenium nanoparticles. The observed characteristics suggest potential relevance for future antimicrobial applications in paediatric dentistry. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Viewed by 660
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Viewed by 755
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Cited by 1 | Viewed by 683
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

14 pages, 2778 KB  
Article
Evaluation of Fluoride Adsorptive Removal by Metallic Phosphates
by Ruijie Wang, Yingpeng Gu, Mengfei Ma and Yue Sun
Appl. Sci. 2025, 15(19), 10454; https://doi.org/10.3390/app151910454 - 26 Sep 2025
Viewed by 491
Abstract
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the [...] Read more.
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the elimination of fluoride. The X-ray diffractometer data demonstrated that ZrP was amorphous, while CeP, LaP, and YP were highly crystalline. YP had a strong fluoride removal ability in a neutral environment, and ZrP exhibited a superior fluoride adsorption effect in acidic media. The adsorption kinetic results suggested that YP, CeP, and LaP could achieve the adsorption equilibrium within 150 min, which was faster than ZrP. YP had the largest fluoride adsorption capacity fitted by Langmuir of 31.61 mg/g at 298 K, followed by ZrP, which was greater than those of CeP and LaP. All four metallic phosphates showed high selectivity in the interference of competing anions and organics, with YP and ZrP exhibiting superior selectivity than CeP and LaP. The adsorption mechanism was ligand exchange between metallic phosphate particles and fluoride, which was validated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption rate of metallic phosphates remained essentially stable in five consecutive adsorption–desorption cycles. Overall, metallic phosphates, especially YP and ZrP, have enormous potential in enhancing fluoride removal in the treatment of fluoridated water. Full article
(This article belongs to the Special Issue Innovative Approaches and Materials for Water Treatment)
Show Figures

Figure 1

22 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 907
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Viewed by 1121
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

57 pages, 11196 KB  
Review
Continuous Electrocoagulation Processes for Industrial Inorganic Pollutants Removal: A Critical Review of Performance and Applications
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Enshirah Da’na, Mohammad Al-Shannag, Khalid Bani-Melhem and Eman Assirey
Water 2025, 17(17), 2639; https://doi.org/10.3390/w17172639 - 6 Sep 2025
Cited by 1 | Viewed by 2204
Abstract
This review provides a critical and technically grounded assessment of continuous electrocoagulation processes (CEPs) for the treatment of industrial inorganic pollutants, emphasizing recent innovations, methodological developments, and practical outcomes. A comprehensive literature survey indicates that 53 studies published over the past 25 years [...] Read more.
This review provides a critical and technically grounded assessment of continuous electrocoagulation processes (CEPs) for the treatment of industrial inorganic pollutants, emphasizing recent innovations, methodological developments, and practical outcomes. A comprehensive literature survey indicates that 53 studies published over the past 25 years have investigated CEPs for inorganic contaminant removal, with 36 focusing on standalone electrocoagulation systems and 17 exploring integrated CEPs approaches. Recent advancements in reactor design, such as enhanced internal mixing, optimized electrode geometry, and modular configurations, have significantly improved treatment efficiency, scalability, and operational stability. Evidence indicates that CEPs can achieve high removal efficiencies for a wide range of inorganic contaminants, including fluoride, arsenic, heavy metals (e.g., chromium, lead, nickel, iron), nitrates, and phosphates, particularly under optimized operating conditions. Compared to conventional treatment methods, CEPs offer several advantages, such as simplified operation, reduced chemical consumption, lower sludge generation, and compatibility with renewable energy sources and complementary processes like membrane filtration, flotation, and advanced oxidation. Despite these promising outcomes, industrial-scale implementation remains constrained by non-standardized reactor designs, variable operational parameters, electrode passivation, high energy requirements, and limited long-term field data. Furthermore, few studies have addressed the modeling and optimization of integrated CEPs systems, highlighting critical research gaps for process enhancement and reliable scale-up. In conclusion, CEPs emerge as a novel, adaptable, and potentially sustainable approach to industrial inorganic wastewater treatment. Its future deployment will rely on continued technological refinement, standardization, validation under real-world conditions, and alignment with regulatory and economic frameworks. Full article
(This article belongs to the Special Issue Advanced Technologies in Water and Wastewater Treatment)
Show Figures

Figure 1

17 pages, 13988 KB  
Article
Efficient Removal of Pb(II) Ions from Aqueous Solutions Using an HFO-PVDF Composite Adsorption Membrane
by Shuhang Lu, Qianhui Xu, Mei-Ling Liu, Dong Zou and Guangze Nie
Membranes 2025, 15(9), 264; https://doi.org/10.3390/membranes15090264 - 1 Sep 2025
Viewed by 824
Abstract
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. [...] Read more.
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. This composite membrane (denoted as HFO-PVDF) combines the excellent selectivity of HFO nanoparticles for Pb(II) with the membrane’s advantage of easy scalability. The optimized HFO-PVDF(1.5) membrane achieved adsorption equilibrium within 20 h and exhibited excellent adsorption capacity. Moreover, adsorption capacity markedly enhanced with increasing temperature, confirming the endothermic nature of the process. The developed HFO-PVDF membranes demonstrate significant potential for real-world wastewater treatment applications, exhibiting exceptional selectivity for Pb(II) in complex ionic matrices and could be effectively regenerated via a relatively straightforward process. Furthermore, filtration and dynamic regeneration tests demonstrated that at an initial Pb(II) concentration of 5 mg/L, the membrane operated continuously for 10–13 h before regeneration, treating up to 200 L/m2 of wastewater before breakthrough, highlighting potential for cost-effective industrial wastewater treatment. This study not only demonstrates the high efficiency of the HFO-PVDF membrane for heavy metal ion removal but also provides a theoretical foundation and technical support for its practical application in water treatment. Full article
Show Figures

Figure 1

40 pages, 4676 KB  
Review
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication
by Anna Nowik-Zając and Vira Sabadash
Membranes 2025, 15(8), 249; https://doi.org/10.3390/membranes15080249 - 19 Aug 2025
Cited by 3 | Viewed by 2448
Abstract
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and [...] Read more.
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and molecule selectivity through the incorporation of novel carriers, including ionic liquids and task-specific extractants, as well as through polymer functionalization techniques. Improvements in mechanical and chemical stability, achieved via the utilization of high-performance polymers such as polyvinylidene fluoride (PVDF) and polyether ether ketone (PEEK), as well as cross-linking approaches, are critically analyzed. The expanded application of PIMs in the removal of heavy metals, organic micropollutants, and gas separation, particularly for carbon dioxide capture, is discussed with an emphasis on efficiency and operational robustness. The integration of PIMs with electrochemical and optical transduction platforms for sensor development is also reviewed, highlighting enhancements in sensitivity, selectivity, and response time. Furthermore, emerging trends towards the fabrication of sustainable PIMs using biodegradable polymers and green solvents are evaluated. Advances in scalable manufacturing techniques, including phase inversion and electrospinning, are addressed, outlining pathways for the industrial translation of PIM technologies. The review concludes by identifying current limitations and proposing future research directions necessary to fully exploit the potential of PIMs in industrial and environmental sectors. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

Back to TopTop