New Trends in Membrane Technologies for Removal of Hazardous Pollutants

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Applications for Water Treatment".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1625

Special Issue Editor


E-Mail Website
Guest Editor
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Interests: nanotechnology-driven water treatment; development of advanced nanocomposite materials (adsorbents/membranes); innovative processes for efficient micropollutant removal

Special Issue Information

Dear Colleagues,

The growing prevalence of hazardous pollutants across aquatic and atmospheric environments—including persistent heavy metals (As, Pb, Hg, Cd), pharmacologically active compounds (antibiotics, NSAIDs, endocrine disruptors), micro/nano-plastics, volatile organic compounds (VOCs: formaldehyde, benzene derivatives), particulate matter (PM2.5/PM10), and industrial emissions (SOx, NOx)—presents critical challenges to ecosystem integrity and public health. Membrane separation technologies offer transformative technological solutions for environmental remediation through rationally engineered pore architectures and tunable surface functionalities that enable molecular discrimination capabilities. Their modular configurations further facilitate process intensification and system scalability, making them particularly effective for addressing recalcitrant environmental challenges.

This Special Issue seeks to assemble pioneering research and comprehensive reviews on advanced membrane-based approaches for pollutant removal in both aqueous and gaseous environments. We invite contributions that explore innovative materials, fabrication techniques, process optimization, and hybrid systems to enhance separation efficiency, antifouling properties, and sustainability in water, wastewater, and air purification. We welcome original research articles, reviews, and case studies covering the following topics:

  • Advanced Membrane Material Development: Design and fabrication of novel nanostructured, functionalized, and sustainable membrane materials (e.g., graphene-based, MOFs, stimuli-responsive polymers) for enhanced pollutant removal in both water and air applications.
  • Innovative Membrane Processes for Pollutant Removal: Emerging water/wastewater treatment processes (e.g., forward osmosis, membrane distillation, hybrid systems) and air purification technologies (e.g., gas separation, VOC removal, PM filtration) targeting specific hazardous contaminants.
  • Targeted Hazardous Pollutant Remediation: Specialized approaches for removing heavy metals, emerging contaminants (PFASs, pharmaceuticals), and microplastics from water, as well as VOCs, particulate matter, and industrial gases from air, with an emphasis on efficiency, sustainability, and scalability.

Prof. Dr. Guangze Nie
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • membrane technologies
  • hazardous pollutant removal
  • water–air purification
  • emerging contaminants
  • sustainable separation processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 13988 KB  
Article
Efficient Removal of Pb(II) Ions from Aqueous Solutions Using an HFO-PVDF Composite Adsorption Membrane
by Shuhang Lu, Qianhui Xu, Mei-Ling Liu, Dong Zou and Guangze Nie
Membranes 2025, 15(9), 264; https://doi.org/10.3390/membranes15090264 - 1 Sep 2025
Viewed by 503
Abstract
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. [...] Read more.
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. This composite membrane (denoted as HFO-PVDF) combines the excellent selectivity of HFO nanoparticles for Pb(II) with the membrane’s advantage of easy scalability. The optimized HFO-PVDF(1.5) membrane achieved adsorption equilibrium within 20 h and exhibited excellent adsorption capacity. Moreover, adsorption capacity markedly enhanced with increasing temperature, confirming the endothermic nature of the process. The developed HFO-PVDF membranes demonstrate significant potential for real-world wastewater treatment applications, exhibiting exceptional selectivity for Pb(II) in complex ionic matrices and could be effectively regenerated via a relatively straightforward process. Furthermore, filtration and dynamic regeneration tests demonstrated that at an initial Pb(II) concentration of 5 mg/L, the membrane operated continuously for 10–13 h before regeneration, treating up to 200 L/m2 of wastewater before breakthrough, highlighting potential for cost-effective industrial wastewater treatment. This study not only demonstrates the high efficiency of the HFO-PVDF membrane for heavy metal ion removal but also provides a theoretical foundation and technical support for its practical application in water treatment. Full article
Show Figures

Figure 1

14 pages, 6077 KB  
Article
Fabrication of Green PVDF/TiO2 Composite Membrane for Water Treatment
by Shuhang Lu and Dong Zou
Membranes 2025, 15(7), 218; https://doi.org/10.3390/membranes15070218 - 21 Jul 2025
Viewed by 837
Abstract
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent [...] Read more.
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent to fabricate PVDF/TiO2 composite membranes via the phase inversion method. In this process, Pluronic F127 was used as a dispersion agent to distribute TiO2 particles in the PVDF matrix and to serve as a pore former on the membrane surface. TiO2 particles were well distributed on the membrane surface and bulk. TiO2 particles in the PVDF matrix enhanced the mechanical strength and hydrophilic characteristics of the resulting composite membrane, facilitating water transport through the composite membranes and enhancing their water permeability. Membrane microstructures and mechanical strength of the composite membranes were finely tuned by varying the PVDF concentration, TiO2 concentration, and coagulation bath temperature. It was demonstrated that the resulting green PVDF/TiO2 composite membrane showed a high water permeance compared with those using conventional toxic solvents in terms of its small pore size. In addition, the particle rejection of green PVDF/TiO2 membrane showed a 99.9% rejection rate in all the filtration process, while those using NMP showed 91.1% after 30 min of filtration. The water flux was similar at 121 and 130 Lm−2h−1 for green and conventional solvents, respectively. This work provides important information for the future application of sustainable membranes. Full article
Show Figures

Figure 1

Back to TopTop