Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of Fe-Ce-MOFs
2.3. Adsorption Experiments of Fluoride and Phosphate
2.4. Characterization
2.5. Adsorption Thermodynamics
2.6. Adsorption Kinetics
3. Results and Discussion
3.1. Influence of Reaction Parameters on Defluoridation and Dephosphorization
3.2. Characterization and Analysis of Fe-Ce-MOFs
3.3. Adsorption Process
3.3.1. Effect of Adsorption Conditions
3.3.2. Adsorption Thermodynamics
3.3.3. Adsorption Kinetics
3.3.4. Reusability and Treatment of Real Wastewater
3.4. Adsorption Mechanism
3.5. Comparison of Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Huang, J.; Wang, H.; Lv, S.; Jiang, F.; Pan, Z.; Liu, J. Simultaneous and efficient removal of fluoride and phosphate in phosphogypsum leachate by acid-modified sulfoaluminate cement. Chemosphere 2022, 305, 135422. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, W.; Che, J.; Chen, J.; Wen, P.; Ma, B.; Wang, C. Stepwise removal and recovery of phosphate and fluoride from wastewater via pH-dependent precipitation: Thermodynamics, experiment and mechanism investigation. J. Clean. Prod. 2021, 320, 128872. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Lu, J.; Cui, Y.; Wang, Y.; Wang, X.; Xue, J.; Cao, H. Advanced magnetic adsorbents for enhanced phosphorus and fluoride removal from wastewater: Mechanistic insights and applications. Sep. Purif. Technol. 2025, 353, 128195. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Varshney, G.; Varshney, V.; Hejase, C. Recent advances in technologies for phosphate removal and recovery: A review. ACS Environ. Au 2024, 4, 271–291. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Felix Sahayaraj, A.; Joy Prabu, H.; Maniraj, J.; Kannan, M.; Bharathi, M.; Diwahar, P.; Salamon, J. Metal–organic frameworks (MOFs): The next generation of materials for catalysis, gas storage, and separation. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1757–1781. [Google Scholar] [CrossRef]
- Manikandan, V.; Vinoth Kumar, J.; Elango, D.; Subash, V.; Jayanthi, P.; Dixit, S.; Singh, S. Metal-Organic Frameworks (MOFs): Multifunctional Platforms for Environmental Sustainability. Chem. Rec. 2025, 34, e202400257. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Kong, X.-J.; Li, J.-R. Chemically stable metal–organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094. [Google Scholar] [CrossRef]
- Wen, H.M.; Yu, C.; Liu, M.; Lin, C.; Zhao, B.; Wu, H.; Zhou, W.; Chen, B.; Hu, J. Construction of negative electrostatic pore environments in a scalable, stable and low-cost metal-organic framework for one-step ethylene purification from ternary mixtures. Angew. Chem. Int. Ed. 2023, 62, e202309108. [Google Scholar] [CrossRef]
- Song, J.; Yang, W.; Han, X.; Jiang, S.; Zhang, C.; Pan, W.; Jian, S.; Hu, J. Performance of rod-shaped Ce metal–organic frameworks for defluoridation. Molecules 2023, 28, 3492. [Google Scholar] [CrossRef]
- Mosupi, K.; Masukume, M.; Weng, G.; Musyoka, N.M.; Langmi, H.W. Recent advances in Fe-based metal-organic frameworks: Structural features, synthetic strategies and applications. Coord. Chem. Rev. 2025, 529, 216467. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Niazi, Z.; Heidari, K.; Afarinandeh, A.; Samadi Kazemi, M.; Haghighat, G.A.; Vasseghian, Y.; Rezania, S.; Barghi, A. Nickel and iron-based metal-organic frameworks for removal of organic and inorganic model contaminants. Environ. Res. 2022, 212, 113164. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Song, J.; Han, X.; Wen, Q.; Yang, W.; Pan, W.; Jian, S.; Jiang, S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep. Purif. Technol. 2023, 314, 123562. [Google Scholar]
- Wang, J.; Wu, L.; Li, J.; Tang, D.; Zhang, G. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism. J. Alloys Compd. 2018, 753, 422–432. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Su, R. Preparation of NH2-MIL-101(Fe) Metal Organic Framework and Its Performance in Adsorbing and Removing Tetracycline. Int. J. Mol. Sci. 2024, 25, 9855. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, H.; Zheng, Y.; Tian, Y.; Zhang, Y.; Garcia, R.M.; Henson Garcia, S.A.; Yeung, K.L. Synthesis, Characterization, and Toxicity Evaluation of Size-Dependent Iron-Based Metal-Organic Frameworks. Nanomaterials 2025, 15, 927. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chen, J.; Dai, Y.; Su, L.; Li, X.; Kalashnikova, A.M.; Wu, A. Bridgman growth and magneto-optical properties of CeF3 crystal as Faraday Rotator. Opt. Mater. 2020, 100, 109675. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W.-X.; Xu, X.-Y.; Xu, L.-M.; Ning, X.-M. Synthesis and characterization of novel flower-like CeF3 nanostructures via a rapid microwave method. Mater. Lett. 2010, 64, 1559–1561. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Y.; Zhao, G.; Han, J. Direct preparation of battery-grade FePO4·2H2O using iron residues via a hydrothermal process. J. Environ. Chem. Eng. 2025, 13, 117326. [Google Scholar] [CrossRef]
- Ning, X.; Zhong, Y.; Zeng, B.; Deng, X.; Li, L. One-step hydrothermal synthesis of CePO4@C with highly efficient photocatalytic performance. J. Alloys Compd. 2025, 1012, 178593. [Google Scholar] [CrossRef]
- Liu, R.; Song, J.; Zhao, J.; Wang, Z.; Xu, J.; Yang, W.; Hu, J. Novel MOF (Zr)–on-MOF (Ce/La) adsorbent for efficient fluoride and phosphate removal. Chem. Eng. J. 2024, 497, 154780. [Google Scholar] [CrossRef]
- Durmus, Z.; Köferstein, R.; Lindenberg, T.; Lehmann, F.; Hinderberger, D.; Maijenburg, A.W. Preparation and characterization of Ce-MOF/g-C3N4 composites and evaluation of their photocatalytic performance. Ceram. Int. 2023, 49, 24428–24441. [Google Scholar] [CrossRef]
- Butova, V.V.; Zdravkova, V.R.; Burachevskaia, O.A.; Tereshchenko, A.A.; Shestakova, P.S.; Hadjiivanov, K.I. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. Nanomaterials 2023, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Bin Mobarak, M.; Uddin, M.N.; Chowdhury, F.; Hossain, M.S.; Mahmud, M.; Sarkar, S.; Tanvir, N.I.; Ahmed, S. Solid-state synthesis of poultry waste derived hydroxyapatite: Effect of calcination temperature on crystallographic parameters and biomedical competency. J. Mol. Struct. 2024, 1301, 137321. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, F.; Tang, Z.; Zhao, T.; Fang, M.; Giesy, J.P. Adsorption of Phosphate by Surface Precipitation on Lanthanum Carbonate Through In Situ Anion Substitution Reactions. Front. Environ. Sci. 2022, 10, 1011. [Google Scholar] [CrossRef]
- El-Yazeed, W.S.A.; Ahmed, A.I. Monometallic and bimetallic Cu-Ag MOF/MCM-41 composites: Structural characterization and catalytic activity. RSC Adv. 2019, 9, 18803–18813. [Google Scholar] [CrossRef] [PubMed]
- Drake, H.F.; Xiao, Z.; Day, G.S.; Vali, S.W.; Chen, W.; Wang, Q.; Huang, Y.; Yan, T.-H.; Kuszynski, J.E.; Lindahl, P.A.; et al. Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal-organic frameworks containing open metal sites. Mater. Adv. 2021, 2, 5487–5493. [Google Scholar] [CrossRef]
- Lázaro, I.A. A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metal--Organic Framework Materials. Eur. J. Inorg. Chem. 2020, 14, 4284–4294. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, H.; Lin, J.; Zhang, Z.; Gao, J. Role of zeolite’s exchangeable cations in phosphate adsorption onto zirconium-modified zeolite. J. Mol. Liq. 2017, 243, 624–637. [Google Scholar] [CrossRef]
- Yang, W.; Shi, X.; Dong, H.; Tang, H.; Chen, W.; Wu, M.; Hua, M.; Zhang, W. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal. Chem. Eng. J. 2021, 405, 126649. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, P.; Wu, D.; Sun, M.; Deng, Y.; Frost, R.L. Effective removal of zinc (II) from aqueous solutions by tricalcium aluminate (C3A). J. Colloid Interface Sci. 2015, 443, 65–71. [Google Scholar] [CrossRef]
- Gao, D.L.; Lin, W.W.; Lin, Q.J.; Dai, F.F.; Xue, Y.X.; Chen, J.H.; Liu, Y.X.; Huang, Y.; Yang, Q. Remarkable adsorption capacity of Cu2+-doped ZnAl layered double hydroxides and the calcined materials toward phosphate. J. Environ. Chem. Eng. 2023, 11, 109472. [Google Scholar] [CrossRef]
- Karmakar, S.; Dechnik, J.; Janiak, C.; De, S. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water. J. Hazard. Mater. 2016, 303, 10–20. [Google Scholar] [CrossRef]
- Aly, Z.; Graulet, A.; Scales, N.; Hanley, T. Removal of aluminium from aqueous solutions using PAN-based adsorbents: Characterisation, kinetics, equilibrium and thermodynamic studies. Environ. Sci. Pollut. Res. Int. 2014, 21, 3972–3986. [Google Scholar] [CrossRef]
- Rego, R.M.; Sriram, G.; Ajeya, K.V.; Jung, H.-Y.; Kurkuri, M.D.; Kigga, M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. J. Hazard. Mater. 2021, 416, 125941. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Song, J.; Zhang, Z.; Ji, L.; Yang, W.; Zhao, J.; Jian, S.; Hu, J.; Ma, J. Needle-like PVP@ Ce/Zr-MOFs for the highly efficient selective of fluoride and phosphate from aqueous solution. Sep. Purif. Technol. 2025, 371, 133267. [Google Scholar] [CrossRef]
- Pu, M.; Ma, Y.; Wan, J.; Wang, Y.; Wang, J.; Brusseau, M.L. Activation performance and mechanism of a novel heterogeneous persulfate catalyst: Metal Organic Framework MIL-53(Fe) with Fe(II)/Fe(III) mixed-valence coordinative unsaturated iron center. Catal. Sci. Technol. 2017, 7, 1129–1140. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, D.; Qu, Y.; Chen, X.; Zhang, J.; Huang, M.; Wang, J. Facile Synthesis of Ce-MOF for the Removal of Phosphate, Fluoride, and Arsenic. Nanomaterials 2023, 13, 3048. [Google Scholar] [CrossRef]
- Lu, N.C.; Liu, J.C. Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Sep. Purif. Technol. 2010, 74, 329–335. [Google Scholar] [CrossRef]
- Li, F.; Jin, J.; Shen, Z.; Ji, H.; Yang, M.; Yin, Y. Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents. J. Hazard. Mater. 2020, 388, 121734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, X.; Li, J.; Li, F.; Li, X.; Yu, J.; Guo, L.; Song, G.; Xiao, C.; Zhou, F.; et al. Efficient removal of phosphate and fluoride from phosphogypsum leachate by lanthanum-modified zeolite: Synchronous adsorption behavior and mechanism. J. Environ. Chem. Eng. 2024, 12, 113294. [Google Scholar] [CrossRef]
- Belaye, M.; Taddesse, A.M.; Teju, E.; Sanchez-Sanchez, M.; Yassin, J.M. Preparation and Adsorption Behavior of Ce(III)-MOF for Phosphate and Fluoride Ion Removal from Aqueous Solutions. ACS Omega 2023, 8, 23860–23869. [Google Scholar] [CrossRef]
- Kong, L.; Tian, Y.; Pang, Z.; Huang, X.; Li, M.; Yang, R.; Li, N.; Zhang, J.; Zuo, W. Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites. Chem. Eng. J. 2019, 371, 893–902. [Google Scholar] [CrossRef]
- Kong, L.; Tian, Y.; Pang, Z.; Huang, X.; Li, M.; Li, N.; Zhang, J.; Zuo, W.; Li, J. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: Characterization, performance and mechanism. Chem. Eng. J. 2020, 382, 122963. [Google Scholar] [CrossRef]
- Liu, R.; Guo, J.; Tang, H. Adsorption of Fluoride, Phosphate, and Arsenate Ions on a New Type of Ion Exchange Fiber. J. Colloid Interface Sci. 2002, 248, 268–274. [Google Scholar] [CrossRef]
- Mohammadi, E.; Daraei, H.; Ghanbari, R.; Dehestani Athar, S.; Zandsalimi, Y.; Ziaee, A.; Maleki, A.; Yetilmezsoy, K. Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions. J. Mol. Liq. 2019, 273, 116–124. [Google Scholar] [CrossRef]
- Song, J.; Yu, Y.; Han, X.; Yang, W.; Pan, W.; Jian, S.; Duan, G.; Jiang, S.; Hu, J. Novel MOF (Zr)-on-MOF (Ce) adsorbent for elimination of excess fluoride from aqueous solution. J. Hazard. Mater. 2024, 463, 132843. [Google Scholar] [CrossRef]
- Diwan, V.; Sar, S.K.; Biswas, S.; Lalwani, R. Adsorptive extraction of uranium (VI) from aqueous phase by dolomite. Groundw. Sustain. Dev. 2020, 11, 100424. [Google Scholar] [CrossRef]








| Absorbate | T (°C) | Langmuir | Freundlich | ||||
|---|---|---|---|---|---|---|---|
| qmax (mg g−1) | KL (L mg−1) | R2 | Kf (L g−1) | n | R2 | ||
| Fluoride | 25 | 157.98 | 1.3411 | 0.9986 | 87.4259 | 4.8579 | 0.6297 |
| 35 | 177.31 | 1.5243 | 0.9988 | 99.1425 | 4.6060 | 0.6449 | |
| 45 | 183.82 | 2.3860 | 0.9982 | 116.1530 | 5.57818 | 0.4548 | |
| Phosphate | 25 | 62.54 | 18.6281 | 0.9999 | 55.2027 | 17.3913 | 0.9006 |
| 35 | 89.53 | 686.2402 | 0.9999 | 80.1826 | 11.9531 | 0.7518 | |
| 45 | 110.74 | 20.7543 | 0.9997 | 94.5649 | 8.7658 | 0.4436 | |
| Adsorbate | T (°C) | ΔG° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (J mol−1 K−1) |
|---|---|---|---|---|
| Fluoride | 25 | −4.4725 | 13.8808 | 61.7237 |
| 35 | −5.2163 | |||
| 45 | −5.7014 | |||
| Phosphate | 25 | −3.5426 | 46.7898 | 168.9228 |
| 35 | −5.2527 | |||
| 45 | −6.9201 |
| Adsorbate | Models | Concentration (mg L−1) | k | qe (mg L−1) | R2 |
|---|---|---|---|---|---|
| Fluoride | First-order | 20 | 0.0165 | 37.4267 | 0.9603 |
| 30 | 0.0134 | 49.7771 | 0.9383 | ||
| Second-order | 20 | 0.0009 | 100.3009 | 0.9998 | |
| 30 | 0.0006 | 132.4503 | 0.9996 | ||
| Phosphate | First-order | 20 | 0.0117 | 11.6688 | 0.7718 |
| 25 | 0.0140 | 11.7028 | 0.8378 | ||
| Second-order | 20 | 0.0025 | 54.3478 | 0.9996 | |
| 25 | 0.0029 | 61.0874 | 0.9998 |
| Adsorbate | Concentration (mg L−1) | Equation | R2 |
|---|---|---|---|
| Fluoride | 20 | y = 34.4463 + 6.2401x | 0.9656 |
| y = 85.257 + 0.6691x | 0.7930 | ||
| 30 | y = 40.9021 + 8.6602x | 0.9922 | |
| y = 109.9713 + 1.0075x | 0.7422 | ||
| Phosphate | 20 | y = 19.1972 + 4.0723x | 0.9103 |
| y = 27.359 + 4.08x | 0.9574 | ||
| 25 | y = 48.2297 + 0.2851x | 0.6995 | |
| y = 52.7643 + 0.4502x | 0.7260 |
| Parameters | Fluoride Removal | Phosphate Removal | ||
|---|---|---|---|---|
| Before | After | Before | After | |
| Fluoride concentration (mg L−1) | 12.19 | 0.97 | -- | -- |
| Phosphate concentration (mg L−1) | -- | -- | 14.19 | 0.87 |
| pH | 3.78 | 3.91 | 4.15 | 4.51 |
| NH3-N (mg L−1) | 20.14 | 18.77 | 178.19 | 110.9 |
| COD (mg L−1) | 47.5 | 28.8 | 67.19 | 29.22 |
| NO3− (mg L−1) | 19.68 | 18.91 | 20.19 | 19.23 |
| SO42− (mg L−1) | 69.02 | 69.45 | 34.12 | 31.11 |
| Cl− (mg L−1) | 141.49 | 142.15 | 76.18 | 75.19 |
| CO32− (mg L−1) | ND | ND | ND | ND |
| Adsorbents | Fluoride Adsorption Capacity (mg g−1) | Phosphate Adsorption Capacity (mg g−1) | References |
|---|---|---|---|
| This study (Fe-Ce-MOFs) | 183.82 | 110.74 | — |
| Ce-MOFs | 101.8 | 41.2 | [39] |
| Ca(OH)2-MF system | 80.12 | 20.19 | [40] |
| Fe-La composite | 27.41 | 89.41 | [14] |
| Fe3O4@mSiO2@mLDH | 28.51 | 57.07 | [41] |
| Lanthanum-modified zeolite | 4.64 | 22.59 | [42] |
| Ce-MOF | 2.99 | 7.43 | [43] |
| 3D rice-like La@MgAl | 51.03 | 101.59 | [44] |
| MOF-on-MOF | 173.20 | 92.85 | [22] |
| PCA@La nanocomposites | 63.11 | 107.34 | [45] |
| PANF fiber | 155.0 | 45.0 | [46] |
| Carboxylated chitosan/Fe3O4 | 0.29 | 4.6 | [47] |
| La@MgAl | 51.03 | 101.59 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Su, Y.; Song, J.; Liu, R.; Wu, F.; Xu, J.; Xu, T.; Mu, J.; Lin, H.; Hu, J. Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate. Nanomaterials 2025, 15, 1623. https://doi.org/10.3390/nano15211623
Zhao J, Su Y, Song J, Liu R, Wu F, Xu J, Xu T, Mu J, Lin H, Hu J. Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate. Nanomaterials. 2025; 15(21):1623. https://doi.org/10.3390/nano15211623
Chicago/Turabian StyleZhao, Jinyun, Yuhuan Su, Jiangyan Song, Ruilai Liu, Fangfang Wu, Jing Xu, Tao Xu, Jilin Mu, Hao Lin, and Jiapeng Hu. 2025. "Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate" Nanomaterials 15, no. 21: 1623. https://doi.org/10.3390/nano15211623
APA StyleZhao, J., Su, Y., Song, J., Liu, R., Wu, F., Xu, J., Xu, T., Mu, J., Lin, H., & Hu, J. (2025). Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate. Nanomaterials, 15(21), 1623. https://doi.org/10.3390/nano15211623

