Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
Abstract
1. Introduction
2. Materials and Methods
- Cleaning the channel by its washing with distilled water and drying;
- Mounting a frame with virgin filter within the channel;
- Closing the channel with the connectors equipped with elastic hose;
- Switching-on the outlet fan with desired flow rate;
- Measurement of the pressure drop across the clean filter;
- Switching-on the particle generator;
- Recording the particle size distribution at the inlet/outlet by a computer for a 5 min;
- Switching off the particle generator;
- Measurement of the pressure drop across the loaded filter after 5 min;
- Switching-off the outlet fan;
- Dismounting the connectors with elastic hose;
- Dismounting the frame with loaded filter;
- Inspection the filter under SEM.
3. Results
3.1. Nanofibrous Filter Properties
3.2. TiO2 Nanoparticle Filtration
3.3. MgO Nanoparticle Filtration
3.4. Al2O3 Nanoparticle Filtration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMAC | Dimethylacetamide |
PMMA | Poly(methyl methacrylate) |
PVDF | Polyvinylidene fluoride |
References
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Ivask, A.; Titma, T.; Visnapuu, M.; Vija, H.; Käkinen, A.; Sihtmäe, M.; Pokhrel, S.; Mädler, L.; Heinlaan, M.; Kisand, V.; et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top. Med. Chem. 2015, 15, 1914–1929. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Jung, K.; Yoo, W.C.; Chung, J.C.; Lee, Y.-W. Dispersion Stability of 14 Manufactured Nanomaterials for Ecotoxicity Tests Using Raphidocelis subcapitata. Int. J. Environ. Res. Public Health 2022, 19, 7140. [Google Scholar] [CrossRef]
- Choi, J.S.; Ha, M.K.; Trinh, T.X.; Yoon, T.H.; Byun, H.-G. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources. Sci. Rep. 2018, 8, 6110. [Google Scholar] [CrossRef]
- Choi, J.S.; Trinh, T.X.; Yoon, T.-H.; Kim, J.; Byun, H.-G. Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Chemosphere 2019, 217, 243–249. [Google Scholar] [CrossRef]
- Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I.V.; Peijnenburg, W.; Kustovet, L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem. Toxicol. 2018, 112, 507–517. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A.; Leszczynski, J.; Sizochenko, N. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Environ. Toxicol. Pharmacol. 2021, 86, 103665. [Google Scholar] [CrossRef]
- Abdillah, S.F.I.; Wang, Y.-F. Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health. Environ. Res. 2023, 218, 115061. [Google Scholar] [CrossRef]
- Minigalieva, A.; Katsnelson, B.A.; Privalova, L.I.; Sutunkova, M.P.; Gurvich, V.B.; Shur, V.Y.; Shishkina, E.V.; Valamina, I.E.; Makeyev, O.H.; Panov, V.G.; et al. Combined subchronic toxicity of aluminum (III), titanium (IV) and silicon (IV) oxide nanoparticles and its alleviation with a complex of bioprotectors. Int. J. Mol. Sci. 2018, 19, 837. [Google Scholar] [CrossRef]
- Wei, X.; Yu, J.; Ding, L.; Hu, J.; Jiang, W. Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds. J. Environ. Sci. 2017, 57, 221–230. [Google Scholar] [CrossRef]
- Kirsch, A.A.; Stechkina, I.B.; Fuchs, N.A. Effect of gas slip on the pressure drop in fibrous filters. J. Aerosol Sci. 1973, 4, 287–293. [Google Scholar] [CrossRef]
- Leung, W.W.-F.; Hung, C.-H. Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols. Sep. Purif. Technol. 2008, 63, 691–700. [Google Scholar] [CrossRef]
- Tsai, C.S.-J.; Echevarria-Vega, M.E.; Sotiriou, G.A.; Santeufemio, C.; Schmidt, D.; Demokritou, P.; Ellenbecker, M. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES). J. Nanoparticle Res. 2012, 14, 812. [Google Scholar] [CrossRef]
- Berry, G.; Beckman, I.; Cho, H. A comprehensive review of particle loading models of fibrous air filters. J. Aerosol Sci. 2023, 167, 106078. [Google Scholar] [CrossRef]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.-G.; Wang, K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12, 1077. [Google Scholar] [CrossRef]
- Niknejad, E.; Jafari, R.; Motlagh, N.V. Mechanical properties of biodegradable fibers and fibrous mats: A Comprehensive Review. Molecules 2025, 30, 3276. [Google Scholar] [CrossRef]
- Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; Word Scientific: Singapore, 2005. [Google Scholar]
- Jaworek, A.; Krupa, A.; Sobczyk, A.T.; Lackowski, M.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D. Electrospray nanocoating of microfibers. Solid State Phenom. 2008, 140, 127–132. [Google Scholar] [CrossRef]
- Pliszka, D.; Sundarrajan, S.; Jaworek, A.; Krupa, M.; Lackowski, S.M.; Ramakrishna, S. Optimization of electrospray process by PIV in nanostructured membrane preparation. Adv. Sci. Technol. 2008, 60, 117–122. [Google Scholar] [CrossRef]
- Baghali, M.; Jayathilaka, W.A.D.M.; Ramakrishna, S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. Materials 2021, 14, 558. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Krupa, A.; Lackowski, M.; Czech, T. Electrostatic deposition of nanothin films on metal substrate. Bull. Pol. Acad. Sciences. Tech. Sci. 2009, 57, 63–70. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wang, P.; Gao, Z.; Li, X.; Cui, W.; Li, R.; Ramakrishna, S.; Zhang, J.; Long, Y.-Z. Review on electrospinning anode and separators for lithium ion batteries. Renew. Sustain. Energy Rev. 2024, 189, 113939. [Google Scholar] [CrossRef]
- Sundarrajan, S.; Pliszka, D.; Jaworek, A.; Krupa, A.; Lackowski, M.; Ramakrishna, S. A novel process for the fabrication of nanocomposites membranes. J. Nanosci. Nanotechnol. 2009, 9, 4442–4447. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A.; Lackowski, M.; Sobczyk, A.T.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D. Nanocomposite fabric formation by electrospinning and electrospraying technology. J. Electrost. 2009, 67, 435–438. [Google Scholar] [CrossRef]
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Osali, S.; Ghiyasi, Y.; Esfahani, H.; Jose, R.; Ramakrishna, S. Electrospun nanomembranes at the liquid-liquid and solid-liquid interface—A review. Mater. Today 2023, 76, 151–177. [Google Scholar] [CrossRef]
- Lima, F.d.A.; Chagas, P.A.M.; Honorato, A.C.S.; da Silva, E.N.; Aguiar, M.L.; Guerra, V.G. Multifactorial evaluation of an ultra-fast process for electrospinning of recycled expanded polystyrene to manufacture high-efficiency membranes for nanoparticle air filtration. J. Environ. Manag. 2024, 362, 121352. [Google Scholar] [CrossRef] [PubMed]
- Abdulhamid, M.A.; Muzamil, K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. Chemosphere 2023, 310, 136886. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, P.; Shi, Q.F.; Ning, X.; Chen, Z.; Ramakrishna, S.; Zheng, J.; Long, Y.-Z. Advances in Wet Electrospinning: Rich Morphology and Promising Applications. Adv. Fiber Mater. 2025, 7, 374–413. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Fan, T.; Liu, Y.; Li, L.; Liu, J.; Yang, B.; Ramakrishna, S.; Long, Y.-Z. Efficient air filtration through advanced electrospinning techniques in nanofibrous Materials: A review. Sep. Purif. Technol. 2024, 349, 127773. [Google Scholar] [CrossRef]
- Jaworek, A.; Krupa, A.; Lackowski, M.; Sobczyk, A.T.; Czech, T.; Ramakrishna, S.; Sundarrajan, S.; Pliszka, D. Electrospinning and electrospraying techniques for nanocomposite non-woven fabric production. Fibers Text. East. Eur. 2009, 17, 77–81. [Google Scholar]
- AlAbduljabbar, F.A.; Haider, S.; Ali, F.A.A.; Alghyamah, A.A.; Almasry, W.A.; Patel, R.; Mujtaba, I.M. Efficient photocatalytic degradation of organic pollutant in wastewater by electrospun functionally modified polyacrylonitrile nanofibers membrane anchoring TiO2 nanostructured. Membranes 2021, 11, 785. [Google Scholar] [CrossRef]
- Cui, J.; Wan, M.; Wang, Z.; Zhao, Y.; Sun, L. Preparation of PAN/SiO2/ CTAB electrospun nanofibrous membranes for highly efficient air filtration and sterilization. Sep. Purif. Technol. 2023, 321, 124270. [Google Scholar] [CrossRef]
- Mallah, N.B.; Shah, A.A.; Pirzada, A.M.; Ali, I.; Ullman, J.L.; Mahar, R.B.; Khan, M.I. Development of Antifouling Polyvinylidene Fluoride and Cellulose Acetate Nanocomposite Membranes for Wastewater Treatment Using a Membrane Bioreactor. Water 2025, 17, 1767. [Google Scholar] [CrossRef]
- Ahmadipouya, S.; Sheikh, U.J.; Ferguson, N.; Hacifazlioglu, M.C.; Ipekci, D.; McCutcheon, J.R. Reduction in solvent and chemical use for membrane manufacturing using electrospray. Curr. Opin. Chem. Eng. 2025, 49, 101173. [Google Scholar] [CrossRef]
- Ge, R.; Huo, T.; Nie, M.X.; Lu, J.; Hou, H.; Zhan, X. In-situ confined preparation of COF@GO nanofiltration membranes for high-efficiency dye removal. Sep. Purif. Technol. 2025, 355, 129637. [Google Scholar] [CrossRef]
- Liang, H.; Xie, A.; Chen, J.; Wei, C.; Luo, J.; Cui, J.; Pan, J. CoFe-LDH “Armour” modified nanofiber membrane with multiple synergistic effects for wastewater purification. Chem. Eng. J. 2025, 522, 167572. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, A.; Cheng, G.; Li, Q.; Chen, H.; Zheng, N.; Cui, J.; Pan, J. Electrostatically repulsion-adjusted self-cleaning BiOCl/CNF/MXene membranes for enhanced dye separation. J. Membr. Sci. 2025, 734, 124479. [Google Scholar] [CrossRef]
- Le, M.H.; Kim, K.-J.; Jeong, S.; Jang, A. Effect of charged nano-particles on ceramic microfiltration membrane fouling. J. Ind. Eng. Chem. 2019, 72, 125–132. [Google Scholar] [CrossRef]
- Przekop, R.; Gradoń, L. Deposition and Filtration of Nanoparticles in the Composites of Nano-and Microsized Fibers. Aerosol Sci. Technol. 2008, 42, 483–493. [Google Scholar] [CrossRef]
- Jackiewicz, A.; Bałazy, A.; Podgórski, A. Investigation of aerosol dispersion in fibrous filters. Pol. J. Chem. Technol. 2008, 10, 66–72. [Google Scholar] [CrossRef]
- Podgórski, A.; Bałazy, A. Novel Formulae for Deposition Efficiency of Electrically Neutral, Submicron Aerosol Particles in Bipolarly Charged Fibrous Filters Derived Using Brownian Dynamics Approach. Aerosol Sci. Technol. 2008, 42, 123–133. [Google Scholar] [CrossRef]
- Podgórski, A. Estimation of the upper limit of aerosol nanoparticles penetration through inhomogeneous fibrous filters. J. Nanopart. Res. 2009, 11, 197–207. [Google Scholar] [CrossRef]
- Cao, B.; Qian, F.; Ye, M.; Guo, Y.; Wang, S.; Lu, J.; Han, Y. Pressure drop model for fibrous media in depth filtration: Coupling simulation of microstructure and CFD porous media during dust loading. Build. Environ. 2021, 202, 108015. [Google Scholar] [CrossRef]
- Sambaer, W.; Zatloukal, M.; Kimmer, D. 3D modeling of filtration process via polyurethane nano fiber based nonwoven filters prepared by electrospinning process. Chem. Eng. Sci. 2011, 66, 613–623. [Google Scholar] [CrossRef]
- Sambaer, W.; Zatloukal, M.; Kimmer, D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem. Eng. Sci. 2012, 82, 299–311. [Google Scholar] [CrossRef]
- Sambaer, W.; Zatloukal, M.; Kimmer, D. Effect of particle-fiber friction coefficient on ultrafine aerosol particles clogging in nanofiber based filter. AIP Conf. Proc. 2013, 1526, 326. [Google Scholar] [CrossRef]
- Pan, Z.; Ou, Q.; Romay, F.J.; Chen, W.; Liang, Y.; Pui, D.Y.H. Experimental and numerical investigation of slip effect on nanofiber filter performance at low pressures. Small 2024, 20, 2406619. [Google Scholar] [CrossRef] [PubMed]
- Heim, M.; Mullins, B.J.; Wild, M.; Meyer, J.; Kasper, G. Filtration efficiency of aerosol particles below 20 nanometers. Aerosol Sci. Technol. 2005, 39, 782–789. [Google Scholar] [CrossRef]
- Bałazy, A.; Toivola, M.; Reponen, T.; Podgórski, A.; Zimmer, A.; Grinshpun, S.A. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann. Occup. Hyg. 2006, 50, 259–269. [Google Scholar] [CrossRef]
- Japuntich, D.A.; Franklin, L.M.; Pui, D.Y.; Kuehn, T.H.; Kim, S.C.; Viner, A.S. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers. J. Nanopart. Res. 2007, 9, 93–107. [Google Scholar] [CrossRef]
- Kim, S.C.; Harrington, M.S.; Pui, D.Y.H. Experimental study of nanoparticles penetration through commercial filter media. J. Nanopart. Res. 2007, 9, 117–125. [Google Scholar] [CrossRef]
- Podgórski, A.; Bałazy, A.; Gradoń, L. Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters. Chem. Eng. Sci. 2006, 61, 6804–6815. [Google Scholar] [CrossRef]
- Steffens, J.; Coury, J.R. Collection efficiency of fiber filters operating on the removal of nano-sized aerosol particles: I-homogeneous fibers. Sep. Purif. Tech. 2007, 58, 99–105. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.R.; Pui, D.Y.H. Modeling of filtration efficiency of nanoparticles in standard filter media. J. Nanopart. Res. 2007, 9, 109–115. [Google Scholar] [CrossRef]
- Su, Q.; Huang, Y.; Wei, Z.; Zhu, C.; Zeng, W.; Wang, S.; Long, S.; Zhang, G.; Yang, J.; Wang, X. A novel multi-gradient PASS nanofibrous membranes with outstanding particulate matter removal efficiency and excellent antimicrobial property. Sep. Purif. Technol. 2023, 307, 122652. [Google Scholar] [CrossRef]
- Su, Q.; Wei, Z.; Zhu, C.; Wang, X.; Zeng, W.; Wang, S.; Long, S.; Yang, J. Multilevel structured PASS nanofiber filter with outstanding thermal stability and excellent mechanical property for high-efficiency particulate matter removal. J. Hazard. Mater. 2022, 431, 128514. [Google Scholar] [CrossRef]
- de Aquino Lima, F.; Honorato, A.C.S.; Medeiros, G.B.; Chagas, P.A.M.; da Silva, E.N.; Vieira, A.C.C.; Oliveira, W.P.; Aguiar, M.L.; Guerra, V.G. Analysis of recycled polystyrene electrospinning process: Fiber diameter, morphology, and filtration applications. J. Environ. Chem. Eng. 2025, 13, 115435. [Google Scholar] [CrossRef]
- Tok, Z.; Ertekin, K. Quantification of airborne concentrations of nanoscale dusts by particle gravimetry using ionic-liquid modified polymeric electrospun fibers. Macromol. Mater. Eng. 2024, 309, 2400062. [Google Scholar] [CrossRef]
- Lackowski, M.; Krupa, A.; Jaworek, A. Nanofabric nonwoven mat for filtration smoke and nanoparticles. Pol. J. Chem. Technol. 2013, 15, 48–52. [Google Scholar] [CrossRef]
- Krupa, A.; Wardach-Święcicka, I.; Ronewicz, K.; Jaworek, A. Flow Velocity Distribution Downstream of Nanofibrous Filter in Minichannel Determined by Particle Image Velocimetry Method. Appl. Sci. 2025, 15, 8728. [Google Scholar] [CrossRef]
- Mokhtari, F.; Samadi, A.; Rashed, A.O.; Li, X.; Razal, J.M.; Kong, L.; Varley, R.J.; Zhao, S. Recent progress in electrospun polyvinylidene fluoride (PVDF)-based nanofibers for sustainable energy and environmental applications. Prog. Mater. Sci. 2025, 148, 101376. [Google Scholar] [CrossRef]
- Bui, T.T.; Shin, M.K.; Jee, S.Y.; Long, D.X.; Hong, J.; Kim, M.-G. Ferroelectric PVDF nanofiber membrane for high efficiency PM0.3 air filtration with low air flow resistance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128418. [Google Scholar] [CrossRef]
- Huang, P.; Xin, Y.; Lee, P.S. Soft electroadhesion systems for soft robotics. npj Robot 2025, 3, 29. [Google Scholar] [CrossRef]
- Ghasemi-Mobarakeh, L.; Semnani, D.; Morshed, M. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J. Appl. Polym. Sci. 2007, 106, 2536–2542. [Google Scholar] [CrossRef]
- Ma, C.J.; Lee, K.B.; Kim, S.D.; Sera, K. Thermal and hygroscopic properties of indoor particulate matter collected on an underground subway platform. Asian J. Atmos. Environ. 2015, 9, 165–172. [Google Scholar] [CrossRef]
- Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014, 14, 859656. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, G.; Zeng, H.; Li, Z.; Wu, W.; Jiang, H.; Zhang, W.; Wu, R.; Huang, Y.; Lei, Z. The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters. Polymers 2023, 15, 2766. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef]
- Jaglan, N.; Uniyal, P. On the structural, dielectric, piezoelectric, and energy storage behavior of polyvinylidene fluoride (PVDF) thick film: Role of annealing temperature. J. Appl. Phys. 2022, 132, 224109. [Google Scholar] [CrossRef]
- Constantino, C.J.L.; Job, A.E.; Simões, R.D.; Giacometti, J.A.; Zucolotto, V.; Oliveira, O.N., Jr.; Gozzi, G.; Chinaglia, D.L. Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl. Spectrosc. 2005, 59, 275–279. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Peng, S. Electrospun Metal Oxides for Energy Applications. In Zero-Carbon Energy Kyoto 2011. Green Energy and Technology; Yao, T., Ed.; Springer: Tokyo, Japan, 2012. [Google Scholar] [CrossRef]
- Ilango, P.R.; Savariraj, A.D.; Huang, H.; Li, L.; Hu, G.; Wang, H.; Hou, X.; Kim, B.C.; Ramakrishna, S.; Peng, S. Electrospun Flexible Nanofibres for Batteries: Design and Application. Electrochem. Energy Rev. 2023, 6, 12. [Google Scholar] [CrossRef]
- Yao, S.; Ramakrishna, S.; Chen, G. Recent Advances in Metal-Organic Frameworks Based on Electrospinning for Energy Storage. Adv. Fiber Mater. 2023, 5, 1592–1617. [Google Scholar] [CrossRef]
- Fujiwara, A.; Nakanowatari, S.; Cho, Y.; Taniike, T. Acquiring and transferring comprehensive catalyst knowledge through integrated highthroughput experimentation and automatic feature engineering. Sci. Technol. Adv. Mater. 2025, 26, 2454219. [Google Scholar] [CrossRef]
- Pertegal, V.; Riquelme, E.; Lozano-Serra, J.; Cañizares, P.; Rodrigo, M.A.; Saez, C.; Lacasa, E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. J. Environ. Manag. 2023, 345, 118798. [Google Scholar] [CrossRef]
- Aswini, R.; Hartati, S.; Jothimani, K.; Pothu, R.; Shanmugam, P.; Lee, Y.-Y.; Masimukku, S.; Boddula, R.; Selvaraj, M.N. Revolutionizing microorganism inactivation: Magnetic nanomaterials in sustainable photocatalytic disinfection. J. Environ. Manag. 2024, 370, 122738. [Google Scholar] [CrossRef] [PubMed]
- Zarzzeka, C.; Goldoni, J.; do Rocio de Paula de Oliveira, J.; Lenzi, G.G.; Bagatini, M.D.; Saragiotto Colpini, L.M. Photocatalytic action of Ag/TiO2 nanoparticles to emerging pollutants degradation: A comprehensive review. Sustain. Chem. Environ. 2024, 8, 100177. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, B.; Yu, X. Photocatalytic cement mortar with durable self-cleaning performance. Catalysts 2025, 15, 249. [Google Scholar] [CrossRef]
- Shumuye, E.D.; Mehrpay, S.; Fang, G.; Li, W.; Wang, Z.; Uged, B.U.; Liu, C. Influence of novel hybrid nanoparticles as a function of admixture on responses of engineered geopolymer composites: A review. J. Build. Eng. 2024, 86, 108782. [Google Scholar] [CrossRef]
- Ghareeb, A.; Fouda, A.; Kishk, R.M.; El Kazzaz, W.M. Unlocking the potential of titanium dioxide nanoparticles: An insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb. Cell Factories 2024, 23, 341. [Google Scholar] [CrossRef] [PubMed]
- Hadri, S.H.; Afzaal, A.; Saeed, L.; Arshad, A.; Nazeer, S.; Akram, M. Recent advances in the development of nanoparticle based fertilizers for different kinds of crops: A review. Biocatal. Agric. Biotechnol. 2024, 58, 103194. [Google Scholar] [CrossRef]
- Hernández-Contreras, M.; Cruz, J.C.; Gurrola, M.P.; Pamplona Solis, B.; Vega-Azamar, R.E. Application of nanosilica in the construction industry: A bibliometric analysis using Methodi Ordinatio. MethodsX 2024, 12, 102642. [Google Scholar] [CrossRef]
- Ubhale, Y.S.; More, A.P. Antimicrobial sol-gel coating: A review. J. Coat. Technol. Res. 2025, 22, 527–548. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. Nanocomposite membranes. Desalination Water Treat. 2016, 57, 26803–26819. [Google Scholar] [CrossRef]
- Petrella, A.; Tamborra, M.; Cozzoli, P.D.; Curri, M.L.; Striccoli, M.; Cosma, P.; Farinola, G.M.; Babudri, F.; Naso, F.; Agostiano, A. TiO2 nanocrystals—MEH-PPV composite thin films as photoactive material. Thin Solid Film. 2004, 451-452, 64–68. [Google Scholar] [CrossRef]
- Bhat, R.S.; Bindu, A.G.; Sajankila, S.P. Review on titanium oxide (TiO2) nanomaterials in multidomain investigations. Nano-Struct. Nano-Objects 2025, 41, 101455. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Hsu, W.-H.; Huang, C.-L. Dielectric properties of magnesium oxide at microwave frequency. J. Alloys Compd. 2010, 504, 284–287. [Google Scholar] [CrossRef]
- Hornak, J.; Trnka, P.; Kadlec, P.; Michal, O.; Mentlík, V.; Šutta, P.; Csányi, G.M.; Tamus, Z.Á. Magnesium oxide nanoparticles: Dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties. Nanomaterials 2018, 8, 381. [Google Scholar] [CrossRef]
- Duan, Z.; Li, X.; Deng, B. Recent development in the environmental application of nano-sized MgO. Bull. Mater. Sci. 2022, 45, 204. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, K.; Qiu, W.; Zhang, R.; Pan, S.; Gao, Y.; Wen, T.; Zhang, L.; Yuan, L.; Yu, J. Comprehensive review of the corrosion behavior of magnesia-based refractories by molten steel slag. J. Ind. Eng. Chem. 2025, 145, 123–143. [Google Scholar] [CrossRef]
- Kaky, K.M.; Hamad, M.K.; Mahmoud, K.A.; Sayyed, M.I.; Mhareb, M.H.A.; Altimari, U.; Mahdi, R.I. Comprehensive investigations of niobium pentoxide effects on B2O3-TeO2-GeO2-MgO glass system for optical and radiation absorption applications. Radiat. Phys. Chem. 2025, 232, 112612. [Google Scholar] [CrossRef]
- Li, J.; Wu, G.; Lin, X.; Tu, Y.; Zhao, R.; Yan, Z.; Li, D.; He, Y.; Duan, X. Improving the hydrogenation performance of nano-catalysts by constructing a cavity-constrained fluidized system. Small 2025, 21, 2410666. [Google Scholar] [CrossRef]
- Pavithra, S.; Arjunan, P.; Jayachandran, M.; Kalaivani, R.; Selvapandiyan, M.; Sivakumar, N. Investigations on electrochemical performance of the full cell fabricated LiCoO2 wrapped with MgO and ZnO for advanced lithium ion battery applications. J. Mater. Sci. Mater. Electron. 2020, 31, 15505–15512. [Google Scholar] [CrossRef]
- Aslam, R.; Javed, Y.; Jamil, Y.; Hanif, M.A. Zinc vanadate/Magnesium oxide heterostructures: A novel electrode material for high power density hybrid supercapacitors. Mater. Sci. Semicond. Process. 2025, 192, 109414. [Google Scholar] [CrossRef]
- Ahmed, S.; Imon, S.S.; Hasan, M.J.; Alam, M.S. Green nanotechnology for the enhancement of antibacterial properties in lining leather: MgO-chitosan nanocomposite coating. Heliyon 2024, 10, e39170. [Google Scholar] [CrossRef]
- Daraei, E.; Bayat, H.; Zamani, P. Effects of metal oxide nanoparticles on soil water retention curve and tensile strength. Pedosphere 2024, 34, 1136–1145. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Tran, U.P.N.; Nguyen, D.T.C.; Tran, T.V. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. Chemosphere 2023, 312, 137301. [Google Scholar] [CrossRef]
- Fahmy, H.M.; El-Hakim, M.H.; Nady, D.S.; Elkaramany, Y.; Mohamed, F.A.; Yasien, A.M.; Moustafa, M.A.; Elmsery, B.E.; Yousef, H.A. Review on MgO nanoparticles multifunctional role in the biomedical field: Properties and applications. Nanomed. J. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Li, F.; Gao, D.; Xing, B. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 2009, 77, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, F.S.; El-Khatib, M. Impact of different phase structure nano Al2O3 arc discharge prepared on MB dye removal. J. Cryst. Growth 2024, 643, 127811. [Google Scholar] [CrossRef]
- Vega, V.; Gelde, L.; González, A.S.; Prida, V.M.; Hernando, B.; Benavente, B.J. Diffusive transport through surface functionalized nanoporous alumina membranes by atomic layer deposition of metal oxides. J. Ind. Eng. Chem. 2017, 52, 66–72. [Google Scholar] [CrossRef]
- Voigt, C.; Fankhänel, B.; Jäckel, E.; Aneziris, C.G.; Stelter, M.; Hubálková, J. Effect of the filter surface chemistry on the filtration of aluminum. Metall. Mater. Trans. B 2015, 46, 1066–1072. [Google Scholar] [CrossRef]
- Alzoubi, F.; Al-Gharram, M.; AlZoubi, T.; Abu Noqta, O.; Makhadmeh, G.; Al-Khateeb, H.; Al-Qadi, M. Advanced electrochemical synthesis and characterization of Al2O3 nanoparticles embedded in polyaniline matrix for optoelectronic applications. Ceram. Int. 2024, 50, 37968–37977. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y.; Shen, C.; Shuai, Y. Structural optimization of semitransparent power-generating window glass doped with core-shell nanoparticles. Energy 2025, 322, 135539. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Q.; Hu, E.; Wang, K.; Gao, M.; Liu, B.; Wang, S.; Sun, X.; Zhang, R.; Duan, W.; et al. Porous alumina-based broadband anti-reflection film for optical absorption with superhydrophilic to superhydrophobic surface. Appl. Surf. Sci. 2025, 690, 162584. [Google Scholar] [CrossRef]
- Rozita, Y.; Brydson, R.; Comyn, T.P.; Scott, A.J.; Hammond, C.; Brown, A.; Chauruka, S.; Hassanpour, A.; Young, N.P.; Kirkland, A.I.; et al. A Study of Commercial Nanoparticulate γ-Al2O3 Catalyst Supports. ChemCatChem 2013, 5, 2695–2706. [Google Scholar] [CrossRef]
- Spende, A.; Sobel, N.; Lukas, M.; Zierold, R.; Riedl, J.C.; Gura, L.; Schubert, I.; Moreno, J.M.M.; Nielsch, K.; Stühn, B.; et al. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched iontrack membranes for transport measurements. Nanotechnology 2015, 26, 335301. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fan, X.; Gao, C.; Qu, C. Macro-mechanics and microstructure of nanomaterial modified geopolymer concrete: A Comprehensive Review. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2025, 40, 204–214. [Google Scholar] [CrossRef]
- Pais, V.; Mota, C.; Bessa, J.; Dias, J.G.; Cunha, F.; Fangueiro, R. Study of the Filtration Performance of Multilayer and Multiscale Fibrous Structures. Materials 2021, 14, 7147. [Google Scholar] [CrossRef]
Nanoparticles | TiO2 | MgO | Al2O3 | |||
---|---|---|---|---|---|---|
Gas flow velocity [m/s] | 0.7 | 1 m | 0.7 s | 1 | 0.7 s | 1 |
The overall filtration efficiency [%] | 84.8 ± 6.7 | 89.6 ± 4.4 | 82.9 ± 1.5 | 83.8 ± 2.7 | 87.1 ± 3.1 | 90.1 ± 2.2 |
Average mass filtration efficiency [%] | 88.7 ± 6 | 92.5 ± 3.9 | 88.6 ± 0.8 | 89.9 ± 2.2 | 88.8 ± 3.1 | 91.5 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa, A.; Sobczyk, A.T.; Jaworek, A. Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes. Membranes 2025, 15, 291. https://doi.org/10.3390/membranes15100291
Krupa A, Sobczyk AT, Jaworek A. Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes. Membranes. 2025; 15(10):291. https://doi.org/10.3390/membranes15100291
Chicago/Turabian StyleKrupa, Andrzej, Arkadiusz Tomasz Sobczyk, and Anatol Jaworek. 2025. "Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes" Membranes 15, no. 10: 291. https://doi.org/10.3390/membranes15100291
APA StyleKrupa, A., Sobczyk, A. T., & Jaworek, A. (2025). Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes. Membranes, 15(10), 291. https://doi.org/10.3390/membranes15100291