Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (485)

Search Parameters:
Keywords = metabolomics community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 369
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 236
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

25 pages, 1611 KiB  
Review
Microbial Interactions in Food Fermentation: Interactions, Analysis Strategies, and Quality Enhancement
by Wenjing Liu, Yunxuan Tang, Jiayan Zhang, Juan Bai, Ying Zhu, Lin Zhu, Yansheng Zhao, Maria Daglia, Xiang Xiao and Yufeng He
Foods 2025, 14(14), 2515; https://doi.org/10.3390/foods14142515 - 17 Jul 2025
Viewed by 445
Abstract
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these [...] Read more.
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these interaction patterns, the safety, nutritional composition, and flavor quality of food can be effectively improved. Achieving precise control of fermented foods’ qualities via microbial interaction remains a critical challenge. Emerging technologies such as high-throughput sequencing, cell sorting, and metabolomics enable the systematic analysis of core microbial interaction mechanisms in complex systems. Using synthetic microbial communities and genome-scale metabolic network models, complicated microbial communities can be effectively simplified. In addition, regulatory targets of food quality can be precisely identified. These strategies lay a solid foundation for the precise improvement of fermented food quality and functionality. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 685
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

21 pages, 2903 KiB  
Article
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Viewed by 311
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the [...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

19 pages, 3218 KiB  
Article
Multi-Omics Integration Reveals the Impact of Gastrointestinal Microbiota on Feed Efficiency in Tan Sheep
by Guohan Sun, Xiaohong Han, Tonggao Liu, Xinrui Zhang, An Shi, Chong Yang and Jinzhong Tao
Microorganisms 2025, 13(7), 1608; https://doi.org/10.3390/microorganisms13071608 - 8 Jul 2025
Viewed by 348
Abstract
The rumen and intestinal microbiota play a pivotal role in the digestion and absorption processes of ruminants. Elucidating the mechanisms by which gastrointestinal microbiota influence the feed conversion ratio (FCR) in ruminants is significantly important for enhancing feed utilization efficiency in these animals. [...] Read more.
The rumen and intestinal microbiota play a pivotal role in the digestion and absorption processes of ruminants. Elucidating the mechanisms by which gastrointestinal microbiota influence the feed conversion ratio (FCR) in ruminants is significantly important for enhancing feed utilization efficiency in these animals. In this study, RT-qPCR, 16S rRNA sequencing, and metabolomic techniques were systematically employed to compare the microbial community structures in the rumen, cecum, and rectum, as well as the differences in rumen metabolites between high- and low-FCR Tan sheep. The results showed that, compared to the HFCR group of Tan sheep, the LFCR group exhibited a significant reduction in unclassified_f__Selenomonadaceae, Blvii28_wastewater-sludge_group, and Papillibacter in the rumen; a significant increase in Lachnospiraceae_AC2044_group and Sanguibacteroides; a significant reduction in unclassified_f__Peptostreptococcaceae, Clostridium_sensu_stricto_1, and Parasutterella in the cecum; a significant increase in norank_f__Bacteroidales_UCG-001; and a significant reduction in norank_f__Muribaculaceae, Blautia, and Turicibacter in the rectum. There is a significant positive correlation between Parasutterella in the cecum and three microorganisms, including unclassified_f__Selenomonadaceae, in the rumen. Additionally, Blvii28_wastewater-sludge_group was positively correlated with Lactobacillus. Furthermore, unclassified_f__Selenomonadaceae in the rumen was positively correlated with Turicibacter, unclassified_f__Peptostreptococcaceae, and Breznakia in the rectum. Blvii28_wastewater-sludge_group also showed positive correlations with Blautia, norank_f__Muribaculaceae, and Clostridium_sensu_stricto_1, while Papillibacter was positively correlated with Faecalitalea. The metabolomic results indicated that, compared to the HFCR group, 261 differential metabolites, including Phenylacetylglutamine and Populin, in the rumen of Tan sheep in the LFCR group were significantly downregulated, whereas 36 differential metabolites, including Glycyl-L-tyrosine, were significantly upregulated. Furthermore, the rumen microbe unclassified_f__Selenomonadaceae exhibited positive correlations with significantly differential metabolites such as L-tryptophan, Etiocholanolone glucuronide, N-acetyl-O-demethylpuromycin, and 6-deoxyerythronolide B. Blvii28_wastewater-sludge_group and Papillibacter also exhibited positive correlations with Icilin. High and low FCRs in the rumen of Tan sheep were investigated, especially in relation to unclassified_f__Selenomonadaceae, Blvii28_wastewater-sludge_group, and Papillibacter. Correlations can be seen with microorganisms such as Parasutatella and Lactobacillus in the cecum; Turicibacter, norank_f__Bacteroideales_UCG-001, and Blautia in the rectum; and metabolites such as L-tryptophan, Etiocholanolone glucuronide, and N-acetyl-O-demethylpuromycin. This reveals the role of microorganisms in the digestion and absorption of Tan sheep feed, thus providing a preliminary basis for further research on the microbial regulation of ruminant animal feed utilization and a theoretical basis for improving Tan sheep feed utilization efficiency. Full article
(This article belongs to the Special Issue Dietary and Animal Gut Microbiota)
Show Figures

Figure 1

21 pages, 6314 KiB  
Article
Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.)
by Yuhan Liu, Jiangling Ren, Binhong Yu, Sichen Liu and Xiaoning Cao
Microorganisms 2025, 13(7), 1593; https://doi.org/10.3390/microorganisms13071593 - 6 Jul 2025
Viewed by 452
Abstract
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere [...] Read more.
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere microorganisms in response to drought remain unclear. In this study, metagenomics and metabolomics techniques were employed to systematically analyze the compositional characteristics of the microbial community, functional properties, and changes in metabolites in the rhizosphere soil of broomcorn millet under drought stress. On this basis, an analysis was conducted in combination with the differences in functional pathways. The results showed that the drought treatment during the flowering stage significantly altered the species composition of the rhizosphere microorganisms of broomcorn millet. Among them, the relative abundances of beneficial microorganisms such as Nitrosospira, Coniochaeta, Diversispora, Gigaspora, Glomus, and Rhizophagus increased significantly. Drought stress significantly affects the metabolic pathways of rhizosphere microorganisms. The relative abundances of genes associated with prokaryotes, glycolysis/gluconeogenesis, and other metabolic process (e.g., ribosome biosynthesis, amino sugar and nucleotide sugar metabolism, and fructose and mannose metabolism) increased significantly. Additionally, the expression levels of functional genes involved in the phosphorus cycle were markedly upregulated. Drought stress also significantly alters the content of specific rhizosphere soil metabolites (e.g., trehalose, proline). Under drought conditions, broomcorn millet may stabilize the rhizosphere microbial community by inducing its restructuring and recruiting beneficial fungal groups. These community-level changes can enhance element cycling efficiency, optimize symbiotic interactions between broomcorn millet and rhizosphere microorganisms, and ultimately improve the crop’s drought adaptability. Furthermore, the soil metabolome (e.g., trehalose and proline) functions as a pivotal interfacial mediator, orchestrating the interaction network between broomcorn millet and rhizosphere microorganisms, thereby enhancing plant stress tolerance. This study sheds new light on the functional traits of rhizosphere microbiota under drought stress and their mechanistic interactions with host plants. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

26 pages, 1293 KiB  
Review
Microbiota-Modulating Strategies in Neonates Undergoing Surgery for Congenital Gastrointestinal Conditions: A Narrative Review
by Nunzia Decembrino, Maria Grazia Scuderi, Pasqua Maria Betta, Roberta Leonardi, Agnese Bartolone, Riccardo Marsiglia, Chiara Marangelo, Stefania Pane, Domenico Umberto De Rose, Guglielmo Salvatori, Giuseppe Grosso, Federica Martina Di Domenico, Andrea Dotta, Lorenza Putignani, Irma Capolupo and Vincenzo Di Benedetto
Nutrients 2025, 17(13), 2234; https://doi.org/10.3390/nu17132234 - 5 Jul 2025
Viewed by 680
Abstract
Background/Objectives: The gut microbiota (GM) is pivotal for immune regulation, metabolism, and neurodevelopment. Infants undergoing surgery for congenital gastrointestinal anomalies are especially prone to microbial imbalances, with a paucity of beneficial bacteria (e.g., Bifidobacteria and Bacteroides) and diminished short-chain fatty acid production. Dysbiosis [...] Read more.
Background/Objectives: The gut microbiota (GM) is pivotal for immune regulation, metabolism, and neurodevelopment. Infants undergoing surgery for congenital gastrointestinal anomalies are especially prone to microbial imbalances, with a paucity of beneficial bacteria (e.g., Bifidobacteria and Bacteroides) and diminished short-chain fatty acid production. Dysbiosis has been associated with severe complications, including necrotizing enterocolitis, sepsis, and feeding intolerance. This narrative review aims to critically examine strategies for microbiota modulation in this high-risk cohort. Methods: An extensive literature analysis was performed to compare the evolution of GM in healthy neonates versus those requiring gastrointestinal surgery, synthetizing strategies to maintain eubiosis, such as early nutritional interventions—particularly the use of human milk—along with antibiotic management and supplementary treatments including probiotics, prebiotics, postbiotics, and lactoferrin. Emerging techniques in metagenomic and metabolomic analysis were also evaluated for their potential to elucidate microbial dynamics in these patients. Results: Neonates undergoing gastrointestinal surgery exhibit significant alterations in microbial communities, characterized by reduced levels of eubiotic bacteria and an overrepresentation of opportunistic pathogens. Early initiation of enteral feeding with human milk and careful antibiotic stewardship are linked to improved microbial balance. Adjunctive therapies, such as the administration of probiotics and lactoferrin, show potential in enhancing gut barrier function and immune modulation, although confirmation through larger-scale studies remains necessary. Conclusions: Modulating the GM emerges as a promising strategy to ameliorate outcome in neonates with congenital gastrointestinal surgical conditions. Future research should focus on the development of standardized therapeutic protocols and the execution of rigorous multicenter trials to validate the efficacy and safety of these interventions. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

21 pages, 2655 KiB  
Article
Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations
by Fiona Hui, Zhiqiang Pang, Charles Viau, Gerd U. Balcke, Julius N. Fobil, Niladri Basu and Jianguo Xia
Metabolites 2025, 15(7), 456; https://doi.org/10.3390/metabo15070456 - 5 Jul 2025
Viewed by 694
Abstract
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this [...] Read more.
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this study, we investigated the alterations in metabolic profiles due to e-waste exposure and linked these metabolites to systemic biological effects. Methods: We applied untargeted high-resolution metabolomics using dual-column LC-MS/MS and a multi-step analysis workflow combining MS1 feature detection, MS2 annotation, and chemical ontology classification, to characterize urinary metabolic alterations in 91 e-waste workers and 51 community controls associated with the Agbogbloshie site (Accra, Ghana). The impacts of heavy metal exposure in e-waste workers were assessed by establishing linear regression and four-parameter logistic (4PL) models between heavy metal levels and metabolite concentrations. Results: Significant metal-associated metabolomic changes were identified. Both linear and nonlinear models revealed distinct sets of exposure-responsive compounds, highlighting diverse biological responses. Ontology-informed annotation revealed systemic effects on lipid metabolism, oxidative stress pathways, and xenobiotic biotransformation. This study demonstrates how integrating chemical ontology and nonlinear modeling facilitates exposome interpretation in complex environments and provides a scalable template for environmental biomarker discovery. Conclusions: Integrating dose–response modeling and chemical ontology analysis enables robust interpretation of exposomics datasets when direct compound identification is limited. Our findings indicate that e-waste exposure induces systemic metabolic alterations that can underlie health risks and diseases. Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
Show Figures

Graphical abstract

16 pages, 3254 KiB  
Article
Integrated Microbiome–Metabolome Analysis Reveals Intestine–Liver Metabolic Associations in the Moustache Toad
by Shui-Sheng Yu, Jing-Wen Xiang, Lin Zhang, Xiao-Hua Guo, Yu Wang, Guo-Hua Ding and Hua-Li Hu
Animals 2025, 15(13), 1973; https://doi.org/10.3390/ani15131973 - 4 Jul 2025
Viewed by 387
Abstract
The intestinal microbiota regulates host metabolic homeostasis through production of bioactive microbial metabolites. These microorganisms facilitate digestion, enhance immune function, maintain osmoregulation, and support physiological balance via these bioactive compounds, thereby enhancing environmental adaptation. Our study investigated intestinal microbiota–liver metabolic interactions in Leptobrachium [...] Read more.
The intestinal microbiota regulates host metabolic homeostasis through production of bioactive microbial metabolites. These microorganisms facilitate digestion, enhance immune function, maintain osmoregulation, and support physiological balance via these bioactive compounds, thereby enhancing environmental adaptation. Our study investigated intestinal microbiota–liver metabolic interactions in Leptobrachium liui using 16S rRNA gene sequencing and non-targeted liquid chromatography–tandem mass spectrometry metabolomics. Key findings include (1) comparable alpha diversity but distinct microbial community structures between the small intestine (SI) and large intestine (LI), with the SI dominated by Enterobacteriaceae (72.14%) and the LI by Chitinophagaceae (55.16%); (2) segment-specific microbe–metabolite correlations, with predominantly positive correlations in the SI and complex patterns in the LI involving fatty acids, amino acids, and energy metabolites; and (3) significant correlations between specific bacterial families (Aeromonadaceae, Enterobacteriaceae, Chitinophagaceae) and hepatic metabolites related to fatty acid metabolism, amino acid synthesis, and energy pathways, indicating potential gut–liver axis associations. These findings provide insights into amphibian intestinal microbiota–hepatic metabolite associations and may inform future studies of host–microbe interactions. Full article
Show Figures

Figure 1

19 pages, 1653 KiB  
Article
Combined Metagenomic and Metabolomic Analysis to Evaluate the Comprehensive Effects of Trichoderma and 6PP on Vineyard Ecosystems
by Irene Dini, Giada d’Errico, Elisa Troiano, Claudio Gigliotti, Anastasia Vassetti, Daria Lotito, Alessia Staropoli, Giuseppe Parrella, Francesco P. d’Errico, Matteo Lorito and Francesco Vinale
Agriculture 2025, 15(13), 1441; https://doi.org/10.3390/agriculture15131441 - 4 Jul 2025
Viewed by 290
Abstract
Viticulture is vital to Italy’s agricultural sector, since it significantly contributes to the global wine industry. Microflora and microfauna are considered important factors for soil quality, improving grapevine growth, and promoting resistance to biotic and abiotic stresses. This study examined the impact of [...] Read more.
Viticulture is vital to Italy’s agricultural sector, since it significantly contributes to the global wine industry. Microflora and microfauna are considered important factors for soil quality, improving grapevine growth, and promoting resistance to biotic and abiotic stresses. This study examined the impact of selected Trichoderma strains (T. harzianum M10 and T. afroharzianum T22) and their secondary metabolite 6-pentyl-α-pyrone (6PP) on the soil microbiome, the metabolome, and physiological changes of grapevines. Before treatment application, low levels of plant-parasitic nematodes (Rotylenchulus spp., Xiphinema pachtaicum) were found in the soil, together with pathogens (Fusarium spp., Neonectria spp.) and beneficial microbes (Clonostachys rosea, Pseudomonas spp.). Metagenomic analysis revealed significant treatment impacts in the soil microbiome, with T22 and 6PP treatments increasing Proteobacteria abundance, while slight variations of fungal communities and no significant differences in nematofauna were found. Metabolomic analysis showed that treatments induced grapevines to produce antioxidant secondary metabolites able to boost plant defense against abiotic and biotic stresses and increase nutraceutical grapes’ value. Finally, T22 treatment increased the grapes’ winemaking value, raising their Brix grade. Our results demonstrate that microbial or metabolite-based treatments could affect the soil microbiome composition, grapevine health and resilience, and grapes’ oenological and nutraceutical properties. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

15 pages, 692 KiB  
Review
Fermented Foods as Functional Systems: Microbial Communities and Metabolites Influencing Gut Health and Systemic Outcomes
by Inmyoung Park and Mohamed Mannaa
Foods 2025, 14(13), 2292; https://doi.org/10.3390/foods14132292 - 28 Jun 2025
Viewed by 3331
Abstract
Fermented foods represent an intricate ecosystem that delivers live microbes and numerous metabolites, influencing gut health. In this review, we explore how complex microbial communities and metabolites generated during food fermentation modulate the gut microbiome and affect human health. We discuss fermentation-induced biochemical [...] Read more.
Fermented foods represent an intricate ecosystem that delivers live microbes and numerous metabolites, influencing gut health. In this review, we explore how complex microbial communities and metabolites generated during food fermentation modulate the gut microbiome and affect human health. We discuss fermentation-induced biochemical transformations, including enhanced fiber fermentability; nutrient availability; and the synthesis of bioactive metabolites such as short-chain fatty acids, exopolysaccharides, bacteriocins, and modified polyphenols. We describe the dynamic microbial ecology of fermented foods, influenced by ingredient variations, highlighting its effect on health-related metabolic outcomes. Fermented products when consumed transiently introduce beneficial microbes and bioactive compounds into the gut, thereby boosting microbial diversity, resilience, and barrier function. We review clinical and preclinical studies to substantiate the roles of fermented foods in immune regulation, metabolic homeostasis, cognitive function, and inflammation mitigation. Individual variability in response to fermented foods has been emphasized, underscoring the potential for personalized nutrition strategies informed by advanced omics technologies. By integrating microbial ecology, metabolomics, and clinical evidence, this review positions fermented food intake as a strategic dietary intervention for microbiome modulation and health promotion. Full article
(This article belongs to the Special Issue Application of Fermentation Biotechnology in Food Science)
Show Figures

Figure 1

18 pages, 2339 KiB  
Article
Effect of Adding Alkaline Metal Ions Complexes Rumen Microbiota and Metabolome of Hu Lambs
by Mingyue Li, Chi Ma, Yalin Li, Ziyi An, Yilin Yang, Feng Gao, Changqing Li and Yingchun Liu
Animals 2025, 15(12), 1816; https://doi.org/10.3390/ani15121816 - 19 Jun 2025
Viewed by 308
Abstract
This study aimed to evaluate the effects of studying the effects of the alkali metal ion complexes (AMIC) on the rumen of lambs. Eighteen 3-month-old male Hu lambs (30 ± 2.5 kg) were randomly assigned to three groups (n = 6). Dietary [...] Read more.
This study aimed to evaluate the effects of studying the effects of the alkali metal ion complexes (AMIC) on the rumen of lambs. Eighteen 3-month-old male Hu lambs (30 ± 2.5 kg) were randomly assigned to three groups (n = 6). Dietary treatments were: control group (CG, base diet), group C1 (base diet + 0.15% AMIC), and group C2 (base diet + 0.30% AMIC). After 60 days of feeding, samples were collected for analysis. Compared with CG, rumen weight significantly increased in both C1 and C2 (p < 0.05). In C2, average daily gain (ADG), bacterial crude protein (BCP), propionic acid concentration, and rumen papillary length were significantly higher than in CG (p < 0.05). Rumen microbiota analysis showed that AMIC supplementation changed the microbial community composition, increasing the relative abundance of fiber-degrading bacteria (e.g., Prevotellaceae_UCG-001) and decreasing pathogenic Proteobacteria. In particular, rumen papillary length positively correlated with Unclassified Oscillospiraceae, Candidatus Saccharimonas, and Unclassified Clostridia vadinBB60 group. Metabolomic analysis revealed that quercetin 3-O-glucuronide levels increased in a dose-dependent manner with higher AMIC. This metabolite positively correlated with Prevotellaceae_UCG-001 abundance and ADG. At 0.30% AMIC, phospholipids PC(18:0/18:4(6Z,9Z,12Z,15Z)) and PE(18:0/16:1(9Z)) were significantly upregulated, and both positively correlated with Candidatus Saccharimonas, Unclassified Clostridia vadinBB60 group, and papillary morphology. In summary, AMIC supplementation affected metabolism by modulating the rumen microbiota, thereby promoting energy absorption and growth. The 0.30% AMIC inclusion significantly enhanced rumen papilla growth, increased the absorption area, promoted propionic acid production, reduced the acetic acid to propionic acid ratio, and ultimately improved the growth rate of Hu lambs. Thus, adding 0.30% AMIC was associated with improved growth performance. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

18 pages, 1088 KiB  
Article
Introducing Legumes into Wheat–Maize Rotation Complicates Soil Microbial Co-Occurrence Network and Reduces Soil Allelochemicals in Succeeding Wheat Season
by Yaqian Yan, Haiyang Jin, Fei Zheng, Xiwen Yang, Hang Song, Jiarui Wang, Baoting Fang, Hongjian Cheng, Xiangdong Li and Dexian He
Agriculture 2025, 15(12), 1307; https://doi.org/10.3390/agriculture15121307 - 18 Jun 2025
Viewed by 578
Abstract
Increasing species richness through rotation is considered a promising measure to enhance agroecosystem functions and services. However, the legacy effects of introducing legumes into a wheat–maize rotation in the North China Plain on soil microecology, especially the soil metabolome, in the succeeding wheat [...] Read more.
Increasing species richness through rotation is considered a promising measure to enhance agroecosystem functions and services. However, the legacy effects of introducing legumes into a wheat–maize rotation in the North China Plain on soil microecology, especially the soil metabolome, in the succeeding wheat season have not been elucidated. This study established three cropping systems: (1) a continuous winter wheat–summer maize rotation (M), (2) a winter wheat–summer peanut (summer maize) rotation (PM), and (3) a winter wheat–summer soybean (summer maize) rotation (SM). The soil physicochemical properties, microbial communities, and metabolomes were analyzed at the stage of the succeeding wheat crop. Introducing peanuts or soybeans into a wheat–maize rotation significantly reduced the soil bacterial abundance and increased the soil fungal Shannon index. This rotation adjustment had a substantial impact on the structure and taxa composition of the soil microbial community. Crop diversification increased the number of total edges, the average degree, and the average number of neighbors in the soil microbial co-occurrence network. Different crop rotations significantly affected the soil metabolic profiles in the positive and negative ion modes. Crop diversification significantly reduced the abundance of coumarin and coumaric acid in the soils. In conclusion, introducing peanuts or soybeans into a wheat–maize rotation could increase the soil fungal community diversity, change the soil microbial community structure and taxa composition, increase the complexity of the soil microbial ecological network, and reduce the abundance of soil allelochemicals. Our study demonstrated the continuity of the impact of crop rotation on soil ecology, and revealed the ecological advantages of crop diversification from the perspective of soil microbiology and metabolomics. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 12602 KiB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 683
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop