Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials, Drought Stress Treatment, and Sample Collection
2.2. DNA Extraction, PCR Amplification, and Metagenomic Sequencing
2.3. Metabolite Extraction and LC-MS/MS Analysis
2.4. Statistical Analysis
3. Results
3.1. Microbial Community Structure
3.2. Functional Gene Annotation and Metabolic Pathway Analysis
3.3. Composition of the Total Soil Metabolites and the Differential Metabolites in the Context of Drought Stress
3.4. The Relationship Between Differential Metabolites and Specialized Microorganisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding Plant Responses to Drought—from Genes to the Whole Plant. Funct. Plant Biol. 2003, 30, 239. [Google Scholar] [CrossRef]
- Bray, E.A. Plant Responses to Water Deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Muhammad, M.; Waheed, A.; Wahab, A.; Majeed, M.; Nazim, M.; Liu, Y.-H.; Li, L.; Li, W.-J. Soil Salinity and Drought Tolerance: An Evaluation of Plant Growth, Productivity, Microbial Diversity, and Amelioration Strategies. Plant Stress 2024, 11, 100319. [Google Scholar] [CrossRef]
- Treviño, M.B.; Connell, M.A.O. Three Drought-Responsive Members of the Nonspecific Lipid-Transfer Protein Gene Family in Lycopersicon pennellii Show Different Developmental Patterns of Expression. Plant Physiol. 1998, 116, 1461–1468. [Google Scholar] [CrossRef]
- Pruvot, G.; Cuiné, S.; Peltier, G.; Rey, P. Characterization of a Novel Drought-Induced 34-kDa Protein Located in the Thylakoids of Solanum tuberosum L. Plants. Planta 1996, 198, 471–479. [Google Scholar] [CrossRef]
- Thompson, A.J.; Jackson, A.C.; Parker, R.A.; Morpeth, D.R.; Taylor, I.B. Abscisic Acid Biosynthesis in Tomato: Regulation of Zeaxanthin Epoxidase and 9-Cis-Epoxycarotenoid Dioxygenase mRNAs by Light/Dark Cycles, Water Stress and Abscisic Acid. Plant Mol. Biol. 2000, 42, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasulu, N.; Harshavardhan, V.T.; Govind, G.; Seiler, C.; Kohli, A. Contrapuntal Role of ABA: Does It Mediate Stress Tolerance or Plant Growth Retardation under Long-Term Drought Stress? Gene 2012, 506, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef]
- Takatsuka, H.; Umeda, M. ABA Inhibits Root Cell Elongation through Repressing the Cytokinin Signaling. Plant Signal. Behav. 2019, 14, e1578632. [Google Scholar] [CrossRef]
- Gargallo-Garriga, A.; Preece, C.; Sardans, J.; Oravec, M.; Urban, O.; Peñuelas, J. Root Exudate Metabolomes Change under Drought and Show Limited Capacity for Recovery. Sci. Rep. 2018, 8, 12696. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Vivanco, J.M. Regulation and Function of Root Exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Canarini, A.; Merchant, A.; Dijkstra, F.A. Drought Effects on Helianthus Annuus and Glycine Max Metabolites: From Phloem to Root Exudates. Rhizosphere 2016, 2, 85–97. [Google Scholar] [CrossRef]
- Vidal, A.; Hirte, J.; Bender, S.F.; Mayer, J.; Gattinger, A.; Höschen, C.; Schädler, S.; Iqbal, T.M.; Mueller, C.W. Linking 3D Soil Structure and Plant-Microbe-Soil Carbon Transfer in the Rhizosphere. Front. Environ. Sci. 2018, 6, 9. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of Plant Domestication on Rhizosphere Microbiome Assembly and Functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef]
- Ryan, P.R.; Dessaux, Y.; Thomashow, L.S.; Weller, D.M. Rhizosphere Engineering and Management for Sustainable Agriculture. Plant Soil 2009, 321, 363–383. [Google Scholar] [CrossRef]
- Qin, W.; Liu, C.; Jiang, W.; Xue, Y.; Wang, G.; Liu, S. A Coumarin Analogue NFA from Endophytic Aspergillus Fumigatus Improves Drought Resistance in Rice as an Antioxidant. BMC Microbiol. 2019, 19, 50. [Google Scholar] [CrossRef]
- van Rhijn, P.; Vanderleyden, J. The Rhizobium-Plant Symbiosis. Microbiol. Rev. 1995, 59, 124–142. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Wang, P.; Liu, C.-Y.; Ni, Q.-D.; Zhang, D.-J.; Wu, Q.-S. Mycorrhizal Trifoliate Orange Has Greater Root Adaptation of Morphology and Phytohormones in Response to Drought Stress. Sci. Rep. 2017, 7, 41134. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient Soil Microorganisms: A New Dimension for Sustainable Agriculture and Environmental Development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Na, X.; Cao, X.; Ma, C.; Ma, S.; Xu, P.; Liu, S.; Wang, J.; Wang, H.; Chen, L.; Qiao, Z. Plant Stage, Not Drought Stress, Determines the Effect of Cultivars on Bacterial Community Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.). Front. Microbiol. 2019, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Xin, Y.; Li, C.; Liu, J.; Huang, T. Metagenomics-Metabolomics Analysis of Microbial Function and Metabolism in Petroleum-Contaminated Soil. Braz. J. Microbiol. 2023, 54, 935–947. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, N.; Li, J.; Zhu, Y.; Cao, T.; Wang, Y. Unveiling the Hidden Responses: Metagenomic Insights into Dwarf Bamboo (Fargesia denudata) Rhizosphere under Drought and Nitrogen Challenges. Int. J. Mol. Sci. 2024, 25, 10790. [Google Scholar] [CrossRef]
- Zhu, Y.; An, M.; Mamut, R.; Wang, H. Comparative Analysis of Metabolic Mechanisms in the Remediation of Cd-Polluted Alkaline Soil in Cotton Field by Biochar and Biofertilizer. Chemosphere 2023, 340, 139961. [Google Scholar] [CrossRef]
- Iven, H.; Walker, T.W.N.; Anthony, M. Biotic Interactions in Soil Are Underestimated Drivers of Microbial Carbon Use Efficiency. Curr. Microbiol. 2022, 80, 13. [Google Scholar] [CrossRef]
- Wang, R.; Hunt, H.V.; Qiao, Z.; Wang, L.; Han, Y. Diversity and Cultivation of Broomcorn Millet (Panicum miliaceum L.) in China: A Review. Econ. Bot. 2016, 70, 332–342. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant Growth-Promoting Bacteria Confer Resistance in Tomato Plants to Salt Stress. Plant Physiol. Biochem. 2004, 42, 565–572. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Liu, S.; Chen, L.; Xiang, D.; Na, X.; Qiao, Z. Effect of Different Fertilizers on the Bacterial Community Diversity in Rhizosperic Soil of Broomcorn Millet (Panicum miliaceum L.). Arch. Agron. Soil Sci. 2022, 68, 676–687. [Google Scholar] [CrossRef]
- Tian, L.; Chen, P.; Gao, Z.; Gao, X.; Feng, B. Deciphering the Distinct Mechanisms Shaping the Broomcorn Millet Rhizosphere Bacterial and Fungal Communities in a Typical Agricultural Ecosystem of Northern China. Plant Soil 2022, 474, 469–484. [Google Scholar] [CrossRef]
- Tian, L.; Feng, Y.; Gao, Z.; Li, H.; Wang, B.; Huang, Y.; Gao, X.; Feng, B. Co-Occurrence Pattern and Community Assembly of Broomcorn Millet Rhizosphere Microbiomes in a Typical Agricultural Ecosystem. Appl. Soil Ecol. 2022, 176, 104478. [Google Scholar] [CrossRef]
- Tian, L.; Yu, S.; Zhang, L.; Dong, K.; Feng, B. Mulching Practices Manipulate the Microbial Community Diversity and Network of Root-Associated Compartments in the Loess Plateau. Soil Tillage Res. 2022, 223, 105476. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, J.; Xu, Y.; Ren, J.; Wang, M.; Wang, S.; Liu, S.; Wang, R.; Wang, L.; Wang, L.; et al. Effects of Rehydration on Bacterial Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.) after Drought Stress at the Flowering Stage. Microorganisms 2024, 12, 1534. [Google Scholar] [CrossRef]
- Cao, X.; Liu, S.; Wang, J.; Wang, H.; Chen, L.; Tian, X.; Zhang, L.; Chang, J.; Wang, L.; Mu, Z.; et al. Soil Bacterial Diversity Changes in Different Broomcorn Millet Intercropping Systems. J. Basic. Microbiol. 2017, 57, 989–997. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, J.; Hu, Y.; Wang, S.; Mao, J.; Xu, Y.; Wang, M.; Liu, S.; Qiao, Z.; Cao, X. Effects of Drought Stress during the Flowering Period on the Rhizosphere Fungal Diversity of Broomcorn Millet (Panicum miliaceum L.). Agronomy 2023, 13, 2896. [Google Scholar] [CrossRef]
- Cao, X.; Liu, S.; Chen, L.; Wang, J.; Xiang, D.; Zhang, J.; Qiao, Z. Effects of Different Crops on Rhizosphere Bacterial Diversity under Immature Soil Conditions. Arch. Agron. Soil Sci. 2022, 68, 18–30. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.I.; Amiot, A.; Böhm, J.; Brunetti, F.; Habermann, N.; et al. Potential of Fecal Microbiota for Early-Stage Detection of Colorectal Cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef]
- Glauser, G.; Grund, B.; Gassner, A.-L.; Menin, L.; Henry, H.; Bromirski, M.; Schütz, F.; McMullen, J.; Rochat, B. Validation of the mass-extraction-window for quantitative methods using liquid chromatography high resolution mass spectrometry. Anal. Chem. 2016, 88, 3264–3271. [Google Scholar] [CrossRef]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes. 2019, 10, 771. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Pablo, C.H.; Mavrodi, O.V.; Weller, D.M.; Thomashow, L.S.; Mavrodi, D.V. Rhizosphere Plant-Microbe Interactions under Water Stress. Adv. Appl. Microbiol. 2021, 115, 65–113. [Google Scholar] [CrossRef]
- Cohen, A.C.; Travaglia, C.N.; Bottini, R.; Piccoli, P.N. Participation of Abscisic Acid and Gibberellins Produced by Endophytic Azospirillum in the Alleviation of Drought Effects in Maize. Botany 2009, 87, 455–462. [Google Scholar] [CrossRef]
- Nourzadeh, N.; Rahimi, A.; Dadrasi, A. Comparative Evaluation of Bio-Fertilizer Replacement with Chemical Fertilizer in Sesame (Sesamum indicum L) Production under Drought Stress and Normal Irrigation Condition. Heliyon 2025, 11, e42743. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.; Mehraban, A. Nitroxin and Arbuscular Mycorrhizal Fungi Alleviate Negative Effects of Drought Stress on Sorghum Bicolor Yield through Improving Physiological and Biochemical Characteristics. Plant Signal. Behav. 2020, 15, 1813998. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Colloquium Paper: Resistance, Resilience, and Redundancy in Microbial Communities. Proc. Natl. Acad. Sci. USA 2008, 105 (Suppl. S1), 11512–11519. [Google Scholar] [CrossRef]
- Allison, S.D.; Lu, Y.; Weihe, C.; Goulden, M.L.; Martiny, A.C.; Treseder, K.K.; Martiny, J.B.H. Microbial Abundance and Composition Influence Litter Decomposition Response to Environmental Change. Ecology 2013, 94, 714–725. [Google Scholar] [CrossRef]
- Shah, S.; Shah, B.; Sharma, R.; Rekadwad, B.; Shouche, Y.S.; Sharma, J.; Pant, B. Colonization with Non-Mycorrhizal Culturable Endophytic Fungi Enhances Orchid Growth and Indole Acetic Acid Production. BMC Microbiol. 2022, 22, 101. [Google Scholar] [CrossRef]
- Ma, W.-Y.; Qin, Q.-Y.; Zou, Y.-N.; Kuča, K.; Giri, B.; Wu, Q.-S.; Hashem, A.; Al-Arjani, A.-B.F.; Almutairi, K.F.; Abd_Allah, E.F.; et al. Arbuscular Mycorrhiza Induces Low Oxidative Burst in Drought-Stressed Walnut through Activating Antioxidant Defense Systems and Heat Shock Transcription Factor Expression. Front. Plant Sci. 2022, 13, 1089420. [Google Scholar] [CrossRef]
- Chialva, M.; Lanfranco, L.; Guazzotti, G.; Santoro, V.; Novero, M.; Bonfante, P. Gigaspora Margarita and Its Endobacterium Modulate Symbiotic Marker Genes in Tomato Roots under Combined Water and Nutrient Stress. Plants 2020, 9, 886. [Google Scholar] [CrossRef]
- Bedini, S.; Pellegrino, E.; Avio, L.; Pellegrini, S.; Bazzoffi, P.; Argese, E.; Giovannetti, M. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 2009, 41, 1491–1496. [Google Scholar] [CrossRef]
- Pons, S.; Fournier, S.; Chervin, C.; Bécard, G.; Rochange, S.; Frei Dit Frey, N.; Puech Pagès, V. Phytohormone Production by the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis. PLoS ONE 2020, 15, e0240886. [Google Scholar] [CrossRef]
- Jie, W.; Yang, D.; Yao, Y.; Guo, N. Effects of Rhizophagus Intraradices on Soybean Yield and the Composition of Microbial Communities in the Rhizosphere Soil of Continuous Cropping Soybean. Sci. Rep. 2022, 12, 17390. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Xu, Y.-J.; Liu, R.-C.; Huang, G.-M.; Kuča, K.; Srivastava, A.K.; Hashem, A.; Abd Allah, E.F.; Wu, Q.-S. Two Different Strategies of Diversispora spurca-Inoculated Walnut Seedlings to Improve Leaf P Acquisition at Low and Moderate P Levels. Front. Plant Sci. 2023, 14, 1140467. [Google Scholar] [CrossRef]
- Xu, F.-J.; Zhang, A.-Y.; Yu, Y.-Y.; Sun, K.; Tang, M.-J.; Zhang, W.; Xie, X.-G.; Dai, C.-C. Soil Legacy of Arbuscular Mycorrhizal Fungus Gigaspora Margarita: The Potassium-Sequestering Glomalin Improves Peanut (Arachis Hypogaea) Drought Resistance and Pod Yield. Microbiol. Res. 2021, 249, 126774. [Google Scholar] [CrossRef] [PubMed]
- Khoshyomn, S.; Heidari, A.; Farzam, M.; Shariatmadari, Z.; Karimian, Z. Correction to: Integrated Approaches for Heavy Metal–Contaminated Soil Remediation: Harnessing the Potential of Paulownia elongata S. Y. Hu, Oscillatoria sp., Arbuscular Mycorrhizal Fungi (Glomus mosseae and Glomus intraradices), and Iron Nanoparticles. Environ. Sci. Pollut. Res. 2024, 31, 41301. [Google Scholar] [CrossRef] [PubMed]
- Kokkoris, V.; Banchini, C.; Paré, L.; Abdellatif, L.; Séguin, S.; Hubbard, K.; Findlay, W.; Dalpé, Y.; Dettman, J.; Corradi, N.; et al. Rhizophagus irregularis, the Model Fungus in Arbuscular Mycorrhiza Research, Forms Dimorphic Spores. New Phytol. 2024, 242, 1771–1784. [Google Scholar] [CrossRef]
- Wang, F.; Wei, Y.; Yan, T.; Wang, C.; Chao, Y.; Jia, M.; An, L.; Sheng, H. Sphingomonas Sp. Hbc-6 Alters Physiological Metabolism and Recruits Beneficial Rhizosphere Bacteria to Improve Plant Growth and Drought Tolerance. Front. Plant Sci. 2022, 13, 1002772. [Google Scholar] [CrossRef]
- Gao, Y.; Tariq, A.; Zeng, F.; Sardans, J.; Graciano, C.; Li, X.; Wang, W.; Peñuelas, J. Soil Microbial Functional Profiles of P-Cycling Reveal Drought-Induced Constraints on P-Transformation in a Hyper-Arid Desert Ecosystem. Sci. Total Environ. 2024, 925, 171767. [Google Scholar] [CrossRef]
- Preece, C.; Verbruggen, E.; Liu, L.; Weedon, J.T.; Peñuelas, J. Effects of Past and Current Drought on the Composition and Diversity of Soil Microbial Communities. Soil Biol. Biochem. 2019, 131, 28–39. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil Bacterial Networks Are Less Stable under Drought than Fungal Networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Barnard, R.L.; Osborne, C.A.; Firestone, M.K. Responses of Soil Bacterial and Fungal Communities to Extreme Desiccation and Rewetting. ISME J. 2013, 7, 2229–2241. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kuzyakov, Y. Mechanisms and Implications of Bacterial–Fungal Competition for Soil Resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A. Experimental Drought Reduces the Transfer of Recently Fixed Plant Carbon to Soil Microbes and Alters the Bacterial Community Composition in a Mountain Meadow. New Phytol. 2014, 201, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiong, L.; Zeng, K.; Wei, Y.; Li, H.; Ji, X. Microbial-Driven Carbon Fixation in Natural Wetland. J. Basic. Microbiol. 2023, 63, 1115–1127. [Google Scholar] [CrossRef]
- Ueda, Y.; Sakuraba, Y.; Yanagisawa, S. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. Plant Cell Physiol. 2021, 62, 573–581. [Google Scholar] [CrossRef]
- López-Arredondo, D.L.; Leyva-González, M.A.; González-Morales, S.I.; López-Bucio, J.; Herrera-Estrella, L. Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of Phosphate Solubilization and Its Potential Applications for Improving Plant Growth-Promoting Bacteria. Plant Soil 2006, 287, 15–21. [Google Scholar] [CrossRef]
- Nehls, U.; Plassard, C. Nitrogen and Phosphate Metabolism in Ectomycorrhizas. New Phytol. 2018, 220, 1047–1058. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; George, T.S.; Limpens, E.; Feng, G. Arbuscular Mycorrhizal Fungi Conducting the Hyphosphere Bacterial Orchestra. Trends Plant Sci. 2022, 27, 402–411. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, B.; Zheng, S.; Zhang, X.; Wang, X.; Dong, W.; Xie, Q.; Wang, G.; Xiao, Y.; Chen, F.; et al. A Phosphate Starvation Response-Centered Network Regulates Mycorrhizal Symbiosis. Cell 2021, 184, 5527–5540.e18. [Google Scholar] [CrossRef] [PubMed]
- Al-Karaki, G.N.; Al-Raddad, A. Effects of Arbuscular Mycorrhizal Fungi and Drought Stress on Growth and Nutrient Uptake of Two Wheat Genotypes Differing in Drought Resistance. Mycorrhiza 1997, 7, 83–88. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. Influence of Arbuscular Mycorrhizae on Yield, Nutrients, Organic Solutes, and Antioxidant Enzymes of Two Wheat Cultivars under Salt Stress. J. Plant Nutr. Soil Sci. 2011, 174, 283–291. [Google Scholar] [CrossRef]
- Ribeiro, G.D.; de Holanda Paranhos, L.; Eleutherio, E.C.A. Trehalose Promotes Biological Fitness of Fungi. Fungal Biol. 2024, 128, 2381–2389. [Google Scholar] [CrossRef]
- Cesàro, A.; De Giacomo, O.; Sussich, F. Water Interplay in Trehalose Polymorphism. Food Chem. 2008, 106, 1318–1328. [Google Scholar] [CrossRef]
- Nawaz, M.; Hassan, M.U.; Chattha, M.U.; Mahmood, A.; Shah, A.N.; Hashem, M.; Alamri, S.; Batool, M.; Rasheed, A.; Thabit, M.A.; et al. Trehalose: A Promising Osmo-Protectant against Salinity Stress—Physiological and Molecular Mechanisms and Future Prospective. Mol. Biol. Rep. 2022, 49, 11255–11271. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: Growth, photosynthesis, water relations and oxidative defence mechanism. J. Agron. Crop Sci. 2011, 197, 258–271. [Google Scholar] [CrossRef]
- Guo, L.; Xiao, P.; Li, L.; Chen, S.; Yuan, G. Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress. Sheng Wu Gong Cheng Xue Bao Chin. J. Biotechnol. 2022, 38, 4536–4552. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, L.; He, X.; Tian, C. Water Strategy of Mycorrhizal Rice at Low Temperature through the Regulation of PIP Aquaporins with the Involvement of Trehalose. Appl. Soil Ecol. 2014, 84, 185–191. [Google Scholar] [CrossRef]
- Sadak, M.S. Physiological Role of Trehalose on Enhancing Salinity Tolerance of Wheat Plant. Bull. Natl. Res. Cent. 2019, 43, 53. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, L.; Cheng, C.; Ma, J.; Xin, F.; Liu, J.; Wu, H.; Jiang, M. Recent Advances in Microbial Production of Mannitol: Utilization of Low-Cost Substrates, Strain Development and Regulation Strategies. World J. Microbiol. Biotechnol. 2018, 34, 41. [Google Scholar] [CrossRef] [PubMed]
- Stoop, J.M.H.; Williamson, J.D.; Mason Pharr, D. Mannitol Metabolism in Plants: A Method for Coping with Stress. Trends Plant Sci. 1996, 1, 139–144. [Google Scholar] [CrossRef]
- Zhang, L.; Becker, D.F. Connecting Proline Metabolism and Signaling Pathways in Plant Senescence. Front. Plant Sci. 2015, 6, 552. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef] [PubMed]
- Nader, A.A.; Hauka, F.I.A.; Afify, A.H.; El-Sawah, A.M. Drought-Tolerant Bacteria and Arbuscular Mycorrhizal Fungi Mitigate the Detrimental Effects of Drought Stress Induced by Withholding Irrigation at Critical Growth Stages of Soybean (Glycine max, L.). Microorganisms 2024, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Aninbon, C.; Teamkao, P.; Buram, K.; Kaewnoo, T.; Ruttanaprasert, R.; Janket, A.; Mon, Y.Y.; Kaewtaphan, P. Effect of Arbuscular Mycorrhiza and Rhizobium on Physiology and Yield of Peanut under Drought Conditions. Front. Plant Sci. 2024, 15, 1468636. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Eliyas, M.; Radwan, S.S. Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses. Front. Microbiol. 2018, 9, 394. [Google Scholar] [CrossRef]
- Wang, L.; Qin, L.; Sun, X.; Zhao, S.; Yu, L.; Chen, S.; Wang, M. Salt Stress-Induced Changes in Soil Metabolites Promote Cadmium Transport into Wheat Tissues. J. Environ. Sci. 2023, 127, 577–588. [Google Scholar] [CrossRef]
- Cao, X.; Hu, Y.; Song, J.; Feng, H.; Wang, J.; Chen, L.; Wang, L.; Diao, X.; Wan, Y.; Liu, S.; et al. Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet. Int. J. Mol. Sci. 2022, 23, 10792. [Google Scholar] [CrossRef]
Indicator | Potential of Hydrogen | Organic Matter | Total Nitrogen | Available Phosphorus | Available Potassium | Alkaline Hydrolysis Nitrogen |
---|---|---|---|---|---|---|
Parameter | 8.43 | 8.19 g/kg | 0.71 g/kg | 5.89 mg/kg | 97.10 mg/kg | 53.59 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ren, J.; Yu, B.; Liu, S.; Cao, X. Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.). Microorganisms 2025, 13, 1593. https://doi.org/10.3390/microorganisms13071593
Liu Y, Ren J, Yu B, Liu S, Cao X. Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.). Microorganisms. 2025; 13(7):1593. https://doi.org/10.3390/microorganisms13071593
Chicago/Turabian StyleLiu, Yuhan, Jiangling Ren, Binhong Yu, Sichen Liu, and Xiaoning Cao. 2025. "Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.)" Microorganisms 13, no. 7: 1593. https://doi.org/10.3390/microorganisms13071593
APA StyleLiu, Y., Ren, J., Yu, B., Liu, S., & Cao, X. (2025). Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.). Microorganisms, 13(7), 1593. https://doi.org/10.3390/microorganisms13071593