Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Metal Quantification
2.3. LC-MS/MS Analysis and Data Processing
2.4. Bioinformatics, Statistical Analyses and Modelling
3. Results
3.1. Overview of MS1 and MS2 Raw Data Processing
3.2. Metal Quantification in Urine Samples
3.3. Categorical- and Ontology-Based Classification
3.4. Linear Relationship Between Urinary Metals and Metabolites
3.5. Nonlinear Relationship Between Urinary Metals and Metabolites
3.6. Comparison of Model-Specific Metal-Metabolite Associations
3.7. Functional and Biological Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
E-waste | Electronic waste |
LC | Liquid chromatography |
UHPLC | Ultra-high-performance liquid chromatography |
HILIC | Hydrophilic interaction liquid chromatography |
MS | Mass spectrometry |
MS2 | Tandem mass spectrometry |
HRMS | High-resolution mass spectrometry |
ICP-MS | Inductively coupled plasma mass spectrometer |
ESI | Electrospray ionization |
4PL | Four-parameter logistic |
BMI | Body mass index |
EC50 | Half maximal effective concentration |
BMD | Benchmark dose |
BMDL | Benchmark dose lower confidence limit |
Ag | Silver |
As | Arsenic |
Ba | Barium |
Ca | Calcium |
Cd | Cadmium |
Ce | Cerium |
Cr | Chromium |
Cu | Copper |
Eu | Europium |
Fe | Iron |
La | Lanthanum |
Mg | Magnesium |
Nd | Neodymium |
Ni | Nickel |
Pb | Lead |
Rb | Rubidium |
Se | Selenium |
Sr | Strontium |
Tb | Terbium |
Tl | Thallium |
Y | Yttrium |
Zn | Zinc |
CoA | Coenzyme A |
References
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University (UNU): Shibuya, Japan; United Nations Institute for Training and Research (UNITAR): Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020. [Google Scholar]
- Baldé, C.P.; Kuehr, R.; Yamamoto, T.; McDonald, R.; D’Angelo, E.; Althaf, S.; Bel, G.; Deubzer, O.; Fernandez-Cubillo, E.; Forti, V.; et al. Global E-Waste Monitor 2024; International Telecommunication Union (ITU): Geneva, Switzerland; United Nations Institute for Training and Research (UNITAR): Bonn, Germany, 2024. [Google Scholar]
- Kazim, M.; Syed, J.H.; Saqib, Z.; Kurt-Karakus, P.B.; Iqbal, M.; Nasir, J.; Akcetin, M.O.; Akram, S.; Birgul, A.; Kara, M.; et al. Informal E-waste recycling in nine cities of Pakistan reveals significant impacts on local air and soil quality and associated health risks. Environ. Pollut. 2024, 355, 124259. [Google Scholar] [CrossRef] [PubMed]
- Kaifie, A.; Schettgen, T.; Bertram, J.; Löhndorf, K.; Waldschmidt, S.; Felten, M.K.; Kraus, T.; Fobil, J.N.; Küpper, T. Informal e-waste recycling and plasma levels of non-dioxin-like polychlorinated biphenyls (NDL-PCBs)—A cross-sectional study at Agbogbloshie, Ghana. Sci. Total Environ. 2020, 723, 138073. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, X.; Boezen, H.M.; Huo, X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere 2016, 148, 408–415. [Google Scholar] [CrossRef]
- Song, Q.; Li, J. A review on human health consequences of metals exposure to e-waste in China. Environ. Pollut 2015, 196, 450–461. [Google Scholar] [CrossRef]
- Eguchi, A.; Kunisue, T.; Wu, Q.; Trang, P.T.; Viet, P.H.; Kannan, K.; Tanabe, S. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: Association with thyroid hormone and iodide levels. Arch Environ. Contam. Toxicol. 2014, 67, 29–41. [Google Scholar] [CrossRef]
- Gangwar, C.; Choudhari, R.; Chauhan, A.; Kumar, A.; Singh, A.; Tripathi, A. Assessment of air pollution caused by illegal e-waste burning to evaluate the human health risk. Environ. Int. 2019, 125, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ruan, J.; Zhang, B.; Lu, S.; Gao, C.; Huang, L.; Bai, X.; Xie, L.; Gui, M.; Qiu, R.L. Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: Identification of exposure sources and metal-induced health risk. Ecotoxicol. Environ. Saf. 2019, 169, 707–713. [Google Scholar] [CrossRef]
- Annamalai, J. Occupational health hazards related to informal recycling of E-waste in India: An overview. Indian J. Occup. Environ. Med. 2015, 19, 61–65. [Google Scholar] [CrossRef]
- Andeobu, L.; Wibowo, S.; Grandhi, S. Environmental and Health Consequences of E-Waste Dumping and Recycling Carried out by Selected Countries in Asia and Latin America. Sustainability 2023, 15, 10405. [Google Scholar] [CrossRef]
- Dodd, M.; Amponsah, L.O.; Grundy, S.; Darko, G. Human health risk associated with metal exposure at Agbogbloshie e-waste site and the surrounding neighbourhood in Accra, Ghana. Environ. Geochem. Health 2023, 45, 4515–4531. [Google Scholar] [CrossRef]
- Flasch, M.; Fitz, V.; Rampler, E.; Ezekiel, C.N.; Koellensperger, G.; Warth, B. Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses. JACS Au 2022, 2, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Ewald, J.; Hui, F.; Bayen, S.; Xia, J. A data-centric perspective on exposomics data analysis. Exposome 2024, 4, osae005. [Google Scholar] [CrossRef]
- Pang, Z.; Viau, C.; Fobil, J.N.; Basu, N.; Xia, J. Comprehensive Blood Metabolome and Exposome Analysis, Annotation, and Interpretation in E-Waste Workers. Metabolites 2024, 14, 671. [Google Scholar] [CrossRef]
- Lai, Y.; Koelmel, J.P.; Walker, D.I.; Price, E.J.; Papazian, S.; Manz, K.E.; Castilla-Fernández, D.; Bowden, J.A.; Nikiforov, V.; David, A.; et al. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. Environ. Sci. Technol. 2024, 58, 12784–12822. [Google Scholar] [CrossRef]
- Eckhardt, B.; Kaifie, A. Bridging the knowledge gap! Health outcomes in informal e-waste workers. J. Occup. Med. Toxicol. 2024, 19, 11. [Google Scholar] [CrossRef]
- Collins, S.L.; Koo, I.; Peters, J.M.; Smith, P.B.; Patterson, A.D. Current Challenges and Recent Developments in Mass Spectrometry-Based Metabolomics. Annu. Rev. Anal. Chem. 2021, 14, 467–487. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.R.; Dorrestein, P.C.; Quinn, R.A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA 2015, 112, 12549–12550. [Google Scholar] [CrossRef]
- Blaženović, I.; Kind, T.; Sa, M.R.; Ji, J.; Vaniya, A.; Wancewicz, B.; Roberts, B.S.; Torbašinović, H.; Lee, T.; Mehta, S.S.; et al. Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Anal. Chem. 2019, 91, 2155–2162. [Google Scholar] [CrossRef]
- Fenaille, F.; Barbier Saint-Hilaire, P.; Rousseau, K.; Junot, C. Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand? J. Chromatogr. A 2017, 1526, 1–12. [Google Scholar] [CrossRef]
- Bocato, M.Z.; Paulo, B.X.J.; Christian, H.; Barbosa, F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. J. Toxicol. Environ. Health Part B 2019, 22, 131–156. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminformatics 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.F.; Reher, R.; Kang, K.B.; van der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Nash, M.S.; Farraj, A.K. Metabolomic profiling reveals systemic metabolic disruptions induced by combined exposure to particulate matter and ozone. Curr. Res. Toxicol. 2025, 8, 100216. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Tang, Z.; Diver, W.R.; Sarnat, J.A.; Chow, S.S.; Cheng, H.; Deubler, E.L.; Tan, Y.; Eick, S.M.; Jerrett, M.; et al. Metabolomics Signatures of Exposure to Ambient Air Pollution: A Large-Scale Metabolome-Wide Association Study in the Cancer Prevention Study-II Nutrition Cohort. Environ. Sci. Technol. 2025, 59, 212–223. [Google Scholar] [CrossRef]
- Li, Z.; Liang, D.; Ye, D.; Chang, H.H.; Ziegler, T.R.; Jones, D.P.; Ebelt, S.T. Application of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollution. Environ. Res. 2021, 193, 110506. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zeng, Z.; Wang, Q.; Liang, W.; Guo, Y.; Huo, X. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure. J. Hazard. Mater. 2022, 434, 128842. [Google Scholar] [CrossRef]
- Takyi, S.A.; Basu, N.; Arko-Mensah, J.; Dwomoh, D.; Nti, A.A.A.; Kwarteng, L.; Acquah, A.A.; Robins, T.G.; Fobil, J.N. Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 9575. [Google Scholar] [CrossRef]
- Amoabeng Nti, A.A.; Arko-Mensah, J.; Botwe, P.K.; Dwomoh, D.; Kwarteng, L.; Takyi, S.A.; Acquah, A.A.; Tettey, P.; Basu, N.; Batterman, S.; et al. Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 3042. [Google Scholar] [CrossRef]
- Takyi, S.A.; Basu, N.; Arko-Mensah, J.; Dwomoh, D.; Houessionon, K.G.; Fobil, J.N. Biomonitoring of metals in blood and urine of electronic waste (E-waste) recyclers at Agbogbloshie, Ghana. Chemosphere 2021, 280, 130677. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Xu, L.; Viau, C.; Lu, Y.; Salavati, R.; Basu, N.; Xia, J. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics. Nat. Commun. 2024, 15, 3675. [Google Scholar] [CrossRef]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Li, S.; Siddiqa, A.; Thapa, M.; Chi, Y.; Zheng, S. Trackable and scalable LC-MS metabolomics data processing using asari. Nat. Commun. 2023, 14, 4113. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Quast, J.-P.; Schuster, D.; Picotti, P. protti: An R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data. Bioinform. Adv. 2021, 2, vbab041. [Google Scholar] [CrossRef] [PubMed]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; p. 470. [Google Scholar]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; E MacDonald, P.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014, 19, 125–133. [Google Scholar] [CrossRef]
- Trowbridge, J.; Gerona, R.; McMaster, M.; Ona, K.; Clarity, C.; Bessonneau, V.; Rudel, R.; Buren, H.; Morello-Frosch, R. Organophosphate and Organohalogen Flame-Retardant Exposure and Thyroid Hormone Disruption in a Cross-Sectional Study of Female Firefighters and Office Workers from San Francisco. Environ. Sci. Technol. 2022, 56, 440–450. [Google Scholar] [CrossRef]
- Si, L.; Guo, C.; Cao, Y.; Cong, W.; Yuan, Z. The effect of nitrobenzene on antioxidative enzyme activity and DNA damage in tobacco seedling leaf cells. Environ. Toxicol. Chem. 2012, 31, 2078–2084. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Ashari, S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. Environ. Sci. Pollut. Res. 2021, 28, 35488–35527. [Google Scholar] [CrossRef]
- Zheng, X.; Huo, X.; Zhang, Y.; Wang, Q.; Zhang, Y.; Xu, X. Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut. 2019, 246, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, X.; Lu, X.; Zeng, Z.; Faas, M.M.; Xu, X. Exposure to multiple heavy metals associate with aberrant immune homeostasis and inflammatory activation in preschool children. Chemosphere 2020, 257, 127257. [Google Scholar] [CrossRef]
- Li, A.; Mei, Y.; Zhao, M.; Xu, J.; Zhao, J.; Zhou, Q.; Ge, X.; Xu, Q. Do urinary metals associate with the homeostasis of inflammatory mediators? Results from the perspective of inflammatory signaling in middle-aged and older adults. Environ. Int. 2022, 163, 107237. [Google Scholar] [CrossRef]
- Perkins, D.N.; Brune Drisse, M.-N.; Nxele, T.; Sly, P.D. E-Waste: A Global Hazard. Ann. Glob. Health 2014, 80, 286–295. [Google Scholar] [CrossRef]
- Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 2009, 408, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef]
- Friedlander, L.R.; Weisbrod, N.; Garb, Y.J. Climatic and soil-mineralogical controls on the mobility of trace metal contamination released by informal electronic waste (e-waste) processing. Chemosphere 2019, 232, 130–139. [Google Scholar] [CrossRef]
- Lin, N.; Kwarteng, L.; Godwin, C.; Warner, S.; Robins, T.; Arko-Mensah, J.; Fobil, J.N.; Batterman, S. Airborne volatile organic compounds at an e-waste site in Ghana: Source apportionment, exposure and health risks. J. Hazard. Mater. 2021, 419, 126353. [Google Scholar] [CrossRef]
- Liang, Q.; Tian, K.; Li, L.; He, Y.; Zhao, T.; Liu, B.; Wu, Q.; Huang, B.; Zhao, L.; Teng, Y. Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an e-waste dismantling site, Southeast China. Ecotoxicol. Environ. Saf. 2022, 242, 113929. [Google Scholar] [CrossRef] [PubMed]
- Daso, A.P.; Akortia, E.; Okonkwo, J.O. Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana. Environ. Sci. Pollut. Res. 2016, 23, 10883–10894. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, J.Z.; Alcock, N.W.; Archibald, R.M. Competition Between Calcium, Strontium, and Magnesium for Absorption in the Isolated Rat Intestine. Clin. Chem. 1963, 9, 734–744. [Google Scholar] [CrossRef]
- Cheshmedzhieva, D.; Ilieva, S.; Permyakov, E.A.; Permyakov, S.E.; Dudev, T. Ca2+/Sr2+ Selectivity in Calcium-Sensing Receptor (CaSR): Implications for Strontium’s Anti-Osteoporosis Effect. Biomolecules 2021, 11, 1576. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.M.; Cooper, C.; Harvey, N.C. Cardiovascular safety of calcium, magnesium and strontium: What does the evidence say? Aging Clin. Exp. Res. 2021, 33, 479–494. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, S.; Zhao, Q.; Zhang, K.; Wei, X.; Zhou, T.; Liu, D.; Zhou, H.; Zeng, Q.; Cheng, L.; et al. Environmental exposure to metals and the risk of hypertension: A cross-sectional study in China. Environ. Pollut. 2018, 233, 670–678. [Google Scholar] [CrossRef]
- Qian, H.; Li, G.; Luo, Y.; Fu, X.; Wan, S.; Mao, X.; Yin, W.; Min, Z.; Jiang, J.; Yi, G.; et al. Relationship Between Occupational Metal Exposure and Hypertension Risk Based on Conditional Logistic Regression Analysis. Metabolites 2022, 12, 1259. [Google Scholar] [CrossRef]
- Li, M.; Wu, K.; Zhao, X.; Yu, Q.; Li, J.; Wu, Y.; Liu, X. Dose-Response Metabolomics Unveils Liver Metabolic Disruptions and Pathway Sensitivity to Alkylimidazolium Ionic Liquids: Benchmark Dose Estimation for Health Risk Assessment. Environ. Sci. Technol. 2025, 59, 6414–6427. [Google Scholar] [CrossRef]
- Colas, S.; Marie, B.; Milhe-Poutingon, M.; Lot, M.-C.; Boullemant, A.; Fortin, C.; Le Faucheur, S. Meta-metabolomic responses of river biofilms to cobalt exposure and use of dose-response model trends as an indicator of effects. J. Hazard. Mater. 2024, 470, 134099. [Google Scholar] [CrossRef]
- Gadagkar, S.R.; Call, G.B. Computational tools for fitting the Hill equation to dose–response curves. J. Pharmacol. Toxicol. Methods 2015, 71, 68–76. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Goka, K. Simplified models to analyse time- and dose-dependent responses of populations to toxicants. Ecotoxicology 2007, 16, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Larras, F.; Billoir, E.; Baillard, V.; Siberchicot, A.; Scholz, S.; Wubet, T.; Tarkka, M.; Schmitt-Jansen, M.; Delignette-Muller, M.-L. DRomics: A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in Ecological Risk Assessment. Environ. Sci. Technol. 2018, 52, 14461–14468. [Google Scholar] [CrossRef] [PubMed]
- Warembourg, C.; Anguita-Ruiz, A.; Siroux, V.; Slama, R.; Vrijheid, M.; Richiardi, L.; Basagaña, X. Statistical Approaches to Study Exposome-Health Associations in the Context of Repeated Exposure Data: A Simulation Study. Environ. Sci. Technol. 2023, 57, 16232–16243. [Google Scholar] [CrossRef]
- Qiu, T.; Pei, P.; Yao, X.; Jiang, L.; Wei, S.; Wang, Z.; Bai, J.; Yang, G.; Gao, N.; Yang, L.; et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Prasenjit, M.; Sil, P.C. Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-κB and mitochondria dependent pathways. Free Radic. Res. 2009, 43, 995–1007. [Google Scholar] [CrossRef]
- Gao, N.; Yao, X.; Jiang, L.; Yang, L.; Qiu, T.; Wang, Z.; Pei, P.; Yang, G.; Liu, X.; Sun, X. Taurine improves low-level inorganic arsenic-induced insulin resistance by activating PPARγ-mTORC2 signalling and inhibiting hepatic autophagy. J. Cell. Physiol. 2019, 234, 5143–5152. [Google Scholar] [CrossRef]
- Das, J.; Jyotirmoy, G.; Prasenjit, M.; Mahua, S.; Sil, P.C. Arsenic-induced oxidative cerebral disorders: Protection by taurine. Drug Chem. Toxicol. 2009, 32, 93–102. [Google Scholar] [CrossRef]
- Ting, C.Y.; Akma, A.S.N.; Len, T.L.; Hazalinawati, Z.; Ping, W.L.; Nasrin, A.M.; Anchah, L. Heavy metals (Cr, Pb, Cd, Ni) in aerosols emitted from electronic cigarettes sold in Malaysia. J. Environ. Sci. Health Part A 2020, 55, 55–62. [Google Scholar] [CrossRef]
- Tola, S.; Nordman, C.H. Smoking and blood lead concentrations in lead-exposed workers and an unexposed population. Environ. Res. 1977, 13, 250–255. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Satarug, S.; Ujjin, P.; Vanavanitkun, Y.; Nishijo, M.; Baker, J.R.; Moore, M.R. Effects of cigarette smoking and exposure to cadmium and lead on phenotypic variability of hepatic CYP2A6 and renal function biomarkers in men. Toxicology 2004, 204, 161–173. [Google Scholar] [CrossRef]
- Lin, Y.; Yuan, Y.; Ouyang, Y.; Wang, H.; Xiao, Y.; Zhao, X.; Yang, H.; Li, X.; Guo, H.; He, M.; et al. Metabolome-Wide Association Study of Multiple Plasma Metals with Serum Metabolomic Profile among Middle-to-Older-Aged Chinese Adults. Environ. Sci. Technol. 2022, 56, 16001–16011. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xin, Y.; Zhang, J.; Cui, F.; Chen, T.; Chen, L.; Ma, J.; Niu, P. Metabolic signatures of population exposure to metal mixtures: A metabolome-wide association study. Environ. Pollut. 2024, 360, 124673. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.; Goldizen, F.C.; Sly, P.D.; Brune, M.-N.; Neira, M.; van den Berg, M.; Norman, R.E. Health consequences of exposure to e-waste: A systematic review. Lancet Glob. Health 2013, 1, e350–e361. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Sankara Sarma, P.; Gaitonde, R. Health Problems and Healthcare-Seeking Practices of Workers Processing E-Waste in the Unorganized Sector in the Slums of a South Indian City: An Exploratory Study. Indian J. Occup. Environ. Med. 2022, 26, 255–260. [Google Scholar] [CrossRef]
- Kaufmann, A. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS. J. Mass Spectrom. 2018, 53, 725–738. [Google Scholar] [CrossRef]
- Stincone, P.; Pakkir Shah, A.K.; Schmid, R.; Graves, L.G.; Lambidis, S.P.; Torres, R.R.; Xia, S.-N.; Minda, V.; Aron, A.T.; Wang, M.; et al. Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q Exactive Platform. Anal. Chem. 2023, 95, 12673–12682. [Google Scholar] [CrossRef]
- Bittremieux, W.; Wang, M.; Dorrestein, P.C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 2022, 18, 94. [Google Scholar] [CrossRef]
- Aretz, I.; Meierhofer, D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int. J. Mol. Sci. 2016, 17, 632. [Google Scholar] [CrossRef]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagaña, X. Statistical Approaches to Address Multi-Pollutant Mixtures and Multiple Exposures: The State of the Science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, Y.; Cao, K.; He, S.; Wang, T. A review of common statistical methods for dealing with multiple pollutant mixtures and multiple exposures. Front. Public Health 2024, 12, 1377685. [Google Scholar] [CrossRef] [PubMed]
Urinary Metal | Association | Pearson Correlation | Spearman’s Rank Correlation | ||||||
---|---|---|---|---|---|---|---|---|---|
HILIC Column | C18 Column | HILIC Column | C18 Column | ||||||
ESI+ | ESI− | ESI+ | ESI− | ESI+ | ESI− | ESI+ | ESI− | ||
Ag | Positive | 4 | - | 1 | 1 | - | - | - | - |
Negative | 3 | 8 | 14 | 13 | - | - | - | - | |
As | Positive | 147 | 1648 | 3855 | 2606 | 312 | 2367 | 6540 | 4521 |
Negative | 90 | 172 | 193 | 47 | 174 | 266 | 435 | 109 | |
Ba | Positive | 2 | - | 2 | - | - | - | - | - |
Negative | - | - | - | - | - | - | - | 1 | |
Ca | Positive | 25 | 396 | 1363 | 783 | 136 | 459 | 1964 | 1039 |
Negative | 10 | 28 | 57 | 25 | 22 | 38 | 106 | 31 | |
Cd | Positive | - | 4 | 96 | 14 | 3 | 49 | 765 | 184 |
Negative | 1 | - | 1 | 2 | 17 | 19 | 22 | 11 | |
Ce | Positive | 2 | - | 4 | 7 | - | - | - | 1 |
Negative | - | - | 1 | - | - | - | - | - | |
Cr | Positive | 225 | 70 | 333 | 248 | - | - | - | 1 |
Negative | - | 2 | 5 | 3 | - | - | - | - | |
Cu | Positive | - | 1 | 31 | 6 | 1 | 15 | 88 | 16 |
Negative | 22 | 2 | 90 | 6 | 54 | 14 | 131 | 14 | |
Eu | Positive | 32 | 45 | 68 | 59 | - | - | - | - |
Negative | 1 | 2 | 11 | 4 | - | - | - | - | |
Fe | Positive | 5 | 2 | 4 | 4 | - | - | - | - |
Negative | 1 | - | - | - | - | - | - | - | |
Mg | Positive | 544 | 2319 | 9765 | 6077 | 1815 | 3652 | 14,488 | 8934 |
Negative | 259 | 270 | 396 | 164 | 359 | 361 | 754 | 299 | |
Nd | Positive | 75 | 115 | 336 | 190 | - | - | - | - |
Negative | - | 3 | 12 | 6 | - | - | - | - | |
Ni | Positive | - | - | 3 | 3 | - | 1 | 9 | 7 |
Negative | - | - | - | - | - | - | - | 6 | |
Pb | Positive | 41 | 306 | 2381 | 1205 | 66 | 138 | 1396 | 783 |
Negative | 49 | 26 | 100 | 35 | 64 | 22 | 111 | 28 | |
Rb | Positive | 356 | 1745 | 5363 | 3371 | 1004 | 3015 | 8953 | 5561 |
Negative | 183 | 248 | 299 | 100 | 276 | 367 | 640 | 217 | |
Se | Positive | 164 | 1418 | 5335 | 3330 | 612 | 2418 | 8967 | 5117 |
Negative | 180 | 228 | 288 | 93 | 282 | 341 | 593 | 231 | |
Sr | Positive | 161 | 1281 | 5149 | 3200 | 656 | 2033 | 7833 | 4583 |
Negative | 88 | 130 | 176 | 67 | 147 | 177 | 346 | 116 | |
Tb | Positive | - | - | - | - | - | - | - | - |
Negative | - | - | 3 | - | - | 1 | 1 | - | |
Tl | Positive | 5 | 23 | 32 | 13 | 80 | 130 | 67 | 26 |
Negative | - | 3 | 1 | - | 12 | 17 | 4 | 2 | |
Y | Positive | 71 | 121 | 329 | 191 | - | - | - | - |
Negative | - | 1 | 3 | 1 | - | - | - | - | |
Zn | Positive | 2 | - | - | - | - | - | 3 | 1 |
Negative | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, F.; Pang, Z.; Viau, C.; Balcke, G.U.; Fobil, J.N.; Basu, N.; Xia, J. Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations. Metabolites 2025, 15, 456. https://doi.org/10.3390/metabo15070456
Hui F, Pang Z, Viau C, Balcke GU, Fobil JN, Basu N, Xia J. Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations. Metabolites. 2025; 15(7):456. https://doi.org/10.3390/metabo15070456
Chicago/Turabian StyleHui, Fiona, Zhiqiang Pang, Charles Viau, Gerd U. Balcke, Julius N. Fobil, Niladri Basu, and Jianguo Xia. 2025. "Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations" Metabolites 15, no. 7: 456. https://doi.org/10.3390/metabo15070456
APA StyleHui, F., Pang, Z., Viau, C., Balcke, G. U., Fobil, J. N., Basu, N., & Xia, J. (2025). Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations. Metabolites, 15(7), 456. https://doi.org/10.3390/metabo15070456