Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Vitro Fermentation Test
2.3. Animal Experimental Design
2.4. Respiratory Test
2.5. Measurement of Physical and Chemical Indexes of Odor Absorbing Liquid and Fresh Feces
2.6. Measurement of Blood Physical and Chemical Indices
2.7. Fecal Microbiota Analysis
2.8. Untargeted Metabolomics Analysis
2.9. Statistical Analysis
3. Results
3.1. Odor Reduction of In Vitro Fermentation
3.2. Odor Reduction of Cat Breeding Experiments
3.3. Effects on Growth Performance and Serum Immune Parameters
3.4. Effects on Fresh Feces and Serum Physicochemical Indicators
3.5. Effects on the Microbiome Community of Fresh Feces
3.6. Correlation Between Odor Concentrations and Bacterial Genera
3.7. Chemical Composition of Rosemary Extract
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NH3 | ammonia |
H2S | hydrogen sulfide |
Da | Dalton |
CK | control check group |
GE | garlic extract |
SOE | Salvia officinalis extract |
GTE | green tea extract |
HE | honeysuckle extract |
OPE | orange peel extract |
TE | thyme extract |
YE | Yucca extract |
CE | cinnamon extract |
AE | Astragalus extract |
BTE | black tea extract |
RE | rosemary extract |
LE | licorice extract |
RE1/RE100 | fractions of rosemary extract (<100 Da) |
RE2 | fractions of rosemary extract (100–500 Da) |
RE3 | fractions of rosemary extract (500–1000 Da) |
RE4 | fractions of rosemary extract (>1000 Da) |
LE1 | fractions of licorice extract (<3500 Da) |
LE2 | fractions of licorice extract (3500–7000 Da) |
LE3 | fractions of licorice extract (7000–14,000 Da) |
LE4 | fractions of licorice extract (>14,000 Da) |
IgA | Immunoglobulin A |
IgM | Immunoglobulin M |
IgG | Immunoglobulin G |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
OTUs | operational taxonomic units |
PCoA | principal coordinate analysis |
SEM | standard error of the mean |
GC-TOF-MS | gas chromatograph coupled with a time-of-flight mass spectrometer |
References
- Li, P.; Wu, G. Amino acid nutrition and metabolism in domestic cats and dogs. J. Anim. Sci. Biotechnol. 2023, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Naqvi, I. Relationship between pet attachment and empathy among young adults. J. Behav. Sci. 2016, 26, 66. [Google Scholar]
- Robins, L.I.; Napier, S.; Seek, C.M.; Gao, X.; Flegler, C.; Mackenzie, C.D. Control of felinine-derived malodor in cat litter. J. Feline Med. Surg. 2022, 24, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Qi, F.; Li, R.; Wang, H.; Sun, D. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. Chemosphere 2020, 249, 126077. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wang, W.; Chen, M.; Zhang, H.; Xu, S. Ammonia induces treg/th1 imbalance with triggered nf-κb pathway leading to chicken respiratory inflammation response. Sci. Total Environ. 2019, 659, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cui, M.; Fan, D.; Zhang, D.; Lian, H.; Yin, Z.; Li, J. Relationship between haze and acute cardiovascular, cerebrovascular, and respiratory diseases in Beijing. Environ. Sci. Pollut. Res. Int. 2015, 22, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Hesta, M.; Hoornaert, E.; Verlinden, A.; Janssens, G.P.J. The effect of oligofructose on urea metabolism and faecal odour components in cats. J. Anim. Physiol. Anim. Nutr. 2005, 89, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, M.; Yamaoka, R.; Nakashima, Y. Do faecal odours enable domestic cats (Felis catus) to distinguish familiarity of the donors? J. Ethol. 2012, 30, 325–329. [Google Scholar] [CrossRef]
- Yadav, S.N.; Ahmed, N.; Nath, A.J.; Mahanta, D.; Kalita, M.K. Urinalysis in dog and cat: A review. Vet. World 2020, 13, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; King, A.J. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. Int. 2018, 25, 15269–15293. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, N.; Wang, T.; Xie, G.; Zhang, Z.; Li, H.; Yuan, J.; Sun, Z.; Chen, J. Dna shuffling of uricase gene leads to a more “human like” chimeric uricase with increased uricolytic activity. Int. J. Biol. Macromol. 2016, 82, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res. 2013, 68, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary protein and carbohydrate levels affect the gut microbiota and clinical assessment in healthy adult cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef] [PubMed]
- Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 2012, 56, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner. Eng. 2014, 69, 81–90. [Google Scholar] [CrossRef]
- Kushkevych, I.; Leščanová, O.; Dordević, D.; Jančíková, S.; Hošek, J.; Vítězová, M.; Buňková, L.; Drago, L. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. J. Clin. Med. 2019, 8, 1656. [Google Scholar] [CrossRef] [PubMed]
- Snopková, K.; Sedlář, K.; Bosák, J.; Chaloupková, E.; Sedláček, I.; Provazník, I.; Šmajs, D. Free-living enterobacterium pragia fontium 24613: Complete genome sequence and metabolic profiling. Evol. Bioinform. Online 2017, 13, 1609447167. [Google Scholar] [CrossRef] [PubMed]
- Washio, J.; Shimada, Y.; Yamada, M.; Sakamaki, R.; Takahashi, N. Effects of ph and lactate on hydrogen sulfide production by Oral veillonella spp. Appl. Environ. Microbiol. 2014, 80, 4184–4188. [Google Scholar] [CrossRef] [PubMed]
- Cheng-Yuan, W.; Jian-Gang, D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front. Nutr. 2023, 10, 1186161. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.; Joseph Kamal, S.W.; Bajrang Chole, P.; Dayal, D.; Chaubey, K.K.; Pal, A.K.; Xavier, J.; Manjunath, B.T.; Bachheti, R.K. Functional foods: Exploring the health benefits of bioactive compounds from plant and animal sources. J. Food Qual. 2023, 2023, 5546753. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, E3847. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Xiong, J.; Li, H.; Wang, S.; Zhang, Y.; Mei, C.; Wu, X.; He, Y.; Chen, H. Using plant extracts and their active ingredients to inhibit bacterial biofilms. Chin. J. Biotechnol. 2022, 38, 1753–1767. [Google Scholar] [CrossRef]
- Seleshe, S.; Ameer, A.; Kang, S.N. Exploration of the antioxidant chemical constituents and antioxidant performance of various solvent extracts of eighteen plants. Prev. Nutr. Food Sci. 2022, 27, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, M.; Sapuan, S.; Hashim, I.F.; Ismail, N.I.; Yaakop, A.S.; Kamaruzaman, N.A.; Ahmad Mokhtar, A.M. The properties and mechanism of action of plant immunomodulators in regulation of immune response—A narrative review focusing on Curcuma longa L., Panax ginseng C. A. Meyer and Moringa oleifera lam. Heliyon 2024, 10, e28261. [Google Scholar] [CrossRef] [PubMed]
- Ege, G.; Bozkurt, M.; Koçer, B.; Tüzün, A.E.; Uygun, M.; Alkan, G. Influence of feed particle size and feed form on productive performance, egg quality, gastrointestinal tract traits, digestive enzymes, intestinal morphology, and nutrient digestibility of laying hens reared in enriched cages. Poult. Sci. 2019, 98, 3787–3801. [Google Scholar] [CrossRef] [PubMed]
- Vierbaum, L.; Eisenhauer, L.; Vahjen, W.; Zentek, J. In vitro evaluation of the effects of yucca schidigera and inulin on the fermentation potential of the faecal microbiota of dogs fed diets with low or high protein concentrations. Arch. Anim. Nutr. 2019, 73, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Kekana, M.R.; Luseba, D.; Muyu, M.C. Effects of garlic supplementation on in vitro nutrient digestibility, rumen fermentation, and gas production. S. Afr. J. Anim. Sci. 2021, 51, 271–279. [Google Scholar] [CrossRef]
- Ramdani, D.; Jayanegara, A.; Chaudhry, A.S. Biochemical properties of black and green teas and their insoluble residues as natural dietary additives to optimize in vitro rumen degradability and fermentation but reduce methane in sheep. Animals 2022, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim. Feed. Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef]
- Li, M.; Feng, K.; Chen, J.; Liu, T.; Wu, Y.; Mi, J.; Wang, Y. Chinese herbal extracts mitigate ammonia generation in the cecum of laying hens: An in vitro study. Animals 2023, 13, 2969. [Google Scholar] [CrossRef] [PubMed]
- Pinna, C.; Vecchiato, C.G.; Cardenia, V.; Rodriguez-Estrada, M.T.; Stefanelli, C.; Grandi, M.; Gatta, P.P.; Biagi, G. An in vitro evaluation of the effects of a yucca schidigera extract and chestnut tannins on composition and metabolic profiles of canine and feline faecal microbiota. Arch. Anim. Nutr. 2017, 71, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Roque, N.C.; de Oliveira Borges Saad, F.M.; Santos, J.P.F.D.; Ebina, F.S.; Chizzotti, A.F.; Silva, R.C.; Aquino, A.A.; Maia, G.V.C. Increasing levels of zeolite and yucca schidigera in diets for adult cats. Braz. J. Anim. Sci. 2011, 40, 2471–2475. [Google Scholar] [CrossRef]
- Neagu, E.; Roman, G.P.; Radu, G.L. Antioxidant capacity of some symphytum officinalis extracts processed by ultrafiltration. Romanian Biotechnol. Lett. 2010, 15, 5505–5511. [Google Scholar]
- Bosch, G.; Heesen, L.; de Melo Santos, K.; Cone, J.W.; Pellikaan, W.F.; Hendriks, W.H. Evaluation of an in vitro fibre fermentation method using feline faecal inocula: Inter-individual variation. J. Nutr. Sci. 2017, 6, e24. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Bosch, M.W.; Boer, H.; Verstegen, M.W.A.; Tamminga, S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed. Sci. Technol. 2005, 123–124, 445–462. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Di Liao, X.; Wu, Y.; Liang, J.B.; Laudadio, V.; Tufarelli, V. Sodium butyrate mitigates in vitro ammonia generation in cecal content of laying hens. Environ. Sci. Pollut. Res. Int. 2016, 23, 16272–16279. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.F.; Di Liao, X.; Wang, Y.; Liang, J.B.; Tufarelli, V. Prebiotics mitigate in vitro sulfur-containing odour generation in caecal content of pigs. Ital. J. Anim. Sci. 2015, 14, 10. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, H.; Zhu, R.; Liao, X.; Wu, Y.; Mi, J.; Wang, Y. Ammonia reduction by the gdha and glna genes from bacteria in laying hens. Ecotoxicol. Environ. Saf. 2021, 222, 112486. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Winkler-Moser, J.K.; Berhow, M.A.; Byars, J.A.; Liu, S.X.; Jackson, M.A.; Peterson, S.C.; Eller, F.J. An odor-reducing, low dust-forming, clumping cat litter produced from eastern red cedar (Juniperus virginiana L.) Wood fibers and biochar1. Ind. Crops Prod. 2020, 147, 112224. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Babakir-Mina, M. Investigation of rosemary herbal extracts (Rosmarinus officinalis) and their potential effects on immunity. Phytother. Res. 2020, 34, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wei, Q.; Zhang, C.; Pan, H.; Li, J.; Ji, P.; Ma, Y.; Dou, T.; Wang, Y.; Li, Q.; et al. Effect of rosemary on growth performance, meat quality, fatty acid content, intestinal flora, and antioxidant capacity of broilers. Animals 2024, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Csitári, G.; Stankovics, P.; Wágner, L.; Koltay, I.A.; Farkas, V.; Pál, L.; Strifler, P.; Dublecz, K. Effects of probiotics and wheat bran supplementation of broiler diets on the ammonia emission from excreta. Animals 2021, 11, 2703. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Chen, X.; Liao, X. Screening of single or combined administration of 9 probiotics to reduce ammonia emissions from laying hens. Poult. Sci. 2019, 98, 3977–3988. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.K.; Raval, K.; JagadeeshBabu, P.E. Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system. Prep. Biochem. Biotechnol. 2015, 45, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Meotti, F.C.; Senthilmohan, R.; Harwood, D.T.; Missau, F.C.; Pizzolatti, M.G.; Kettle, A.J. Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radic. Biol. Med. 2008, 44, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 2013, 18, 2135–2149. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lv, B.; Du, J.; Ye, M.; Jin, H.; Yi, Y.; Huang, Y. Sulfide regulation and catabolism in health and disease. Signal Transduct. Target. Ther. 2025, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Manukhov, I.V.; Mamaeva, D.V.; Rastorguev, S.M.; Faleev, N.G.; Morozova, E.A.; Demidkina, T.V.; Zavilgelsky, G.B. A gene encoding l-methionine gamma-lyase is present in Enterobacteriaceae family genomes: Identification and characterization of Citrobacter freundii l-methionine gamma-lyase. J. Bacteriol. 2005, 187, 3889–3893. [Google Scholar] [CrossRef] [PubMed]
- Joyner, P.M. Protein adducts and protein oxidation as molecular mechanisms of flavonoid bioactivity. Molecules 2021, 26, 5102. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.L.; Ritz, N.L.; Fauque, G.D.; Lin, H.C. Sulfur cycling and the intestinal microbiome. Dig. Dis. Sci. 2017, 62, 2241–2257. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.S.; de Azevedo Santos Ferreira, J.; Dos Santos, J.N.; Chinalia, F.A.; Matos, J.L.; Coqueiro, G.; Ramos-de-Souza, E.; de Almeida, P.F. Screening and testing potential inhibitors of sulphide gas production by sulphate-reducing bacteria. J. Mol. Model. 2021, 27, 189. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Zhang, T.; Huang, X.; Gu, C.; Zuo, W.; Fu, L.; Dong, Y.; Liu, H. Novel therapeutic targets: Bifidobacterium-mediated urea cycle regulation in colorectal cancer. Cell Biol. Toxicol. 2024, 40, 64. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, H.; Wu, C.; Chen, C.; Ni, Y. Pathogenic effects of Desulfovibrio in the gut on fatty liver in diet-induced obese mice and children with obesity. J. Gastroenterol. 2022, 57, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Z.; Ze, X.; Deng, C.; Xu, S.; Ye, F. Multispecies probiotics complex improves bile acids and gut microbiota metabolism status in an in vitro fermentation model. Front. Microbiol. 2024, 15, 1314528. [Google Scholar] [CrossRef] [PubMed]
CK | RE | RE100 | |
---|---|---|---|
IgA (pg/mL) | 14.13 ± 0.24 b | 19.41 ± 0.38 a (p = 0.003) | 20.39 ± 1.05 a (p = 0.001) |
IgM (pg/mL) | 122.52 ± 0.42 a | 122.41 ± 1.14 a (p = 0.997) | 121.50 ± 1.26 a (p = 0.768) |
IgG (pg/mL) | 43.75 ± 1.98 b | 45.97 ± 1.34 ab (p = 0.536) | 50.16 ± 0.35 a (p = 0.040) |
IL-6 (pg/mL) | 71.05 ± 2.08 a | 57.09 ± 2.69 b (p = 0.023) | 59.86 ± 3.11 b (p = 0.025) |
IL-10 (pg/mL) | 190.90 ± 6.96 b | 203.20 ± 5.01 b (p = 0.356) | 261.01 ± 5.25 a (p = 0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Li, M.; He, Z.; Yan, X.; Wu, Y.; Mu, P.; Jiang, J.; Wang, X.; Wang, Y. Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation. Animals 2025, 15, 2101. https://doi.org/10.3390/ani15142101
Huang Z, Li M, He Z, Yan X, Wu Y, Mu P, Jiang J, Wang X, Wang Y. Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation. Animals. 2025; 15(14):2101. https://doi.org/10.3390/ani15142101
Chicago/Turabian StyleHuang, Ziming, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang, and Yan Wang. 2025. "Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation" Animals 15, no. 14: 2101. https://doi.org/10.3390/ani15142101
APA StyleHuang, Z., Li, M., He, Z., Yan, X., Wu, Y., Mu, P., Jiang, J., Wang, X., & Wang, Y. (2025). Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation. Animals, 15(14), 2101. https://doi.org/10.3390/ani15142101