Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Fermentation Characteristics Analyses
2.3. Bacterial Community Analysis
2.4. Metabolite Analysis
2.5. Statistical Analysis
3. Results
3.1. Silage Characteristics of Triticale Silage
3.2. Analysis of Bacterial Communities
3.3. Analysis of Metabolite
3.4. Differential Metabolite Analysis
3.5. Association Between the Bacterial Community and Metabolic Profile
4. Discussion
4.1. Inoculants Enhanced Fermentation Quality and Nutrient Preservation
4.2. Inoculants Modulated Bacterial Community Succession Towards Beneficial LAB
4.3. Inoculants Reshaped Silage Metabolome, Enriching for Beneficial Compounds
4.4. Interplay Between Microbial Community and Metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Lei, Y.; Chen, Y.; Cheng, Q.; Zhang, X.; Chen, C.; Li, P.; Wang, J.; Li, H.; Zhao, Y.; et al. Improving fermentation quality, aerobic stability, and microbial community stabilization of triticale by Amomum villosum essential oil. Microbiol. Spectr. 2025, 13, e01302-24. [Google Scholar] [CrossRef] [PubMed]
- Glamočlija, N.; Starčević, M.; Ćirić, J.; Šefer, D.; Glišić, M.; Baltić, M.; Marković, R.; Spasić, M.; Glamočlija, Đ. The Importance of Triticale in Animal Nutrition. Vet. J. Repub. Srp. 2018, 18, 73–94. [Google Scholar] [CrossRef]
- Vaughn, K.; Adeyemi, O.; Zandvakili, O.R.; Battaglia, M.L.; Babaei, S.; Nair, J.; Still, S.; Burkett, G.; Sadeghpour, A. Nitrogen Rate and Harvesting Time Based on Growing Degree Days Influenced Winter Cereal Rye Morphological Traits, Forage Yield, Quality, and Farm Profit in Poorly Drained Alfisols. Grass Forage Sci. 2024, 79, 239–253. [Google Scholar] [CrossRef]
- Niu, Y.; Guo, Y.; Huang, R.; Niu, J.; Wang, Y.; Zhang, P.; Lu, Q.; Zhang, W. Fermentative Profile and Bacterial Community Structure of Whole-Plant Triticale Silage (Triticosecale Wittmack) with or without the Addition of Streptococcus bovis and Lactiplantibacillus plantarum. mSphere 2025, 10, e00894-24. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Gentu, G.; Liu, T.; Jia, Y.; Cai, Y. Silage Preparation and Fermentation Quality of Natural Grasses Treated with Lactic Acid Bacteria and Cellulase in Meadow Steppe and Typical Steppe. Asian-Australas. J. Anim. Sci. 2016, 30, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, Z.; Mu, L.; Liu, X.; Sun, R.; Gao, W.; Chen, G. Dynamic Succession of the Quantity and Composition of Epiphytic Microorganisms at Different Growth Stages on Rice Surface. Front. Microbiol. 2024, 15, 1451935. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The Performance of Lactic Acid Bacteria in Silage Production: A Review of Modern Biotechnology for Silage Improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, X.; Desta, S.T.; Dong, Z.; Mugabe, W.; Shao, T. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 Isolated from Tibetan Yak (Bos grunniens) for Ensiling Pennisetum sinese. Bioresour. Technol. 2018, 257, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-Analysis of Effects of Inoculation with Homofermentative and Facultative Heterofermentative Lactic Acid Bacteria on Silage Fermentation, Aerobic Stability, and the Performance of Dairy Cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ke, W.; Zhang, Q.; Undersander, D.; Zhang, G. Effects of Bacillus Coagulans and Lactobacillus Plantarum on the Fermentation Quality, Aerobic Stability and Microbial Community of Triticale Silage. Chem. Biol. Technol. Agric. 2023, 10, 79. [Google Scholar] [CrossRef]
- Soundharrajan, I.; Jung, J.S.; Muthusamy, K.; Lee, B.H.; Park, H.S.; Sivanesan, R.; Choi, K.C. Effects of Different Lactic Acid Bacteria in Single or Mixed Form on the Fermentative Parameters and Nutrient Contents of Early Heading Triticale Silage for Livestock. Foods 2023, 12, 4296. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Hino, T. Regulation of Lactate Production in Streptococcus bovis: A Spiraling Effect That Contributes to Rumen Acidosis. J. Dairy Sci. 1985, 68, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Stamer, J.R.; Stoyla, B.O.; Dunckel, B.A. Growth Rates and Fermentation Patterns of Lactic Acid Bacteria Associated with the Sauerkraut Fermentation. J. Food Prot. 1971, 34, 521–525. [Google Scholar] [CrossRef]
- Jones, B.A.; Muck, R.E.; Ricke, S.C. Selection and Application of Streptococcus bovis as a Silage Inoculant. Appl. Environ. Microbiol. 1991, 57, 3000–3005. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.D.J.; Lana, R.D.P.; Zanine, A.D.M.; Santos, E.M.; Veloso, C.M.; Ribeiro, G.A. Silage Fermentation and Chemical Composition of Elephant Grass Inoculated with Rumen Strains of Streptococcus bovis. Anim. Feed Sci. Technol. 2013, 183, 22–28. [Google Scholar] [CrossRef]
- Zanine, A.D.M.; Bonelli, E.A.; Souza, A.L.D.; Ferreira, D.D.J.; Santos, E.M.; Ribeiro, M.D.; Geron, L.J.V.; Pinho, R.M.A. Effects of Streptococcus bovis Isolated from Bovine Rumen on the Fermentation Characteristics and Nutritive Value of Tanzania Grass Silage. Sci. World J. 2016, 2016, 8517698. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, R.; Niu, Y.; Zhang, P.; Li, Y.; Zhang, W. Chemical Characteristics, Antioxidant Capacity, Bacterial Community, and Metabolite Composition of Mulberry Silage Ensiling with Lactic Acid Bacteria. Front. Microbiol. 2024, 15, 1363256. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ding, Z.; Wang, M.; Bai, J.; Ke, W.; Zhang, Y.; Guo, X. Characterization of the Microbial Community, Metabolome and Biotransformation of Phenolic Compounds of Sainfoin (Onobrychis Viciifolia) Silage Ensiled with or without Inoculation of Lactobacillus Plantarum. Bioresour. Technol. 2020, 316, 123910. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhou, W.; Chen, X.; Zhang, Q. Chemical and Bacterial Composition of Broussonetia Papyrifera Leaves Ensiled at Two Ensiling Densities with or without Lactobacillus Plantarum. J. Clean. Prod. 2021, 329, 129792. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer Junior, G.W. Official Methods of Analysis of the Association of Analytical Chemists International. In Offcial Methods Gaithersburg; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Ren, H.; Feng, Y.; Pei, J.; Li, J.; Wang, Z.; Fu, S.; Zheng, Y.; Li, Z.; Peng, Z. Effects of Lactobacillus Plantarum Additive and Temperature on the Ensiling Quality and Microbial Community Dynamics of Cauliflower Leaf Silages. Bioresour. Technol. 2020, 307, 123238. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, X.; Gu, Q.; Liang, M.; Mu, S.; Zhou, B.; Huang, F.; Lin, B.; Zou, C. Analysis of the Correlation between Bacteria and Fungi in Sugarcane Tops Silage Prior to and after Aerobic Exposure. Bioresour. Technol. 2019, 291, 121835. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zheng, M.; Guo, X.; Chen, X.; Zhang, Q. Altering Bacterial Community: A Possible Way of Lactic Acid Bacteria Inoculants Reducing CO2 Production and Nutrient Loss during Fermentation. Bioresour. Technol. 2021, 329, 124915. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Z.; Wang, X.; Ma, C.; Zhang, F. Effects of Intrinsic Tannins on Proteolysis Dynamics, Protease Activity, and Metabolome during Sainfoin Ensiling. Front. Microbiol. 2022, 13, 976118. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wu, S.; Liang, Z.; Zhang, J.; Lei, X.; Bai, H.; Liang, G.; Su, X.; Chen, X.; Wang, P.; et al. Multi-Omics Reveal Mechanisms of High Enteral Starch Diet Mediated Colonic Dysbiosis via Microbiome-Host Interactions in Young Ruminant. Microbiome 2024, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage Review: Recent Advances and Future Uses of Silage Additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, Z.; Jing, Y.; Sun, L.; Yang, G.; Liu, B.; Gao, F. The Effect of Silage Microbial Inoculants on the Silage Quality of WL358HQ Alfalfa. Microorganisms 2025, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Nascimento Agarussi, M.C.; Gomes Pereira, O.; Paula, R.A.D.; Silva, V.P.D.; Santos Roseira, J.P.; Fonseca e Silva, F. Novel Lactic Acid Bacteria Strains as Inoculants on Alfalfa Silage Fermentation. Sci. Rep. 2019, 9, 8007. [Google Scholar] [CrossRef] [PubMed]
- Hanc, A.; Dume, B.; Hrebeckova, T. Differences of Enzymatic Activity during Composting and Vermicomposting of Sewage Sludge Mixed with Straw Pellets. Front. Microbiol. 2022, 12, 801107. [Google Scholar] [CrossRef] [PubMed]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial Diversity and Composition of Alfalfa Silage as Analyzed by Illumina MiSeq Sequencing: Effects of Escherichia coli O157:H7 and Silage Additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R.; Merry, R.J.; Williams, A.P.; Bakewell, E.L.; Leemans, D.K.; Tweed, J.K.S. Proteolysis during Ensilage of Forages Varying in Soluble Sugar Content. J. Dairy Sci. 1998, 81, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Hatfield, R.D.; Muck, R.E. Characterization of Proteolysis in Alfalfa and Red Clover. Crop Sci. 1995, 35, 537–541. [Google Scholar] [CrossRef]
- He, L.; Lv, H.; Xing, Y.; Chen, X.; Zhang, Q. Intrinsic Tannins Affect Ensiling Characteristics and Proteolysis of Neolamarckia Cadamba Leaf Silage by Largely Altering Bacterial Community. Bioresour. Technol. 2020, 311, 123496. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of Antibacterial Peptide-Producing Bacillus Subtilis and Lactobacillus Buchneri on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Qiu, R.; Sun, L.; Bao, J.; Liu, Y.; Ge, G.; Jia, Y.; Wang, Z. Effect Isolated Lactic Acid Bacteria Inoculation on the Quality, Bacterial Composition and Metabolic Characterization of Caragana Korshinskii Silage. Chem. Biol. Technol. Agric. 2024, 11, 67. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of Microbial Community and Fermentation Quality during Ensiling of Sterile and Nonsterile Alfalfa with or without Lactobacillus plantarum Inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kingkaew, E.; Konno, H.; Hosaka, Y.; Phongsopitanun, W.; Tanasupawat, S. Characterization of Lactic Acid Bacteria from Fermented Fish (Pla-Paeng-Daeng) and Their Cholesterol-Lowering and Immunomodulatory Effects. Microbes Environ. 2023, 38, ME22044. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Y.; Xiang, F.; Dong, Y.; Hou, Q.; Zhang, Z. Evaluating the Flavor and Divergent Bacterial Communities in Corn-Based Zha-Chili. Food Biosci. 2022, 46, 101563. [Google Scholar] [CrossRef]
- Wang, T.; Shi, C.; Wang, S.; Zhang, Y.; Wang, S.; Ismael, M.; Zhang, J.; Wang, X.; Lü, X. Protective Effects of Companilactobacillus Crustorum MN047 against Dextran Sulfate Sodium-Induced Ulcerative Colitis: A Fecal Microbiota Transplantation Study. J. Agric. Food Chem. 2022, 70, 1547–1561. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, S.; Dong, Z.; Li, J.; Zhao, J.; Nazar, M.; Kaka, N.A.; Shao, T. The Contribution of Epiphytic Microbiota in Oat and Italian Ryegrass to Silage Fermentation Products and Bacterial Community Structure of Whole-Crop Maize. Chem. Biol. Technol. Agric. 2023, 10, 62. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Q.; Tang, Y.; Li, Q.; Tian, C.; Sun, H. Integrated Microbiology and Metabolomic Analysis Reveal the Improvement of Rice Straw Silage Quality by Inoculation of Lactobacillus Brevis. Biotechnol. Biofuels Bioprod. 2023, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Sun, L.; Lin, Y.; Yang, F.; Cai, Y. Using PacBio SMRT Sequencing Technology and Metabolomics to Explore the Microbiota-Metabolome Interaction Related to Silage Fermentation of Woody Plant. Front. Microbiol. 2022, 13, 857431. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Wu, C.; Zhang, M.; Yang, F.; Chen, C.; Hao, J. The Metabolome and Bacterial Composition of High-Moisture Italian Ryegrass Silage Inoculated with Lactic Acid Bacteria during Ensiling. Biotechnol. Biofuels Bioprod. 2023, 16, 91. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of Air Exposure, Temperature and Additives on Fermentation Characteristics, Yeast Count, Aerobic Stability and Volatile Organic Compounds in Corn Silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.O.; Soyer, F. Pseudomonas Aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent. ACS Omega 2020, 5, 19938–19951. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Guan, C.; Wang, T.; Mu, G.; Tuo, Y. Indole-3-Lactic Acid, a Tryptophan Metabolite of Lactiplantibacillus Plantarum DPUL-S164, Improved Intestinal Barrier Damage by Activating AhR and Nrf2 Signaling Pathways. J. Agric. Food Chem. 2023, 71, 18792–18801. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.C.D.; Costa, K.A.D.P.; Rodrigues, L.G.; Silva, A.C.G.; Costa, J.V.C.P.; Silva, S.A.A.; Assis, L.F.A.D.; Oliveira, S.M.P.D.; Vieira, M.D.L. Fermentation Characteristics and Nutritive Value of Sweet Sorghum Silage with Paiaguas Palisadegrass and Ipypora Grass. Semin.: Ciências Agrárias 2021, 42, 1923–1940. [Google Scholar] [CrossRef]
- Moloi, S.J.; Ngara, R. The Roles of Plant Proteases and Protease Inhibitors in Drought Response: A Review. Front. Plant Sci. 2023, 14, 1165845. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, J.; Shen, Z. Two Unusual Isoflavonoids from Campylotropis hirtella—A New Biosynthesis Route of Flavonoids. Tetrahedron Lett. 2017, 58, 1462–1466. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Xu, D.M.; Ding, L.M.; Zhang, P.; Li, F.D.; Guo, X.S. Effects of Addition of Malic or Citric Acids on Fermentation Quality and Chemical Characteristics of Alfalfa Silage. J. Dairy Sci. 2017, 100, 8958–8966. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, J.; Bennett, G.N.; San, K.-Y. Succinate Production from Different Carbon Sources under Anaerobic Conditions by Metabolic Engineered Escherichia coli Strains. Metab. Eng. 2011, 13, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, S.; Shinkai, T.; Kobayashi, Y.; Masuda, M.; Hashiba, K.; Uchisawa, K.; Terada, F. Rumen Microbial Composition Associated with the Non-Glucogenic to Glucogenic Short-Chain Fatty Acids Ratio in Holstein Cows. Anim. Sci. J. 2023, 94, e13829. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Li, J.; Xin, Y.; Wang, T.; Chen, C.; Zhong, Y.; Zhang, L.; Liu, H.; He, Y.; Wen, X.; et al. Response of Fermentation Quality and Microbial Community of Oat Silage to Homofermentative Lactic Acid Bacteria Inoculation. Front. Microbiol. 2023, 13, 1091394. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jiang, D.; Zheng, M.; Tian, P.; Zheng, M.; Xu, C. Microbial Community Dynamics during Alfalfa Silage with or without Clostridial Fermentation. Sci. Rep. 2020, 10, 17782. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Ke, X.; Jiang, L.; Zhang, Z.; Yi, M.; Liu, Z.; Cao, J.; Lu, M.; Wang, M. Genomic and Biochemical Analysis Reveals Fermented Product of a Putative Novel Romboutsia Species Involves the Glycometabolism of Tilapia. Aquaculture 2024, 581, 740483. [Google Scholar] [CrossRef]
Items | Content |
---|---|
DM, g/kg of FM | 410 |
WSC, g/kg of DM | 72.5 |
Starch, g/kg of DM | 213 |
CP, g/kg of DM | 85.7 |
NDF, g/kg of DM | 632 |
ADF, g/kg of DM | 301 |
pH | 6.23 |
Microorganism (log10 CFU/g of FM) | |
Lactic acid bacteria | 3.22 |
Yeast | 4.50 |
Mold | 4.34 |
Aerobic bacteria | 7.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Ma, X.; Wang, C.; Zhang, P.; Lu, Q.; Long, R.; Wu, Y.; Zhang, W. Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation. Microorganisms 2025, 13, 1723. https://doi.org/10.3390/microorganisms13081723
Niu Y, Ma X, Wang C, Zhang P, Lu Q, Long R, Wu Y, Zhang W. Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation. Microorganisms. 2025; 13(8):1723. https://doi.org/10.3390/microorganisms13081723
Chicago/Turabian StyleNiu, Yujie, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu, and Wenju Zhang. 2025. "Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation" Microorganisms 13, no. 8: 1723. https://doi.org/10.3390/microorganisms13081723
APA StyleNiu, Y., Ma, X., Wang, C., Zhang, P., Lu, Q., Long, R., Wu, Y., & Zhang, W. (2025). Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation. Microorganisms, 13(8), 1723. https://doi.org/10.3390/microorganisms13081723