Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,640)

Search Parameters:
Keywords = metabolic safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

12 pages, 1125 KiB  
Article
Exploring Adverse Event Associations of Predicted PXR Agonists Using the FAERS Database
by Saki Yamada and Yoshihiro Uesawa
Int. J. Mol. Sci. 2025, 26(15), 7630; https://doi.org/10.3390/ijms26157630 - 6 Aug 2025
Abstract
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a [...] Read more.
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a machine learning model to predict the activity of PXR agonists and applied the model to drugs listed in the US Food and Drug Administration Adverse Event Reporting System database. Analysis of the predicted agonist–active drug interactions and adverse event reports revealed statistically significant risks (lnROR > 1 and −logp > 1.3) for multiple cardiac disorders. These findings suggest that PXR activity is involved in cardiovascular adverse effects and may contribute to drug safety through the early identification of risks. Full article
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

29 pages, 2060 KiB  
Review
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential
by Natallia V. Dubashynskaya, Anton N. Bokatyi, Mikhail M. Galagudza and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(15), 7591; https://doi.org/10.3390/ijms26157591 - 6 Aug 2025
Abstract
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, [...] Read more.
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, and clinically significant drug–drug interactions, partly mediated by modulation of P-glycoprotein and cytochrome P450 3A4 metabolism. This review explores advanced delivery strategies designed to overcome these limitations. We critically evaluate lipid-based systems, such as solid lipid nanoparticles, liposomes, transferosomes, ethosomes, and cubosomes; polymer-based nanoparticles; microneedles; and implants, including drug-eluting stents. These systems ensure targeted delivery, improve pharmacokinetics, and reduce toxicity. Additionally, we discuss chemical derivatization approaches, such as prodrugs, codrugs, and strategic ring modifications (A-, B-, and C-rings), aimed at optimizing both the efficacy and safety profile of colchicine. Combinatorial nanoformulations that enable the co-delivery of colchicine with synergistic agents, such as glucocorticoids and statins, as well as theranostic platforms that integrate therapeutic and diagnostic functions, are also considered. These innovative delivery systems and derivatives have the potential to transform colchicine therapy by broadening its clinical applications while minimizing adverse effects. Future challenges include scalable manufacturing, long-term safety validation, and the translation of research into clinical practice. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Viewed by 166
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1820 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 (registering DOI) - 4 Aug 2025
Viewed by 75
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
Show Figures

Figure 1

24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 - 4 Aug 2025
Viewed by 189
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Viewed by 264
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 234
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

42 pages, 1287 KiB  
Review
A Comprehensive Review of the Latest Approaches to Managing Hypercholesterolemia: A Comparative Analysis of Conventional and Novel Treatments: Part II
by Narcisa Jianu, Ema-Teodora Nițu, Cristina Merlan, Adina Nour, Simona Buda, Maria Suciu, Silvia Ana Luca, Laura Sbârcea, Minodora Andor and Valentina Buda
Pharmaceuticals 2025, 18(8), 1150; https://doi.org/10.3390/ph18081150 - 1 Aug 2025
Viewed by 529
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with hypercholesterolemia identified as a major, but modifiable risk factor. This review serves as the second part of a comprehensive analysis of dyslipidemia management. The first installment laid the groundwork by detailing the [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with hypercholesterolemia identified as a major, but modifiable risk factor. This review serves as the second part of a comprehensive analysis of dyslipidemia management. The first installment laid the groundwork by detailing the key pathophysiological mechanisms of lipid metabolism, the development of atherosclerosis, major complications of hyperlipidemia, and the importance of cardiovascular risk assessment in therapeutic decision-making. It also examined non-pharmacological interventions and conventional therapies, with a detailed focus on statins and ezetimibe. Building upon that foundation, the present article focuses exclusively on emerging pharmacological therapies designed to overcome limitations of standard treatment. It explores the mechanisms, clinical applications, safety profiles, and pharmacogenetic aspects of novel agents such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (alirocumab, evolocumab), small interfering RNA (siRNA) therapy (inclisiran), adenosine triphosphate–citrate lyase (ACL) inhibitor (bempedoic acid), microsomal triglyceride transfer protein (MTP) inhibitor (lomitapide), and angiopoietin-like protein 3 (ANGPTL3) inhibitor (evinacumab). These agents offer targeted strategies for patients with high residual cardiovascular risk, familial hypercholesterolemia (FH), or statin intolerance. By integrating the latest advances in precision medicine, this review underscores the expanding therapeutic landscape in dyslipidemia management and the evolving potential for individualized care. Full article
(This article belongs to the Special Issue Pharmacotherapy of Dyslipidemias, 2nd Edition)
Show Figures

Figure 1

26 pages, 956 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 - 1 Aug 2025
Viewed by 164
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
Show Figures

Figure 1

11 pages, 827 KiB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 - 1 Aug 2025
Viewed by 287
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

19 pages, 523 KiB  
Review
Whey Proteins and Metabolic Dysfunction-Associated Steatotic Liver Disease Features: Evolving the Current Knowledge and Future Trends
by Maja Milanović, Nataša Milošević, Maja Ružić, Ludovico Abenavoli and Nataša Milić
Metabolites 2025, 15(8), 516; https://doi.org/10.3390/metabo15080516 - 1 Aug 2025
Viewed by 422
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with obesity, MASLD prevalence is estimated to be about 75%. Despite various approaches to MASLD treatment, dietary changes remain the most accessible and safe interventions in MASLD, especially in obese and overweight patients. Whey proteins are rich in bioactive compounds, essential amino acids with antioxidant properties, offering potential benefits for MASLD prevention and management. This state-of-the-art review summarizes whey protein impacts on a spectrum of MASLD-related manifestations, such as obesity, impaired glucose and lipid metabolism, hypertension, liver injury, oxidative stress, and inflammation. The results obtained in clinical environments, with a focus on meta-analysis, propose whey protein supplementation as a promising strategy aimed at managing multifaced MASLD disorders. Well-designed cohort studies are needed for validation of the efficacy and long-term safety of whey proteins in MASLD patients. Full article
(This article belongs to the Special Issue Effects of Diet on Metabolic Health of Obese People)
Show Figures

Figure 1

15 pages, 953 KiB  
Review
Influence of Matcha and Tea Catechins on the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)—A Review of Patient Trials and Animal Studies
by Danuta I. Kosik-Bogacka and Katarzyna Piotrowska
Nutrients 2025, 17(15), 2532; https://doi.org/10.3390/nu17152532 - 31 Jul 2025
Viewed by 501
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer from MAFLD, and 20 million patients will die from MAFLD-related diseases. In the last 20 years, tea and anti-obesity research have indicated that regularly consuming tea decreases the risk of cardiovascular disease, stroke, obesity, diabetes, and metabolic syndrome (MeS). In this review, we aimed to present studies concerning the influence of matcha extracts and epigallocatechin-3 gallate (EGCG) supplements on metabolic functions in the context of MAFLD in human and animal studies. The published data show promise. In both human and animal studies, the beneficial effects on body weight, cholesterol levels, and liver metabolism and function were noted, even in short-period experiments. The safety levels for EGCG and green tea extract consumption are marked. More experiments are needed to confirm the results observed in animal studies and to show the mechanisms by which green tea exerts its effects. The preliminary data from research concerning microbiota or epigenetic changes observed after polyphenols and green tea consumption need to be expanded. To improve the efficiency and availability of green tea or supplement consumption as a treatment for MAFLD patients, more research with larger groups and longer study durations is needed. Full article
(This article belongs to the Special Issue Phytonutrients in Diseases of Affluence)
Show Figures

Figure 1

36 pages, 1730 KiB  
Review
Pharmacological Potential of Cinnamic Acid and Derivatives: A Comprehensive Review
by Yu Tian, Xinya Jiang, Jiageng Guo, Hongyu Lu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2025, 18(8), 1141; https://doi.org/10.3390/ph18081141 - 31 Jul 2025
Viewed by 411
Abstract
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives [...] Read more.
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives reported in publications from 2016 to 2025, and anticipates their potential in medical and industrial fields. This review evaluates studies in major scientific databases, including Web of Science, PubMed, and ScienceDirect, to ensure a comprehensive analysis of the therapeutic potential of cinnamic acid. Through systematic integration of existing knowledge, it has been revealed that cinnamic acid has a wide range of pharmacological activities, including anti-tumor, antibacterial, anti-inflammatory, antidepressant and hypoglycemic effects. Additionally, it has been shown to be effective against a variety of pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and foodborne Pseudomonas. Cinnamic acid acts by disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, thereby demonstrating its ability to act as a natural antimicrobial agent. Its anti-inflammatory properties are demonstrated by improving oxidative stress and reducing inflammatory cell infiltration. Furthermore, cinnamic acid enhances metabolic health by improving glucose uptake and insulin sensitivity, showing promising results in improving metabolic health in patients with diabetes and its complications. This systematic approach highlights the need for further investigation of the mechanisms and safety of cinnamic acid to substantiate its use as a basis for new drug development. Particularly in the context of increasing antibiotic resistance and the search for sustainable, effective medical treatments, the study of cinnamic acid is notably significant and innovative. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop